
Yet a Better Error Explanation Algorithm
(Extended Abstract)

Heinz Riener?
?Institute of Computer Science,
Universität Bremen, Germany

{hriener,fey}@informatik.uni-bremen.de

Görschwin Fey?†

†Institute of Space Systems,
German Aerospace Center, Germany

goerschwin.fey@dlr.de

Error explanation [GV03, GCKS06] is a formal approach to automate diagnosis of software pro-
grams with the aid of a Satisfiability (SAT)-based model checker. Firstly, the semantics of the
program is modeled as a Finite State Machine (FSM) and is encoded into an instance of the SAT
problem [CKL04]. Given a specification expressed in a formal logic which does not hold on the
FSM, error explanation utilizes the model checker to produce a pair of similar failing and success-
ful execution traces and highlights the differences of the execution traces as a possible explanation
of the error. Thus, an explanation corresponds to a set of locations of the program source.
More precisely, in SAT-based model checking execution traces correspond to assignments of logic
variables in the SAT instance. The logic variables are used to capture the possible valuations of
the program variables. The domains of the logic variables depend on the logic in use. Similarity
of execution traces can then be expressed leveraging a distance metric which counts the number
of values for which the two execution traces are different. Suppose (A,B) is a pair of a failing
and a successful execution trace which correspond to the sequences a = (a1, . . . , an) and b =
(b1, . . . , bn) of logic variables, respectively. The distance metric is then defined as

∑n
i=1(1− δaibi)

where the Kronecker delta function δij evaluates to 1 only if i = j and to 0 otherwise.
Experiments on practical examples, however, revealed that using this distance metric often leads to
useless explanations which are characterized by the fact that they do not contain the location of the
real error. This may happen because error explanation produces a successful execution trace alter-
ing an input which avoids the erroneous part of the program source. As a consequence, the logic
variables encoding the program variables in the erroneous part of the source code become don’t
cares and a SAT-based model checker can assign them any value during SAT checking. In this case,
error explanation needs guidance by a human, who provides additional assumptions to explain an
error accurately. Groce et al. [GCKS06] called this phenomenon the implication-antecedent prob-
lem when they observed this issue during property checking. For particular properties of the form
(A → C), error explanation computed successful execution traces which do not satisfy the an-
tecedent A of the implication rendering the explanation useless. In this simple case, the problem
can be solved by additionally assuming that A has to hold. In general, however, more complex
assumptions are needed to guide error explanation.
In this extended abstract, we outline a new distance metric for an improved error explanation in
order to reduce the impact of the implication-antecedent problem. Our goal is to further reduce the



manual effort needed to localize errors. Moreover, instead of property checking we focus on equiv-
alence checking. In equivalence checking, the specification is given as a reference implementation
and thus the properties are not explicitly known.
The new distance metric considers whether program source has been executed: we introduce one
additional Boolean variable vx for each logic variable x which keeps track of whether the value of
the logic variable is a don’t care and add it to the SAT instance. Again, suppose a = (a1, . . . , an)
and b = (b1, . . . , bn) are two sequences of logic variables corresponding to the execution traces A
and B. The new distance metric is defined as

∑n
i=1(1− δ̂aibi), where δ̂ij evaluates to 1 if i = j and

vi = 1 and vj = 1 hold and evaluates to 0 otherwise. Thus, two logic variables are only considered
equal if none of the two logic variables is a don’t care during SAT checking. As a drawback of the
approach, keeping track of the don’t care information is costly, because we have to add n additional
Boolean variables for a SAT instance with n logic variables.
We have implemented the improved error explanation procedure which uses the new distance met-
ric into the FAuST framework [RF12a]. FAuST is a software model checking tool for ANSI-C
programs similar to CBMC [CKL04] which provides additional testing and debugging capabili-
ties [RF12b]. The FAuST framework is built on top of metaSMT [HFF+11], a generic interface
to multiple SAT and SAT Modulo Theories (SMT) solvers. We have extended metaSMT to pro-
vide a new generic meta-solver which automatically synthesizes a Boolean variable for each logic
variable and conservatively computes whether the value of a variable can be guaranteed to be con-
crete. In particular, when the Boolean variable is 1 the logic variable is concrete. However, when
the Boolean variable is 0 the logic variable may be concrete or don’t care.

References

[CKL04] Clarke, Edmund, Daniel Kroening, and Flavio Lerda: A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 168–176, 2004.

[GCKS06] Groce, Alex, Sagar Chaki, Daniel Kroening, and Ofer Strichman: Error explanation
with distance metrics. International Jounral of Software Tools for Technology Trans-
fer, 8(3):229–247, 2006.

[GV03] Groce, Alex and Willem Visser: What went wrong: Explaining counterexamples. In
Interational SPIN Workshop on Model Checking of Software, pages 121–135, 2003.

[HFF+11] Haedicke, Finn, Stefan Frehse, Görschwin Fey, Daniel Große, and Rolf Drechsler:
metaSMT: Focus on your application not on solver integration. In International Work-
shop on Design and Implemention of Formal Tools and Systems, pages 22–29, 2011.

[RF12a] Riener, Heinz and Görschwin Fey: FAuST: A framework for Formal verification, Au-
tomated debugging, and Software Test generation. In Interational SPIN Workshop on
Model Checking of Software, pages 234–240, 2012.

[RF12b] Riener, Heinz and Görschwin Fey: Model-based diagnosis versus error explanation.
In International Conference on Formal Methods and Models for Codesign, pages 43–
52, 2012.


