

On the Relation between SAT and BDDs for Equivalence Checking

 Sherief Reda1 Rolf Drechsler2 Alex Orailoglu1

1Computer Science & Engineering Department 2Institute of Computer Science
 University of California, San Diego University of Bremen

 La Jolla, CA, 92093 28359 Bremen, Germany

Abstract
State-of-the-art verification tools are based on efficient
operations on Boolean formulas. Traditional manipulation
techniques are based on Binary Decision Diagrams
(BDDs) and SAT solvers. In this paper, we study the
relation between the two procedures and show how the
number of backtracks obtained in the Davis-Putnam (DP)
procedure is linked to the number of paths in the BDD. We
utilize this relation to devise a method that uses BDD
variable ordering techniques to run the DP procedure.
Experimental results confirm that the proposed method
results in a dramatic decrease in the number of backtracks
and in the time needed to prove the Boolean satisfiability
problem as well.

1 Introduction
 Boolean Satisfiability (SAT) has received increased
attention as a promising technique for Automatic Test
Pattern Generation (ATPG) and equivalence checking [1],
[2]. Virtually all SAT techniques rely on the use of the
Davis-Putnam procedure (DP) [3], [4] to explore the
search tree. If there is a pattern that differentiates the
circuits under verification, then DP will eventually find it
or prove that the SAT formula is unsatisfiable. Numerous
techniques have been proposed to reduce the search tree.
Some of these techniques such as iterated global
implications [2] and recursive learning [5] are applied as a
preprocessing step, while others are applied during the
course of the application of the DP procedure. For
example, clause recording [6] and cache-based
backtracking [7] are used to avoid conflicts. An alternative
research trend focuses on identifying variable orderings
techniques that minimize the number of backtracks
executed by the DP procedure to find a satisfying
assignment1. The effectiveness of these techniques is
sharply limited though in case the formula is unsatisfiable.
 On the other hand, Binary Decision Diagrams (BDDs),
as introduced in [9], have been traditionally used to solve
the equivalence checking problem due to their canonical
property. However, it is this requirement for canonicity
that makes BDDs inefficient in representing certain classes
of functions. For example, integer multipliers have
displayed exponential memory requirements for any
variable ordering [10].

1 An excellent survey can be found in [8].

 There has been increased interest in techniques that
integrate SAT and BDDs to reduce the time and space
needed to solve the equivalence checking problem [11],
[12]. Though it has been noted that SAT and BDDs
represent the same entity [7], there is little understanding
of the relation between the two procedures and how the
techniques of one domain can be utilized in the other.
 In this paper we attempt to provide an improved
understanding of the relation between these two
procedures. We view the equivalence checking problem as
a search in the decision trees of the two circuits for a path
that leads to the terminal 1(0) in one but leads to the 0(1)
terminal in the other. From this perspective, it would be
desirable to decrease the number of paths, thus reducing
the number of backtracks and time needed to solve the
problem. We propose a dynamic variable ordering
technique to run the DP procedure. The technique is
geared towards minimization of the number of backtracks
needed to prove the unsatisfiability of the CNF formula
that results from proving the equivalence of two circuits.
We compare our method with the greedy variable ordering
of TEGUS [2]. Experimental results verify that the
proposed approach results in a dramatic decrease in the
number of backtracks and time needed to solve the
problem.
 The organization of the paper is as follows. Section 2
introduces the necessary preliminaries for the material in
this paper. Section 3 presents the theoretical foundations
for the relation between the DP procedure and BDDs.
Section 4 proposes a dynamic BDD-based variable
ordering technique for the DP procedure. Experimental
results are given in Section 5, followed up by conclusions
in Section 6.

2 Preliminaries

2.1 Binary Decision Diagrams
 A Binary Decision Diagram (BDD) is a rooted directed
acyclic graph with two terminal nodes that are referred to
as the 0-terminal and the 1-terminal. Every non-terminal
node is associated with a primary input variable such that
it has two outgoing edges called the 0-edge corresponding
to assigning the variable a false truth value, and the 1-edge
corresponding to assigning the variable a true truth value.
 An Ordered Binary Decision Diagram (OBDD) is a BDD
such that the input variables appear in a fixed order on all
the paths of the graph, and no variable appears more than

once in the path. A Reduced Ordered BDD (ROBDD) is an
OBDD that results from the repeated application of the
following two rules:

1. Eliminate all redundant nodes whose edges point to
the same node.
2. Share all equivalent sub-graphs.

Figure 1 illustrates an example of an ROBDD where the
solid edges denote the 1-edges and the dashed edges
denote the 0-edges. In the following treatment, only
reduced ordered BDDs are considered and for short we
denote them as BDDs.
2.2 The Davis-Putnam Procedure
 A CNF formula ϕ is a set of clauses where each clause is
the disjunction of a number of literals where a literal is a
variable or its negation. Since each logic gate can be
represented by a number of clauses [1], a CNF formula of
a logic circuit is the conjunction of the CNF formulas of all
the gates. A CNF formula is satisfiable if at least one set of
assignments to the variables of the formula makes it
evaluate to true.
 Virtually all SAT solvers use the Davis-Putnam (DP)
procedure in their core [3], [4] in order to find a satisfying
assignment for the formula or conversely to prove the
formula unsatisfiable. The DP procedure performs a
backtracking depth-first search in the space of all truth
assignments to find a satisfying assignment for the CNF
formula. The performance of backtracking is greatly

improved by employing unit clause propagation: whenever
a unit clause arises, the variable occurring in that clause is
assigned the truth-value that satisfies the clause. The
formula is thereupon simplified which may lead to new
unit clauses. Figure 2 outlines the DP procedure. The
procedure returns true in case the CNF formula is
satisfiable, false otherwise.

3 On the relation between the DP procedure
and BDDs

In this section we study the relation between the DP
procedure and the BDD representation of the same circuit.
We first formalize the various properties of the CNF
formulas generated from multi-level combinational logic
circuits and show how these properties allow a measure of
flexibility in the search for a satisfying assignment to the
formula. Furthermore, we prove the relation between the
number of backtracks obtained using the DP procedure and
the number of paths in the corresponding BDD. This
relation allows the calculation of optimal lower bounds for
the number of backtracks needed to prove the equivalence
of two equivalent circuits. We start by introducing some
notation to provide a concise basis for the formalization of
the derived results.
 Let ϕ be a CNF formula, and V(ϕ) denote the set of
variables that ϕ depends on. A clause ci∈ϕ is satisfied if
there is some assignment to its literals such that the
disjunction of the literals evaluates to true. The CNF
formula ϕ is satisfied if there is a truth assignment to V(ϕ)
such that every clause ci ∈ ϕ is satisfied.
 Let C-CNF denote the set of CNF formulas generated
from multi-level combinational logic circuits. Let C ∈ C-
CNF be a multi-level combinational circuit, and let f be the
underlying Boolean function of C. Since the logic value of
all the internal and output signals of C can be derived from
the values of the primary inputs, we consider the support
of f to be the primary inputs only. We denote the set of
primary inputs of ϕ by P(ϕ). In addition, we introduce the
variable χ to reference the primary output of the circuit.
The relation between ϕ, P(ϕ) and V(ϕ) is given by the
next lemma.

Lemma 1 If ϕ ∈ C-CNF, then it is possible to find a set of
variables P(ϕ) ⊂ V(ϕ) such that ϕ can be satisfied by only
splitting on the variables of P(ϕ) in the DP procedure.
Proof Since the internal nodes of a multi-level logic
circuit are functions of the primary inputs, it is possible to
determine their assignment given some assignment on the
set of primary input variables, P(ϕ).

Lemma 1 enables a reduction of the search space from one
in terms of all the variables of the circuit nodes to one in
terms of the primary inputs. This reduces the backtracking
in the DP procedure to be only in terms of the primary
inputs. In a typical run of the DP procedure, a sequence of
support variables will be assigned truth variables during

assign(sat_formula ϕ, literal v)
begin
 assign v = true in ϕ and simplify ϕ;
 apply unit clause propagation;
 if ϕ has an empty clause then return false
 else return true;
end

DP(sat_formula ϕ)
begin
 choose literal v to split on;
 if v = NULL then return true;
 if assign(ϕ, v) then
 if DP(ϕ) then return true;
 undo v assignment;
 if assign(ϕ, ¬v) then
 if DP(ϕ) then return true;
 return false;
end

Fig 2: The DP procedure

x1

x2 x2

x3

x4

0 1

 Fig 1: A ROBDD example

the search of a satisfying assignment to the whole CNF
formula. This subset of currently assigned primary inputs
shall be denoted by S, and their truth assignments by As.
The restricted Boolean function that results from the
application of As to ϕ shall be denoted by fAs.
 In order to avoid fruitless searches, the DP procedure
should avoid assigning truth-values to variables that can
make no contribution to the satisfiability of the formula.
This notion is captured by the following definition.

Definition 1 If As is the truth assignment of a set S ⊆ P(ϕ)
and v ∈ P(ϕ) but v ∉ S then v is said to be redundant under
As if ∂ fAs /∂v = 0.

Definition 1 simply states that if the restricted Boolean
function fAs is insensitive to the change in v, then there is
no point in assigning v a truth value. This notion allows us
to tailor down the satisfiability of C-CNF formulas as
given by the following theorem.

Theorem 1 A CNF formula ϕ ∈ C-CNF is satisfied under
a truth assignment As of a set S ⊆ P(ϕ) if ∀v∈(P(ϕ)-S):
 ∂ fAs /∂v = 0.
Proof If ∀v∈(P(ϕ)-S): ∂f(As)/∂v = 0, then no truth
assignment to any element that belongs to (P(ϕ)-S) can
change the function f(As). Since all variables in S are
assigned truth values under As and (P(ϕ)-S) ∪ S = P(ϕ),
then it follows from Lemma 1 that ϕ is satisfied.

Theorem 1 proves that if all the remaining unassigned
primary inputs are redundant, then there is no need for
additional variable assignments since the C-CNF formula
is satisfiable. Another important property of C-CNF
formulas is that there is no point in assigning additional
variables if the primary output has been already assigned a
truth value. This is proved in the next theorem.

Theorem 2 If ϕ ∈ C-CNF and χ is assigned a truth value
under a truth assignment As of a set S ⊆ P(ϕ), then ϕ is
satisfied.
Proof If χ is assigned a truth value, then ∀v∈(P(ϕ)-S):
∂f(As)/∂v = 0. This is true since none of the variables that
belongs to (P(ϕ)-S) can change the primary output χ
corresponding to f. Thus, it follows from Theorem 1 that ϕ
is satisfied.

Theorem 2 defines our notion of satisfiability for CSAT. In
addition, it opens the possibility for the primary output
variable χ to be assigned a truth-value while there exist
clauses that are not evaluated to true and have some
remaining unassigned literals. Example 1 illustrates such a
case.

Example 1 The CNF formula of the circuit in Figure 3 is ϕ
= (¬a + d) ⋅ (¬b + d) ⋅ (a + b + ¬d) ⋅ (c + ¬z) ⋅ (d + ¬z) ⋅
(¬d + ¬c + z). In this example, P(ϕ) = { a, b, c} , χ = z and
under the partial assignment As = { c = 0} , where S = { c} , z
is assigned the truth value false and ϕ = (¬a + d) ⋅ (¬b +

d) ⋅ (a + b + ¬d). We notice that under As both ∂fAs/∂a and
∂fAs/∂b equal zero, since the function output value is
already determined. Furthermore, there exists a truth
assignment to the set of variables P(ϕ)-S that satisfies the
remaining clauses. This truth assignment is however of no
interest since the primary output has already been assigned
a truth-value. As an illustration for Definition 1, if As = { a
= 1} where S = { a} then ϕ = (c + ¬z) ⋅ (¬c + z) and
∂fAs/∂b = 0, yet z is not assigned a truth value. Thus, ϕ is
not satisfied but b is redundant under As.

We notice that Rule 1 in Section 2.1 for BDD reduction is
equivalent to Definition 1 in the CSAT context and thus
tracing a path from the root to the 1-terminal or 0-terminal
in the BDD of circuit C is equivalent to finding a satisfying
assignment to the CNF formula ϕ of C using the same
variable ordering of the path in the BDD. This notion is
captured in the following lemma.

Lemma 2 Given a BDD β and a CSAT formula ϕ for
some logic circuit C, then under a variable ordering π and
a truth assignment Aπ on a certain path of β to the terminal,
ϕ is satisfiable using the same variable ordering and truth
assignment.
Proof Assume the set of primary inputs is P. Then we can
partition P into two sets, S and T, such that S contains all
the variables that appear in π and T contains all the
remaining variables. By Rule 1 of section 2.1, T is the set
of all redundant nodes. But due to the equivalence of Rule
1 and Definition 1, it follows from Theorem 1 that ϕ is
satisfied.

From this perspective, the equivalence checking problem
between two circuits can be viewed as a search in the
decision trees of the two circuits for a path that leads to the
terminal 1(0) in one but leads to the 0(1) terminal in the
other. This view allows the introduction of the relation
between BDDs and the DP procedure as given by the
following theorem.

Theorem 3 Given a BDD β with a number of paths P and
a C-CNF formula ϕ for some logic circuit C then if the
variable ordering strategy of the DP procedure follows the
same ordering for every path of β, then DP proves the
equivalence of C against an equivalent version in P-1
backtracks.
Proof In order to prove the equivalence of two circuits, we
have to check that every assignment that leads to 1(0)
terminal in the BDD of one circuit leads to the same result
in the other circuit. Consequently, if the variable ordering

Fig 3: Circuit for example 1

d

z
c

b

a

for splitting in the DP procedure is the same as in the
corresponding BDD, then considering an alternative path
in the BDD leads to a backtrack in the DP procedure.
Thus, the number of paths exceeds the total number of
backtracks exactly by 1.

We now utilize Theorem 3 to calculate optimal lower
bounds on the number of backtracks that can be obtained
from the DP procedure using the primary inputs for
backtracking.
 Searching among the N! different variable orderings for
a N variable BDD helps identify the variable ordering(s)
that produces the minimal number of paths. This minimal
number of paths allows the calculation of a lower bound
on the number of backtracks in the DP procedure as given
by the following theorem.

Theorem 4 Given a DP procedure that operates using
Theorem 1 and 2, then the optimal number of backtracks
needed to prove the equivalence of two equivalent circuits
is bounded by the number of paths in the corresponding
minimal path BDD.
Proof Since the number of paths and backtracks are linked
by Theorem 3 and there exists a variable ordering that
minimizes the number of paths, then the optimal number
of backtracks using the DP procedure can be obtained if
we follow the same variable ordering for every path in the
minimal path BDD.

The importance of Theorem 4 is that it allows
benchmarking any variable ordering strategy for the DP
procedure against an optimal lower bound. We now
develop a variable ordering heuristic for the DP procedure
that tries to trace the same variable ordering for every path
in the corresponding minimal path BDD of the circuit.

4 Dynamic variable ordering strategy for the
DP procedure

From the previous section, we conclude that the variable
ordering strategy should differ for every path of the
decision tree, and furthermore result in no splitting on a
redundant variable under the current partial assignment. In
this section, we propose a structural method that avoids
redundant splitting and tries to make the fewest possible
splittings to satisfy ϕ. The method is based on the
following theorem.

Theorem 5 If a bounded gate lies on every path from the
primary output χ to the unassigned primary input v∈(P(ϕ)-
S) under a current partial assignment As for a set S ⊂ P(ϕ),
then ∂fAs/∂v= 0.
Proof The existence of a bounded gate (a gate with a
specified output) in every path to χ implies that no value
assigned to v can affect the function of the circuit since

these bounded gates will suppress the propagation of the
logic value. Thus, since f(As) remains unchanged under any
assignment to v, ∂fAs/∂v=0.

 In order to utilize Theorem 5, we proposed a DP
variable ordering strategy that is a modification of a BDD
variable ordering heuristic [13]. The method starts by
assigning a weight of 1.0 to the primary output, and
continues by propagating this weight to the primary inputs
in the following manner: divide the output weight of each
gate among its inputs, accumulating the weight of the fan-
out branches into the fan-out stem. Next, the primary input
with the highest weight is chosen as the next variable to be
split in the DP procedure. By unit clause propagation, we
exclude all the gate outputs of the bounded literals from
the next cycle of weight calculations.
 The proposed weight assignment method assigns a
weight of zero to every redundant primary input under the
current partial assignment. Furthermore, the strategy splits
on the largest weight input in an effort to obtain a minimal
number of splittings for satisfying the CSAT formula. We
illustrate the weight calculation procedure by the following
example.

Example 2 Suppose we are proving the circuit in Figure
4.a against an equivalent version of it. In this case we have
to compare if their BDDs are isomorphic or using the DP

i

j

h

1/12

1/12

1/3

1/2

1/4

1/2

1/2

1
f

x4

x3

x2

x1

Fig 4a: Initial weights.

i

j

h

1/3

1
*

*
0

0

1

1
1/3

1/3

f

x4

x3

x2

x1

 Fig 4b: Weights after x3 equals 1.

i

j

h
1

*
*

0

0

1

0
0

0

1

f

x4

x3

x2

x1

 Fig 4c: Weights after x3 equals 0.

x3

x4

x1

x2

0 1

 Figure 4d: Minimal path BDD.

Table 1: Comparing Greedy search to BDD-based variable ordering for the DP procedure.

procedure, we have to check that every path results in the
same output assignment in both circuits. Applying the
previous procedure of weight calculations to minimize the
number of paths being compared, we trace the different
paths of the BDD of the circuit in figure 4.a in the manner
shown below.
 From the initial weights given in figure 4.a, we split on
x3 since it has the highest weight. Suppose x3 is assigned
the true value. Then by unit clause propagation, gate h
becomes bounded to the truth value false. The weight
calculation procedure is executed again but this time by
setting the weights of bounded gates to zero. Figure 4.b
illustrates the new weights. Next, x1, x2 or x3 can be chosen
to split on; the resultant search tree will always produce
identical number of backtracks. Notice that bounded gates
are marked with a ‘ * ’ in the corresponding figure. After
finishing this half of the decision tree, x3 is flipped and
assigned to false. The new calculated weights are shown in
Figure 4.c. Since x4 has the highest weight, we split on x4
thus reaching the terminals.
 We now construct the minimum path BDD
corresponding to this circuit as shown in Figure 4.d. We
notice in the BDD that the splitting choices made by the
previous procedure traverse this BDD in exact ordering for
each path, thus producing the minimal number of
backtracks, 5, corresponding to the minimal number of
paths, 6.
 As was just illustrated, the proposed method has
produced optimal results for the proposed example;
however, the method is not in general optimal since it
depends on the structure of the circuit. As shall be
demonstrated in the next section, the proposed method is
capable of achieving near optimal results.

5 Experimental Results

In this section, we present experimental results for our
proposed approach. The experiments have been carried out
on a PC with an Intel Pentium 233 Mhz processor and
64MB of physical memory. We have used TEGUS [2] as a
SAT solver and the CUDD [14] decision diagram package.
 In our experiments we consider the performance of the
proposed approach to verify the equivalence of the
ISCAS’85 benchmark circuits [15] against their non-
redundant version. We benchmark our approach against
the greedy search approach of TEGUS. Table 1 gives the
results of such a comparison. Column 1 lists the circuit
name. Column 2 provides the name of the output under
verification. Columns 3 & 4 give the number of backtracks
and time needed to prove the output using the TEGUS
approach. Columns 5 & 6 give the number of backtracks
and time needed to prove the output using the proposed
approach. The possible “Abort” notation in columns 3 & 5
denotes reaching the 20 million backtrack threshold
without reaching a successful resolution; the subsequent
time columns in that case denote the time needed to reach
this limit. Columns 7 & 8 report the percentage decrease in
the number of backtracks and time, respectively. Column 9
provides the near minimal number of paths in the
corresponding BDD. In obtaining the number of paths, we
only consider a subspace of the possible variable
orderings. We compare the number of paths that result
from sifting [16] the corresponding BDD to a minimum
size and picking the minimal path. For space
considerations, we consider only three outputs from each
circuit.
 Comparing the greedy approach to the proposed variable
ordering strategy, we observe that the proposed approach

TEGUS Greedy Search Proposed Approach Difference Minimal Path BDD Circuit Output
Name

Backtracks Time
(seconds)

Backtracks Time
(seconds)

Backtracks Time #Paths

370gat Abort 771.00 943200 185.00 95.3% 76.01% 894606

432gat Abort 770.00 816012 235.00 95.9% 69.48% 798906

c0432

329gat 1646605 22.50 81912 5.94 95.0% 73.60% 57513
od1 Abort 1686.00 Abort 10351.00 - - 20000000
od18 Abort 1685.00 Abort 10245.00 - - 23000000

c0499

od31 Abort 1691.00 Abort 10627.00 - - 23000000
864 649741 12.30 164656 27.50 74.7% -123.58% 89937
850 37225 0.60 24171 3.45 35.1% -475.00% 21981

c0880

874 Abort 498.00 1083156 278.00 94.6% 44.18% 532793
1353 Abort 1921.00 Abort 8501.00 - - 21000000
1354 Abort 1892.00 Abort 8427.00 - - 23000000

c1355

1355 Abort 1984.00 Abort 8602.00 - - 23000000
57 Abort 718.00 147457 11.90 99.3% 98.34% 134221
60 Abort 1708.00 28161 20.10 99.9% 98.82% 26638

c1908

66 Abort 2058.00 14249 10.40 99.9% 99.49% 12638
399 24550 0.73 4528 1.34 81.6% -83.56% 1636
384 6107715 652.00 70997 57.20 98.8% 91.23% 65535

c3540

387 1582929 213.00 17312 17.00 98.9% 92.02% 16456
688 Abort 300.00 23974 13.00 99.9% 95.67% 13919
843 Abort 3383.00 211181 162.00 98.9% 95.21% 103569

C5315

818 85989 3.50 6537 2.18 92.4% 37.71% 2489
373 16 0.01 10 0.01 37.5% 0.00% 10
376 40952 1.30 15416 4.93 62.4% -279.23% 7152

C7522

359 2474096 114.00 585584 285.00 76.3% -150.00% 196592
2223 157 0.01 102 0.01 35.0% 0.00% 102

3895 174315 12.20 106423 108.00 38.9% -785.25% 109668

c6288

4591 2794411 255.00 1705027 2689.00 39.0% -954.51% 1793496

results on the average in 90% decrease in the number of
backtracks. The time needed to complete the backtracks
varies from reduction in 13 cases with an average of 70%
decrease to increases in about 7 cases with an average
increase of about 4 times. While at first glance the time
results look inconclusive, it can be easily noted that the
increases are essentially associated with low-backtrack,
provable outputs, since in these cases the recurring weight
assignment costs cannot be amortized across the small
number of backtracks. Our approach greatly improves the
performance of large search tree cases, the main focus of
practical interest. We also notice that within the limit of 20
million backtracks, TEGUS fails to complete on 7 outputs
while the proposed approach proves them in a relatively
low number of backtracks.
 As proved in Section 3, the minimum number of paths
that can be obtained from the corresponding BDD is a
lower bound on the number of backtracks that can be
obtained in the DP procedure. The number of paths
provides an ability to benchmark various ordering
techniques and also provides an insight on the performance
of the DP procedure. For example, the huge number of
paths in case of the c0499 & c1355 circuits (they are
functionally equivalent) suggests that they are hard-to-
prove outputs using the DP procedure. In addition, in
circuits, like the c6288, where the variation of the number
of paths with respect to the variable ordering is small, the
dynamic weight assignment technique constitutes a time
consuming step with respect to the overall time, as the
number of backtracks varies slightly with respect to the
variable splitting strategy2.

6 Conclusions

In this paper we have studied the relation between the
search tree of the DP procedure and the BDD of the
corresponding function, establishing that the number of
paths from the root node to the terminals of the BDD is
directly related to the number of backtracks needed to
prove the equivalence of two functionally equivalent
circuits. This relation introduces the ability to calculate an
optimal lower bound on the number of backtracks needed
to prove the equivalence checking problem. In addition,
this relation has led to the conclusion that the capture of
the variable ordering of the minimal path BDD in the DP
procedure implies a reduction in the number of backtracks
needed to prove the problem. In order to exploit this
relation, we have devised a variable ordering technique for
the DP procedure that through experimental results has
exhibited superior performance in terms of the number of
backtracks and time needed to prove the equivalence
problem. The relation between the two procedures offers
novel ways of tight integration of different prover
approaches in a verification tool.

2 After numerous experiments, we concluded that there is
no apparent relation between the number of nodes and
paths in a given BDD.

References

[1] T. Larrabee, “Test Pattern Generation using Boolean
Satisfiability,” IEEE Trans. on Computer Aided Design,
Vol. 11, No. 1, pp. 4-15, January 1992.
[2] P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Combinational Test Generation Using
Satisfiability,” Technical Report UCB/ERL M92/112,
Dept. of EECS, Univ. of California, Berkeley, Oct., 1992.
[3] M. Davis, G, Logemann, and D. Loveland, “A
Machine Program for Theorem Proving,”
Communications of the ACM, (5):394-397, July 1962.
[4] M. Davis, and H. Putnam, “A Computing Procedure
for Quantifier Theory,” Communications of the ACM,
(7):201-215, 1960.
[5] J. Silva, T. Glass, “Combinational Equivalence
Checking Using Boolean Satisfiability and Recursive
Learning,” In Proc. of Design Automation, Test in Europe
Conference, pp. 145-149, 1999.
[6] J. Silva, “An Overview of Backtrack Search
Satisfiability Algorithms,” in Fifth International
Symposium on AI and Mathematics, January 1998.
[7] M. Prasad, P. Chong, K. Keutzer, “Why is ATPG
easy?” In Proceedings of the 36th Design Automation
Conference, pp. 22-28, 1999.
[8] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, in
"Satisfiability Problem: Theory and Applications,"
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society, pp.
19-152, 1997.
[9] R. E. Bryant, “Graph Based Algorithms for Boolean
Function Manipulation,” IEEE Trans, in Computers, Vol.
C-35, No. 8, pp. 677-691, August 1986.
[10] R. E. Bryant, “On the Complexity of VLSI
Implementations and Graph Representations of Boolean
Functions with Application to Integer Multiplication,”
IEEE Transactions on Computers, Vol. 40, No. 2, pp. 205-
213, Feb. 1991.
[11] J. Burch, V. Singhal, “Tight Integration of
Combinational Verification Methods,” ACM/IEEE Int.
Conference on Computer-aided Design 1998, pp. 570-
576, San Jose, CA, USA.
[12] S. Reda, A. Salem, “Combinational Equivalence
Checking using Binary Decision Diagrams and Boolean
Satisfiability,” In Proc. of Design Automation, Test in
Europe Conference, pp. 122-126, 2001.
[13] S. Minato, Binary Decision Diagrams and
applications for VLSI CAD, Kluwer Academic Publishers,
1996.
[14] F. Somenzi, CUDD: Colorado University Decision
Diagram Package. ftp://vlsi.colorado.edu/pub.
[15] F. Brglez and H. Fujiwara, “A Neural Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortran,” In Intl. Symp. on Circuits and
Systems, 663-698, June 1985.
[16] R. Rudell, “Dynamic Variable Ordering for Ordered
Binary Decision Diagrams,” In Proc. of Int. Conf. On
Computer Aided Design, pp. 42-47, 1993

