
Experimental Studies on Test Pattern Generation for BDD Circuits

Junhao Shi Görschwin Fey Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{junhao,fey,drechsle}@informatik.uni-bremen.de

Abstract

Synthesis for Testability has become a major issue as the
size and complexity of circuits and systems is rapidly in-
creasing. Due to their good testability design styles based
on multiplexors have become very popular. Starting from a
function description as a Binary Decision Diagram (BDD)
the circuit is generated by a linear time mapping algorithm.
Only one additional input and one inverter are needed to
achieve 100% testable circuits under the Stuck-At Fault
Model. In this paper we study Automatic Test Pattern Gen-
eration (ATPG) for circuits derived from Binary Decision
Diagrams (BDDs) under the Stuck-At fault model. Experi-
mental studies for circuits derived from BDDs in compari-
son to optimized circuits are carried out. For the benchmark
circuits the number of test patterns needed is comparable to
the relative sizes of the circuits. Even a gain up to a factor
of four occurred

1. Introduction

The size of circuits and systems is increasing rapidly.
Due to this increase the test for failures becomes intractable
if not considered during early design stages. This obser-
vation lead to approaches of Synthesis for Testability. An-
other important aspect is to consider layout aspects as early
as possible in the design cycle. Binary Decision Diagrams
(BDDs) [6] are a data structure that allow to combine both
perspectives.

BDDs have originally been proposed as a data structure
for ef£cient Boolean function representation and manipu-
lation. Due to their compactness they have also been fre-
quently used in logic synthesis approaches, since they al-

low to combine aspects of circuit synthesis and technology
mapping [9].

Furthermore, on BDD circuits and BDDs, respectively,
many operations can be carried out ef£ciently, like estimat-
ing power or considering layout aspects [8]. One further
important argument for the use of BDD circuits are testa-
bility aspects. Due to the structural restrictions of BDDs,
i.e. the ordering of the variables, testability can be ensured
by construction. Multiplexor circuits derived from BDDs
have been studied intensively under various fault models
[2, 1, 4, 3]. (For an overview see [5].) Recently in [7] a
technique has been proposed that ensures 100% testabil-
ity of circuits derived from BDDs under the stuck-at fault
model and even the path delay fault model at the cost of one
additional input.

In this paper, ATPG was carried out on the combinational
circuits from the LGSynth’91 [13] benchmark set, using
TEGUS [12], an ATPG tool based on a Boolean satis£a-
bility (SAT) formulation. BDD circuits were built for the
benchmark circuits using the technique from [7] and tested
using TEGUS. In experimental studies the resulting circuits
are compared to circuits optimized by SIS [10]. The results
show that all redundancies were removed. The overhead in
size is moderate and also the number of test patterns needed
is tightly correlated to the circuit size.

2. Binary Decision Diagrams and Circuits

As is well-known a Boolean function f : Bn → B can
be represented by a BDD which is a directed acyclic graph

MUX

d0 d1

s

d0 d1

s

Figure 1. BDD node over MUX and STD

where a Shannon decomposition

f = xifxi
+ xifxi

(1 ≤ i ≤ n)

fxi
= f(x1, · · · , xi = 0, · · · , xn)

fxi
= f(x1, · · · , xi = 1, · · · , xn)

is carried out in each non-terminal node with the low-edge
pointing to fxi

and the high-edge pointing to fxi
. A BDD is

called ordered if each variable is encountered at most once
on each path from the root to a terminal node and if the vari-
ables are encountered in the same order on all such paths.
A BDD is called reduced if it does not contain isomorphic
subgraphs nor vertices with both edges pointing to the same
node. Reduced and ordered BDDs are a canonical represen-
tation since for each Boolean function the BDD is uniquely
speci£ed. Furthermore, for functions represented by BDDs
ef£cient manipulations can be carried out [6].

It is well-known, that BDDs directly correspond to mul-
tiplexor based Boolean circuits, called BDD circuits in this
paper. More exactly: BDD circuits are combinational logic
circuits de£ned over a £xed library. As been proposed in
[4], we consider two libraries in the following (see Figure
1):

1. MUX: BDD nodes are substituted by multiplexor cells.
Internal signals of these cells are not considered.

2. STD: BDD nodes are substituted by the AND-, OR-,
NOT-realization of the Shannon decomposition.

The BDD circuit of a BDD is now obtained by the fol-
lowing construction: Traverse the BDD in topological or-
der and replace each non-terminal node v in the BDD by a
MUX cell, connect the control input with the primary input
xi, corresponding to the label of the BDD node. Then, con-
nect the 0-input to low(v), the 1-input to high(v). Finally,
connect the output of the multiplexor which substituted the
root node with a primary output.

MUX

MUX

MUX

MUX

MUX

MUX

0

0

X1

t

X2

X3

X1

X2

X3

1

X1

X2

1

1

X3

(c)(a) (b)

Figure 2. Mapping a BDD to a circuit

Remark 1. The handling of nodes that have at least one
pointer to a constant has direct implications on the testabil-
ity of the resulting circuit:

1. As has been suggested in [4, 3], the MUX cells con-
nected to constant values can be simpli£ed. This can
result in redundancies, but the £nal circuits are smaller
counted in the number of literals (see Figure 2b).

2. In [7] all terminals are connected to a new test input.
By this 100% testability can be ensured by construc-
tion (see Figure 2c).

3. Experimental Results

The techniques described above have been implemented
in C. All experiments are run on a SUN Fire 280R with 3
Gbyte of main memory. The benchmarks are taken from
LGSynth91 [13]. For each circuit initially the BDD is con-
structed and then mapped to the MUX library. This circuit
is decomposed to cells from the STD library using SIS [10].
CUDD [11] has been used as the underlying BDD package.
The number of literals needed for a circuit was determined
using SIS, the number of test patterns, caught faults and re-
dundancies was determined using the tool TEGUS [12].

Selected results are given in Tables 1 and 2 for circuits
optimized by SIS using script.rugged and BDD circuits re-
trieved using the technique from [7]. In contrast to the ex-
periments in [7] all circuits were mapped to the STD library.
Table 1 shows characteristics regarding circuit sizes. The
name of the benchmark is given in the £rst column. The
number of inputs, the number of outputs and the number
of literals are given in columns in, out, lits, respectively.

Column lits(BDD)/lits(opt) gives the ratio of literals in the
BDD circuit to literals in the optimized circuit. The table
shows that for several benchmarks a moderate overhead in
size is introduced when BDD circuits are considered. But
for other benchmarks the opposite is true, i.e. the BDD cir-
cuits are smaller than those optimized by SIS, e.g. for t481
the optimized circuit is more than four times larger than the
BDD circuit. Note, that the mapping of BDDs onto the STD
library can be seen as a worst case for BDD circuits as the
realization of a MUX cell in multiplexor based design styles
is much cheaper.

In Table 2 data regarding the testability is shown. The
number of test patterns, caught faults and redundancies are
given in column pattern, caught, red., respectively. The
time for test pattern generation was small in all cases (less
than 0.5 CPU seconds) and is therefore omitted. Column
pat(BDD)/pat(opt) gives the ratio of test patterns for the
BDD circuit to test patterns for the optimized circuit. The
list of test patterns calculated during test pattern generation
was compacted using fault simulation on the reversed list
afterward.

Table 2 shows that the optimized circuits can contain a
large number of redundancies. The synthesis approach fa-
cilitated by SIS does not take this aspect into account. On
the other hand no redundancies are contained in the BDD
circuits. Still the number of test patterns needed is very
moderate.

Due to the structure of a BDD the number of test pat-
terns could grow very large with the size of BDD circuits,
as only one path from primary inputs to primary outputs can
be tested at a time. But the experiments show the opposite.
Figure 3 visualizes this observation. Each dot denotes re-
sults for one benchmark circuit. Compared are the relative
circuit sizes and the relative number of test patterns needed
for optimized and BDD circuits, respectively. Most circuits
are below the bisecting line. This suggests that the growth
of the number of test patterns is smaller on average than the
growth of the circuit size.

In summary full testability can be achieved at a moderate
overhead in circuit size and – if at all – at the cost of a small
number of additional test patterns. These £gures even hold
for the case of the STD library which is disadvantageous
for BDD circuits. Even better results can be expected for
multiplexor based design styles.

References

[1] P. Ashar, S. Devadas, and K. Keutzer. Gate-delay-fault testa-
bility properties of multiplexor-based networks. In Int’l Test

Table 1. Characteristics of circuits
optimized BDD circuit

Circ. in out lits in out lits lits(BDD)
lits(opt)

5xp1 7 10 277 8 10 238 .85920
C17 5 2 14 6 2 37 2.64285
alu2 10 6 700 11 6 1124 1.60571
b12 15 9 218 16 9 330 1.51376
b9 41 21 287 42 21 702 2.44599
c8 28 18 242 29 18 332 1.37190
cc 21 20 84 22 20 271 3.22619
cht 47 36 240 48 36 564 2.35000
clip 9 5 466 10 5 435 .93347
con1 7 2 36 8 2 73 2.02777
count 35 16 256 36 16 384 1.50000
cu 14 11 95 15 11 213 2.24210
decod 5 16 52 6 16 195 3.75000
duke2 22 29 818 23 29 2195 2.68337
e64 65 65 1054 66 65 903 .85673
f51m 8 8 285 9 8 218 .76491
frg1 28 3 404 29 3 626 1.54950
i1 25 13 74 26 13 252 3.40540
i3 132 6 620 133 6 756 1.21935
i5 133 66 264 134 66 792 3.00000
i6 138 67 762 139 67 1500 1.96850
i7 199 67 1016 200 67 1429 1.40649
i9 88 63 1048 89 63 9672 9.22900
lal 26 19 179 27 19 471 2.63128
ldd 9 19 128 10 19 409 3.19531
o64 130 1 258 131 1 774 3.00000
parity 16 1 90 16 1 91 1.01111
pcler8 27 17 160 28 17 511 3.19375
pm1 16 13 73 17 13 249 3.41095
rd53 5 3 60 6 3 91 1.51666
rd73 7 3 362 8 3 174 .48066
rd84 8 4 614 9 4 243 .39576
sao2 10 4 440 11 4 514 1.16818
sqrt8 8 4 146 9 4 180 1.23287
squar5 5 8 122 6 8 184 1.50819
t481 16 1 812 17 1 192 .23645
table3 14 14 1622 15 14 4787 2.95129
table5 17 15 1660 18 15 4158 2.50481
tcon 17 16 48 17 16 48 1.00000
term1 34 10 455 35 10 441 .96923
ttt2 24 21 416 25 21 669 1.60817
unreg 36 16 166 37 16 304 1.83132
vda 17 39 938 18 39 2943 3.13752
vg2 25 8 236 26 8 493 2.08898
x1 51 35 644 52 35 2879 4.47049
x2 10 7 84 11 7 165 1.96428
x3 135 99 1534 136 99 3401 2.21707
x4 94 71 626 95 71 2474 3.95207
xor5 5 1 24 5 1 24 1.00000
z4ml 7 4 76 8 4 90 1.18421

Table 2. Testability of circuits
optimized BDD circuit

Circ. pattern caught red. pattern caught red. pat(BDD)
pat(opt)

5xp1 41 228 0 28 242 0 .68292
C17 7 19 0 10 45 0 1.42857
alu2 92 562 13 203 995 0 2.20652
b12 38 220 5 45 321 0 1.18421
b9 58 293 1 83 702 0 1.43103
c8 30 263 0 46 337 0 1.53333
cc 18 118 0 42 283 0 2.33333
cht 35 315 0 62 601 0 1.77142
clip 75 376 2 57 410 0 .76000
con1 11 40 0 22 78 0 2.00000
count 29 276 0 42 390 0 1.44827
cu 24 99 0 42 220 0 1.75000
decod 19 88 0 30 192 0 1.57894
duke2 116 755 3 189 1944 0 1.62931
e64 348 1021 0 143 957 0 .41091
f51m 40 218 0 27 225 0 .67500
frg1 63 325 0 187 588 0 2.96825
i1 28 89 0 40 271 0 1.42857
i3 121 478 0 125 950 0 1.03305
i5 58 332 0 66 994 0 1.13793
i6 22 844 0 110 1538 0 5.00000
i7 90 1038 0 125 1419 0 1.38888
i9 79 1054 0 272 8536 0 3.44303
lal 34 209 0 52 476 0 1.52941
ldd 19 134 0 32 378 0 1.68421
o64 130 195 0 197 970 0 1.51538
parity 20 122 0 19 122 0 .95000
pcler8 26 165 0 61 504 0 2.34615
pm1 20 80 0 33 246 0 1.65000
rd53 13 66 0 13 98 0 1.00000
rd73 64 300 2 27 182 0 .42187
rd84 101 518 6 31 247 0 .30693
sao2 68 329 0 72 467 0 1.05882
sqrt8 28 131 0 34 175 0 1.21428
squar5 18 116 0 20 175 0 1.11111
t481 164 751 9 50 206 0 .30487
table3 260 1417 0 486 4209 0 1.86923
table5 302 1433 0 472 3675 0 1.56291
tcon 21 82 0 24 82 0 1.14285
term1 91 392 2 64 464 0 .70329
ttt2 57 389 0 63 626 0 1.10526
unreg 25 187 0 25 294 0 1.00000
vda 104 866 0 152 2602 0 1.46153
vg2 62 218 7 89 480 0 1.43548
x1 86 603 0 321 2641 0 3.73255
x2 21 84 0 24 168 0 1.14285
x3 113 1569 17 222 3185 0 1.96460
x4 61 717 0 185 2311 0 3.03278
xor5 6 34 0 6 34 0 1.00000
z4ml 21 79 0 15 100 0 .71428

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10

pa
t(

B
D

D
)/

pa
t(

op
t)

lits(BDD)/lits(opt)

Results
x

Figure 3. Relation between test patterns and literals

Conf., pages 887–896, 1991.

[2] P. Ashar, S. Devadas, and K. Keutzer. Testability properties
of multilevel logic networks derived from binary decision di-
agrams. Advanced Research in VLSI: UC Santa Cruz, pages
33–54, 1991.

[3] P. Ashar, S. Devadas, and K. Keutzer. Path-delay-fault testa-
bility properties of multiplexor-based networks. INTEGRA-
TION, the VLSI Jour., 15(1):1–23, 1993.

[4] B. Becker. Synthesis for testability: Binary decision di-
agrams. In Symp. on Theoretical Aspects of Comp. Sci-
ence, volume 577 of LNCS, pages 501–512. Springer Verlag,
1992.

[5] B. Becker. Testing with decision diagrams. INTEGRATION,
the VLSI Jour., 26:5–20, 1998.

[6] R. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[7] R. Drechsler, J. Shi, and G. Fey. Synthesis of fully testable
circuits from BDDs. IEEE Trans. on CAD, 23(3):440–443,
March 2004.

[8] T. Eschbach, R. Drechsler, and B. Becker. Placement and
routing optiization for circuits derived from bdds. In IEEE
International Symposium on Circuits and Systems, 2004.

[9] W. Günther and R. Drechsler. ACTion: Combining logic
synthesis and technology mapping for MUX based FPGAs.
Journal of Systems Architecture, 46(14):1321–1334, 2000.

[10] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential

circuit synthesis. Technical report, University of Berkeley,
1992.

[11] F. Somenzi. CUDD: CU Decision Diagram Package Re-
lease 2.3.1. University of Colorado at Boulder, 2001.

[12] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Combinational test generation using satis£abil-
ity. In IEEE Trans. on CAD, volume 15, pages 1167–1176,
September 1996.

[13] S. Yang. Logic synthesis and optimization benchmarks user
guide. Technical Report 1/95, Microelectronic Center of
North Carolina, 1991.

