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Abstract

The complexity of todays hardware systems steadily in-
creases. Due to this fact new ways of efficiently describing
systems are investigated. A very promising approach in this
area is SystemC which is a C++-library. To take advan-
tage of SystemC in the multi-valued domain, the concept of
multi-valued logic has to be embedded in SystemC.

In this paper such a concept is introduced and details
of the implementation are given. This creates a powerful
development environment to model and efficiently simulate
complex multi-valued circuits and systems. Due to C++-
concepts, like operator overloading and templates, the task
of modeling circuits becomes very convenient and handling
of multi-valued signals is elegant. This gives the opportu-
nity to design large circuits that can be mapped onto physi-
cally multi-valued gates. A scalable arithmetic logic unit is
studied and experimental results are given.

1. Introduction

With the increasing complexity of circuits and systems
having several million gates it becomes more and more
important to efficiently describe and simulate those de-
signs. The two most popular hardware description lan-
guages, namely VHDL and Verilog, are used to describe
the RT-level, while a first reference design usually is mod-
eled in C or C++. This gap can be closed by the use of
C-like hardware description languages. One very promis-
ing candidate is SystemC which allows to model a design
at different levels of abstraction, starting at the functional
level and ending at a cycle-accurate model [3]. The well-
known concept of a hierarchical description of a hardware
system is transferred to SystemC by modeling a module as
a C++-class. Any SystemC-description can be compiled to
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an executable with a common C++-compiler and results in
a very efficient simulator for the specified system.

Also a first commercial tool "CoCentric™ SystemC" to
synthesize SystemC is already available from Synopsys™,
though only a subset of the language may be used in the de-
scription [7]. Research results on synthesizing more com-
plex programming constructs [8] and on formal verifica-
tion of SystemC-descriptions [1, 2] have recently been pro-
posed.

On the other hand a lot of work is done on circuit de-
sign based on multi-valued logic. Modeling circuits on a
multi-valued basis instead of being based upon binary logic
can lead to advantages in the verification [4]. But also the
physical realization of multi-valued gates is object of cur-
rent research. This leads to the need of a development en-
vironment that supports modeling multi-valued circuits. A
first approach in this direction was introduced in [6] where
a package to model ternary circuits in VHDL was pro-
vided. But this was not generic, so for each radix a separate
VVHDL-package is required.

In this paper we present a concept to model multi-valued
circuits in SystemC and discuss the implementation of two
multi-valued datatypes. Since SystemC is a C++-library it
can be extended to support multi-valued logic in an efficient
manner by using the facilities of C++. This creates a power-
ful development environment for the design of multi-valued
circuits. The first of the new datatypes is the one-digit-type
sc_nmul t val which is parameterized such that the radix
is chosen at instantiation. Second, sc_nv is a multi-valued
vector type. Using these new types handling of multi-valued
signals becomes very easy, due to operator overloading in
C++. This means, the designer decides about the radix of a
signal at instantiation and uses it like any other signal after-
wards. Adding two quarternary signals a and b is literally as
easy as writing a + b. Using the new datatypes an arithmetic
logic unit (ALU) has been modeled and simulation results
are given, that show the influence of the parameters width
and radix of operands.



The remaining part of the paper is structured as follows:
In Section 2 the algebra we chose to implement is defined
and some concepts of SystemC are shortly introduced. Sec-
tion 3 describes the concepts and details of the implemen-
tation of the two new datatypes. On top of this implemen-
tation a multi-valued ALU is constructed in Section 4 and
simulation results are reported. The conclusions and an
overview of future work can be found in Section 5.

2. Preliminaries
2.1. Multi-Valued Circuits

Multi-valued networks can simply be modeled as graphs.
Edges in these graphs correspond to signals while vertices
correspond to primary inputs or outputs, to flip-flops or to
basic gates. Usually cycles in the network extend across
flip-flops, while the combinatorial parts of the network are
free of cycles.

All of the basic gates can be used as operators in higher
level descriptions of the circuit. More complex constructs
can be defined on these gates and can be used in the high
level description as well.

Given k as the radix, the operators (that correspond to
basic gates) are defined overaset? = {0,...,k — 1}. We
chose a functional complete set of operators [5], all hav-
ing one output and one or two operands x and y (xz,y €
P): EQUAL(z,y), MIN (z,y), MAX(z,y), INV(z),
LITERAL, 3(x). MIN and MAX correspond in the bi-
nary case to AND and OR, respectively. INV corresponds
to the complement and is defined as

INV(z) :=(k—1) —z.

The LITERA L-operator has two fixed parameters a,b €
P,a < band is defined by:

k=1, ifa<z<b

LITERALa,b(w)={ 0, otherwise

All binary operators are defined on two operands of the
same radix only. The generalization of the definition to
operands of different radices can be done if necessary.

2.2. SystemC

SystemC comes as a C++-library, its source code is
freely available®. It provides the facilities to model a sys-
tem at different levels of abstraction. Since the model can
be compiled into an executable the simulation of the design

1The source code and several documents on SystemC can be found at
www.SystemC.org.

is very efficient. For this task a standard C++-compiler can
be used.

Classes to implement modules and their interconnect are
provided by SystemC. In an early design step the descrip-
tion of functionality and data flow can use all features of
C++, but should already reflect the coarse structure of the
latter design. This description can then be refined to a syn-
thesizable one. While doing this different approaches to
realize particular modules can be explored.

While SystemC-constructs, like modules or clocked pro-
cesses within modules, can be synthesized already, some
others can not. This is due to the fact that some constructs
only make sense in the area of simulation, like e.g. rou-
tines to trace waveforms. On the other hand several C++-
constructs, like e.g. pointers are not supported by the only
SystemC-Compiler available so far [7], but some promising
approaches to overcome limitations of this kind have been
published recently [8].

Using C++ all basic datatypes of SystemC are imple-
mented as classes that provide a set of operators, conversion
routines and output routines. Amongst the basic datatypes
for signals are sc_hbi t which is binary and sc_| ogi ¢
that extends sc_bit by an unknown (’X’) and a high
impedance value ("Z’). For either type a corresponding vec-
tor type is also provided, namely sc_bv andsc_| v.

Some notion of multi-valued logic is also already inher-
ent to SystemC. It includes the type sc_i nt which allows
to specify a number of bits for its value and arithmetic op-
erations are provided for this type. Therefore this can be
interpreted as being a multi-valued signal, having a radix
that is a power of two. But in this case the signal is syn-
thesized to binary constructs. Also modeling circuits with
other radices is a tedious task, when only the native types of
SystemC are used.

For more details on SystemC see e.g. [3] or the SystemC-
website.

3. Multi-Valued M odeling

To allow for easy modeling of multi-valued circuits two
datatypes are needed. The first one is a one-digit type and
corresponds to a signal or wire in a physical multi-valued
design. Details about this type, called sc_rmul t val are
given in Section 3.1. The second is a vector type sc_mv
that is constructed from the one-digit type, it is introduced
in Section 3.2. For example buses or arithmetic operations
can be conveniently modeled using this type.

3.1. One-Digit Type

The new multi-valued type sc_nul t val corresponds
to the binary type sc_bit which is native to SystemC.



friend const sc_rnultval operator | (
const sc_nultval & a, const sc_multval & b )

{

return sc_nul tval ( max(a. mval,b.mval) );

}

Figure 1. Code of the | -operator

sc_bi t is defined on the set {0,1}. The common logical
operators as well as conversion, input and output routines
are defined on this type.

Summarized the features of the new type are:

e The radix can be chosen at instantiation.
e Operators can be applied as on other C++-datatypes.

e The underlying operations can easily be changed.

The remainder of this section shows how these features are
put into practice, therefore parts of the implementation have
to be discussed in more detail.

The type sc_mul t val <i nt k> is defined as a C++-
template class having the desired radix & as its parameter.
Therefore it is defined on the set of values {0, ...,k — 1}.
Where possible the usual C++-operators were overloaded
to realize their multi-valued counterparts. For example the
multi-valued operator MA X is the general case of the bi-
nary OR-operator and therefore intuitively corresponds to
it. So the C++-instruction "a| b" applied to two operands a
and b of type sc_nul t val calculates MAX (a,b). Figure
1 shows the C++-code for overloading the operator | ", the
internal values of the operands are compared. The same cor-
respondence is true for the multi-valued operators EQUAL,
MIN and INV that overload the C++-operators "==", "&"
and "~", respectively.

The matter is different with LITERAL, ; for two rea-
sons. First, there is no unique correspondence to an op-
erator on a binary value. Second, in this case there can
be several instances of LITERAL, in use, having differ-
ent parameters a and b. Therefore we decided to imple-
ment this operator as a member function of sc_nul t val .
Since it is a unary operator with only one output the as-
signment  := LITERAL, 4(y) can be written in the C++-
source as "x = y.literal (2,4);". The generaliza-
tion of the two binary operators MIN and MAX to handle
two operands of different radices can be done, if necessary
and if the semantics is defined.

For simulation it is necessary to retrieve signal values
from the circuit. To achieve this, SystemC uses a method
sc_trace, that takes a parameter of type sc_rul t val .
This method is also part of the implementation and simply
scans the actual value of the variable.

This concept of modeling multi-valued circuits also al-
lows for a change of the underlying algebra without touch-
ing the design itself. Simply by modifying the routines that
implement the operators their semantics can be redefined.
This way an arbitrary arithmetic can be chosen.

3.2. Vector Type

The vector-type sc_nv<i nt k, int n>is defined
as a template class as well. The two template parameters
specify the radix & and the width n of the vector. Basically
there are two ways to implement this type in SystemC. In-
ternally the value of the vector can either be mapped to an
integer value or stored in an array of sc_mul t val s.

Holding the value internally as an integer has the advan-
tage of fast arithmetic operations, since the native integer
operations can be used. But this is paid by disadvantages
in the access to components of the vector. The multi-valued
operators are usually carried out on the digits separately.
Therefore carrying out any of the operations would mean,
first to convert the vectors value to the multi-valued domain,
second carry out the operation component-wise, third con-
vert the value back. The same problem would arise when
accessing a digit of the multi-valued vector. The internal
representation would have to be converted to a multi-valued
one at first.

Therefore the implementation as an array of
sc_mul tval s was chosen. Then the application of
the multi-valued operators is efficient and so is the access
to the vector’s components. For example the code for
LITERAL,; makes use of the operator "[] " to access
single elements of the vectors:

sc_nmv literal(int a, int b) {
sc_mv<k, n> t np;

for (int i=0;i<n;i++)

tnp[i] = (*this)[i].literal (a,b);
return tnp;
}

This comes at the cost of less efficient arithmetic opera-
tions. But it is not desirable, since SystemC is used as a
fast simulator. We consider it acceptable to a certain ex-
tent, since mostly the vectors components will be accessed
or basic operations will be carried out. Without overload-
ing the arithmetic operators three steps would be necessary
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Figure 2. A simple ALU

to carry out an operation: conversion to integer, carrying
out the operation and conversion back to sc_nv. There-
fore the overloaded addition is realized using the school-
method, i.e. adding component-wise. So it becomes more
efficient than the simple forewards and backwards conver-
sion. The multiplication is more difficult and indeed it does
not become more efficient, but by overloading the operator
the conversion steps before and after the multiplication can
be done internally. They do not occur in the design and this
leads to ""cleaner" desriptions.

Another advantage of overloading the arithmetic opera-
tors occurs during synthesis of the description. The arith-
metic operation can easily be recognized as working on
multi-valued operands and an efficient hardware realization
can be chosen from a library.

Tracing the waveforms of vectors is done component-
wise by using the method for tracing sc_nul t val .

4. Case Study: ALU

To demonstrate the efficiency of our approach we studied
a scalable multi-valued ALU for different radices and width
of the operands. The block diagram of the ALU can be seen
in Figure 2. The module has four inputs and one output. Be-
sides the necessary clock-input there is a select-signal and
two inputs for operands i _a and i _b. The radix of the
cl ock is two of course and a datatype native to SystemC
is used.

The ALU realizes the operations INV, MIN, MAX,
addition and multiplication. Therefore the radix of the in-
puti _sel to select the desired operation is five. The re-
sult always has the same radix as the two operands. The
width of both operands is equal and the result has the dou-
ble width, to take the maximum result of a multiplication.
Radix and width of the operands can be separately defined,
so the ALU is scalable. Its functionality is covered by the

void ALU: : comput e()

{
sc_nv<RADI X_k, W DTH_n*2> res;
switch (i _sel.read().tolnt()) {
case 0: // MN
res = i_a.read() & i_b.read();
br eak;
case 1: // MAX
res = i_a.read() | i_b.read();
br eak;
case 2: // INV of i_a
res = ~i _a.read();
br eak;
case 3: // ADDI TI ON
res =i_a.read() + i_b.read();
br eak;
case 4: [/ MJLTI PLI CATI ON
res =i_a.read() * i_b.read();
br eak;
}
/1l wite result to output
ores.wite(res);
}

Figure 3. The routine conput e performs the
basic operation of the ALU

routine comput e (see Figure 3), which is called at every
rising edge of the clock. As can be seen the description is
convenient and easy to understand.

4.1. Simulation Results

An exemplary trace of a simulation run can be seen in
Figure 4. The widely used VCD (value change dump) file
format? is used to store the traced waveforms, so for dis-
playing any tool that is able to read this format can be used.
We used the freely available waveform-viewer Dinotrace.

In this simulation the radix of operands and result (i _a,
i _b, o_res)was set to five, the width of the operands was
four and therefore the width of the result was eight. Each
multi-valued vector is split into its components, the com-
ponents are displayed as integers and therefore as if being
32-bit-values. The result of an operation is delayed by one
clock cycle.

Runtimes of longer simulation runs are given in Table
1. All these runs were carried out on a Pentium Il at 400
MHz with 256 MB of physical RAM running under Linux.

2Thisisincluded in the description of the |EEE Standard 1364-1995.
3Dinotrace can be downloaded at www.veripool .com/dinotrace).
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Figure 4. In- and Outputs of the ALU

In each case 1 million cycles were simulated with either
tracing waveforms or no tracing. The stimuli were created
randomly. We investigated runtimes for different radices
and widths of the operands.

The empty fields are due to overflow in the multipli-
cation. The operator itself is coded with 64-bit accuracy,
therefore a check in this operation takes care that no over-
flow occurs. Having operands of width 10 and radix 8 leads
to a binary representation of 30 bit. Therefore the result has
a width of 60 bit and is still in the range of the operator. For
efficiency the check is implemented such that it does not
calculate a sharp upper bound of the operators range, so the
multiplication on radix 16 and width 8, leading to a 64-bit
result is not carried out.

It is remarkable that the simulation of 1 million cycles
does only take about 40 seconds on operands of width 10
on a Pentium Il. Furthermore it can be observed that the
radix of the operands is of minor influence.

Of course the time needed increases when tracing of
waveforms is activated. But if the size of the waveform-
file of more than 200 MB for operands of width 10 is taken
into account, 200 seconds are still very efficient.

5. Conclusions and Future Work

In this paper an extension to SystemC for modeling
multi-valued circuits was introduced. This allows to model
and implement complex multi-valued systems by a high
level hardware description and also to efficiently simulate
it. The concept of overloading operators in C++ allows to
mix the new datatypes sc_nul t val and sc_mv with the
native SystemC- and also C++-datatypes, e.g. to directly as-

sign an integer to one of the new types or vice versa. The
semantics to synthesize the new datatypes can be chosen to
be either truly multi-valued or to be any two-valued encod-
ing scheme like e.g. logarithmic or one-hot.

Besides this, future work is to define the semantics of op-
erators on operands with different radices and include this
in the basic multi-valued types. To allow for unknown (*X”)
and high impedance (’Z’) states during simulation another
multi-valued type that supports these values has to be de-
fined.
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Table 1. CPU-Time in seconds for the simulation of 1 million clock cycles

WIDTH
TRACE | RADIX 1 2 3 4 5 6 7 8 9 10
31214 | 1553 | 18.96 | 2154 | 24.99 | 2742 | 29.96 | 3249 | 38.16 | 4061
4| 1242|1576 | 19.14 | 2169 | 2510 | 27.60 | 30.08 | 32.64 | 38.36 | 40.82
51256 | 1586 | 19.28 | 21.78 | 2517 | 2765 | 30.22 | 32.75 | 38.38 | 40.84
6| 12.66 | 1591 | 1930 | 21.78 | 25.22 | 27.66 | 30.30 | 32.84 | 38.49 | 40.93
711274 | 1594 | 1933 | 2180 | 2524 | 27.70 | 30.29 | 3284 | 3855 | 41.00
81277 | 1598 | 1935 | 2185 | 2524 | 2776 | 30.29 | 32.84 | 3857 | 41.04
no 91281 | 16.01 | 1936 | 21.88 | 2526 | 27.80 | 30.33 | 32.90 | 38.56
10 | 12.85 | 16.02 | 19.37 | 22.03 | 25.27 | 27.95| 30.38 | 32.87 | 38.58
11 | 1291 | 16.04 | 1941 | 2187 | 2530 | 2783 | 30.39 | 32.92
12 | 1293 | 16.06 | 1940 | 21.89 | 2538 | 2785 | 30.37 | 32.92
13| 1294 | 16.04 | 1941 | 2193 | 2539 | 27.85| 30.39 | 32.93
14 | 1297 | 16.06 | 1942 | 2191 | 2538 | 2789 | 30.37 | 32.90
15| 1297 | 16.06 | 19.42 | 21.93 | 2540 | 27.89 | 30.40
16 | 1297 | 16.07 | 1944 | 2191 | 2541 | 27.86 | 30.43
3| 47.27 | 61.68 | 76.17 | 89.27 | 104.89 | 118.25 | 131.57 | 145.83 | 165.02 | 178.92
4 | 49.07 | 64.63 | 80.88 | 95.42 | 112.72 | 126.60 | 141.38 | 156.73 | 177.67 | 193.32
5149.72 | 66.79 | 83.74 | 99.65 | 116.79 | 132.20 | 147.80 | 164.38 | 185.33 | 201.17
6 | 50.87 | 67.98 | 85.46 | 101.39 | 119.85 | 135.48 | 151.89 | 168.47 | 190.77 | 207.57
7| 5155 | 68.73 | 86.88 | 103.03 | 122.01 | 138.28 | 154.78 | 171.67 | 194.61 | 211.59
8 | 51.94 | 69.66 | 87.77 | 104.73 | 123.71 | 140.19 | 157.16 | 174.54 | 197.79 | 214.92
yes 9 | 52.13 | 70.22 | 88.43 | 105.47 | 124.86 | 141.86 | 158.85 | 176.50 | 199.69
10 | 52.36 | 70.44 | 89.34 | 106.44 | 125.79 | 143.01 | 160.25 | 178.25 | 201.76
11 | 52.72 | 71.12 | 89.56 | 107.03 | 126.77 | 143.86 | 161.79 | 179.71
12 | 52.95 | 71.25 | 90.24 | 107.62 | 127.55 | 145.05 | 163.07 | 181.26
13 | 53.12 | 71.66 | 90.69 | 108.38 | 128.41 | 146.07 | 163.80 | 182.63
14 | 53.29 | 71.83 | 91.27 | 108.76 | 129.00 | 146.40 | 164.72 | 182.79
15 | 53.44 | 72.19 | 91.22 | 109.21 | 129.39 | 147.04 | 165.17
16 | 53.58 | 72.12 | 91.61 | 109.68 | 129.95 | 148.30 | 165.64




