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Abstract—The demand for optimized and efficient embedded
software is increasing in many applications such as the Internet
of Things (IoT) or other Cyber-Physical Systems (CPS). Hence,
early performance analysis of embedded software is essential to
perform Design Space Exploration (DSE), ensure efficiency, and
meet time-to-market constraints. Designers usually use real hard-
ware, simulators, or static analyzers to obtain the performance.
However, these methods suffer from serious drawbacks as real
hardware is not available in the early stage of the design process,
simulators either do not support any timing accuracy or require
large execution time, and static analyzers need details of the
hardware microarchitecture.

In this paper, we present a novel Artificial Neural Net-
work (ANN)-based approach that allows a fast and accurate
performance estimation of embedded software for RISC-V
processors in the early design phases. This can significantly
reduce the burden on designers to perform DSE. The proposed
approach takes advantage of the dynamic analysis technique and
analytical models and does not require any microarchitecture-
related parameters such as cache misses, cache hits, and memory-
level parallelism. We compare our proposed microarchitecture-
independent approach with state-of-the-art in terms of speed and
accuracy. Our experiments on various benchmarks demonstrate
that the proposed approach achieves a speed-up of 4.41×
compared to a RISC-V Virtual Prototype (VP) at the Electronic
System Level (ESL), while the estimation results have only a Mean
Absolute Percentage Error (MAPE) of 2%.

Index Terms—RISC-V, performance estimation, embedded
software, artificial neural network

I. INTRODUCTION

As an open and free Instruction Set Architecture (ISA),
RISC-V gained enormous momentum in recent years. It
provides designers with a variety of advantages including
modularity, simplicity, and extensibility. The benefits of RISC-
V have attracted both academia and industry to use it for a
variety of embedded system applications such as the Internet
of Things (IoT) or other Cyber-Physical Systems (CPS). More-
over, as technology evolves, applications of embedded systems
are ubiquitous and indispensable in our daily life now, such
as mobile phones, smartwatches, printers, etc. The demand
for them is increasing rapidly, and the trend is growing in
momentum every year. At the same time, the specifications
of embedded systems become more and more complex, and
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there are plenty of design choices ranging from the choice of
components, algorithms, operating systems, etc. A systematic
exploration process is required to find the optimal solution and
make the design decisions easier. Due to the complexity of
the exploration process, exploring embedded software usually
requires substantial time and effort. In order to meet time-to-
market constraints, fast Design Space Exploration (DSE) is
necessary to speed up the entire process. Performance estima-
tion at the early stage of the design process is a promising
solution that can significantly improve the DSE of embedded
software by avoiding the iterative process of slow software
simulation.

Performance estimation techniques can be divided into three
main categories: static analysis, dynamic analysis, and hybrid
analysis. For static analysis, the data is collected without
simulating or executing the software. Therefore, it is unable to
identify the runtime features (e.g., cache misses or hits) that
could cause problems at runtime. For dynamic analysis, the
code is executed, and the software behavior at runtime can be
tracked. Dynamic analysis is preferred when functional behav-
ior needs to be checked. Hybrid analysis is a combination of
both static and dynamic analysis techniques to form a unified
statistics-gathering module. Using this approach, it is possible
to selectively implement only the most effective features that
each analysis technique has to offer. This characteristic allows
it to provide a level of utility unmatched by any single-purpose
technique. In addition to being classified as static, dynamic,
and hybrid analysis techniques, the level of abstraction char-
acterizes different performance estimation methods.

Over the last five years, several RISC-V simulators have
been proposed at different levels of abstraction. Register Trans-
fer Level (RTL) implementations such as RSD [1] can provide
accurate cycle counts but are slow to simulate, while functional
simulators such as RV8 [2] can simulate very fast but cannot
provide the designer with cycle counts or timing information.
Recently, as part of the RISC-V ecosystem, Virtual Prototypes
(VPs), such as the open-source RISC-V VP [3], have been
introduced to facilitate early software development and testing,
as well as other system-level purposes. At the Electronic Sys-
tem Level (ESL) [4], VP is considered the first implementation
of real hardware that can perform cycle-accurate simulation.
Essentially, a VP is an executable software model of the entire
hardware platform, usually implemented in SystemC (a C++-
based library), which avoids the need for physical hardware
prototypes required for hardware/software co-design [5]. It979-8-3503-9851-9/22/$31.00 ©2022 IEEE



also helps to reduce time-to-market.
While the development of the aforementioned high-level

abstraction implementation makes early embedded software
development possible, there is a huge difference in simula-
tion speed between functional simulators and cycle-accurate
simulators (even at the ESL using VP) for Application-
Specific Instruction Set Processors (ASIP). This places a heavy
burden on embedded software DSE, which motivated our
attention. Machine Learning (ML) algorithms have gained
immense popularity in the current technological age due to
their versatility and broad applicability. Some studies show
their application in hardware/software co-design [6], [7]. With
the rapid development of ML algorithms, especially Artificial
Neural Networks (ANNs), analytical performance models are
considered excellent tools for exploring the design spaces.
Analytical models, on the other hand, can map the relationship
between the number of executed instructions and performance
to produce results very quickly. This makes the performance
estimation independent of the microarchitecture implementa-
tion of a given RISC-V processor.

This paper aims at providing a fast and accurate approach
for performance estimation of embedded software for
RISC-V processors using ANN and microarchitecture inde-
pendent Predictive Models (PMs). It enables the evaluation of
the full design space with only one analysis step. We utilize
the dynamic analysis technique (through a fast functional
simulator) to track the runtime information of embedded
software and take advantage of analytical models to quickly
calculate the performance of embedded software. The ex-
tracted runtime trace is used as an input to the PMs to estimate
the performance of embedded software. This means that the
only requirement for the proposed approach is an accurate
number of each executed instruction type. Experimental results
demonstrate that the proposed approach can achieve a speed-
up of 4.41× compared to a RISC-V VP at the ESL (which
has an order of magnitude faster simulation speed than the
RTL counterpart). This allows designers to explore the design
space of embedded software more efficiently.

The structure of the paper is as follows. Section II describes
the related work. The proposed estimation method is presented
in Section III, and experimental results are detailed and
analyzed in Section IV. Conclusions are drawn in Section V.

II. RELATED WORK AND MOTIVATION

The performance of embedded software is affected by its
structure (e.g., data accesses/transfers, etc) and the components
of the target system (e.g., the ISA and CPU speed). Techniques
involving performance estimation at an early stage can be
static [8], [9], dynamic [10], [11], or hybrid [12], [13]. An
effective approach to make the execution time reasonable
without sacrificing too much accuracy is to model both em-
bedded software and the target system at an sufficiently high
level of abstraction. However, as the level of abstraction rises
(from assembly to high level languages like C), it becomes
more and more difficult to take the structure of the software
into account since the assembly code is increasingly removed
from the abstract representation. Recently, most of the results

reported in the literature are from the object code level and use
dynamic analysis techniques, and most available tools mimic
the behavior of the target system on which the object code
can be executed without real hardware.

For RISC-V, there are a number of Instruction Set Simula-
tors (ISS) at different levels of abstraction available ranging
from slow RTL models with cycle accuracy such as RSD [1],
cycle-accurate simulators such as SystemC-based VPs at the
ESL [14] [3] to very fast functional simulators at the al-
gorithmic level without cycle and timing information such
as RV8 [2]. There is no ideal simulator that can bridge the
gap between simulation speed and accuracy. To relieve the
heavy burden on the DSE of embedded software, analytical
performance models are considered.

Early analytical models [15], [16] were initially aimed
at estimating and studying microarchitectural variations on
pipeline and instruction-level parallelism. Recent approaches
apply ML techniques to analytical models for cross-platform
performance estimation. These approaches are based on dy-
namic or static analysis and utilize the extracted information
to generate a set of PMs for the estimation of the number of
instructions executed or clock cycles elapsed. These models
can be categorized as linear or non-linear. In [17], linear
regression-based PM is used to estimate the performance of
the software and evaluate the method against an ARM v5
implementation. The method introduced in [18] employs neu-
ral networks to estimate the performance of the software and
compares the results against a PowerPC 750 cycle-accurate
model. In [19], PMs are built for the ARM926EJ-S and
the LEON3 processor based on linear regression on different
numerical features such as the number of times an operation
appears in the code or is executed. The method presented
in [20] proposes a generic framework for rapid performance
estimation of embedded software on soft-core processors to
select the best configuration with respect to performance.
However, a common drawback for all aforementioned methods
is that they need to characterize the processor ISA and consider
the microarchitectural features of the underlying processor. It
means that further manual effort by designers is required to ex-
tract such information from a given RISC-V implementation.
This has two disadvantages: 1) they are very time-consuming,
and 2) they are microarchitecture dependent i.e., for a new
RISC-V implementation, the entire method must be adopted.

Recently, [21] proposes an approach based on linear re-
gression to estimate performance of embedded software on
a RISC-V processor. The method contains two PMs that
rely on the total number of executed instructions or the
instruction formats. However, no detailed runtime information
is considered, nor is the non-linear behavior analyzed. This
limits the method to only support a simple implementation of
RISC-V ISA where only linear dependency is considered.

Due to the huge space for exploration and the current
trend to use RISC-V processors, there is a need to develop
performance estimation methods that are accurate and fast
without microarchitecture analysis, taking into account the
performance impact of advanced features such as caching,
branch prediction, and pipelines. However, there is no PM to
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Fig. 1: The proposed performance estimation methodology overview.

describe these non-linear behaviors of RISC-V processors. We
aim to fill this research gap by proposing a novel analytical
performance estimation model that does not rely on any
static analysis but instead takes advantage of a fast functional
simulator to extract an accurate trace of the execution of a
given piece of software. Artificial Neural Networks (ANNs)
have been chosen as they can generalize the behavior of the
features even when the process to be modeled is highly non-
linear. Since the inputs of the generated PMs are only related
to the runtime trace of the executed software on the func-
tional simulator, the proposed approach does not require any
microarchitecture information (i.e., a black-box analysis) and
can be performed on any microarchitecture implementation of
the RISC-V ISA.

III. ML-BASED PERFORMANCE ESTIMATION
METHODOLOGY

The proposed methodology is depicted in Fig. 1, consisting
of four main phases which are:

1) generating a set of software with different features for
the training phase and compiling them with the RISC-V
GNU Toolchain to create RISC-V execution files,

2) creating training dataset using the collected data from
VP as the input of the learning phase,

3) generating performance PM using ML algorithm, and
4) validating the generated PM by estimating the perfor-

mance of a set of standard new embedded software.
In the following, we describe each phase of the proposed
approach in detail.

A. Training Programs Generation and Compilation

In order to obtain an effective ML-based performance PM
that can generalize to the new data and avoid the over-fitting
problems, it is necessary to collect a comprehensive set of
training data. As shown in the first phase of Fig. 1, a set of
software is provided that can cover ISA instructions. They are
simple to complex programs with different inputs, parameters
and features. The programs are functionally completely dif-
ferent to cover various instructions of the RISC-V ISA and
are totally independent and different from the new software
used in the validation phase (the fourth phase in Fig. 1).
This difference makes our PM more general and increases the

possibility of predicting the performance of new software from
different domains. The new software used in the validation
phase is standard benchmarks from [22]–[24] used in different
application domains such as Digital Signal Processing (DSP),
cryptography, and image recognition.

The execution of a given program on the RISC-V processor
requires the Executable and Linkable Format (ELF) of the
program to be generated during the compliation process. In
general, there are two compilation options which are direct
compilation and cross-compilation. Direct compilation refers
to compiling the software on RISC-V using the RISC-V
toolchain to produce a RISC-V ELF, while cross-compilation
refers to compiling the software on other platforms using the
RISC-V toolchain to produce a RISC-V ELF. Considering the
compile-time and multitasking capabilities, we take advantage
of the cross-compilation from our host computer to a RISC-V
processor where the RISC-V GNU compiler toolchain [25] is
used to produce the RISC-V ELFs. In this paper, three RISC-
V ISAs are considered: base integer instruction for the 32-bit
architecture (RV32I), its M extension (RV32IM), and its C
extension (RV32IC).

B. Training Dataset Creation

In order to estimate the performance (i.e., accurate number
of executed cycles) of embedded software in the early stage of
the design process, it is important to focus on the information
which is available at this stage. The available information
that can be obtained without real hardware execution is 1) a
detailed runtime history of executed instructions, and 2) an
accurate number of executed cycles. VPs at the ESL can
provide designers with total abstract models of hardware
platforms. To do this, SystemC-based RISC-V VP [3]—a
processor model—is considered, which is open-source, can
be configured to mimic the behavior of the RISC-V HIFIVE1
board, and is shown to be cycle-accurate [14]. The ELFs of
the software set are executed on the RISC-V VP. However,
a detailed count of every instruction is not provided by the
RISC-V VP. To extract this information, we implement a
runtime data collector module and integrate it into the RISC-V
VP. By executing the ELF file of each software on the RISC-V
VP, the instruction counts and the number of executed cycles
are extracted and stored in the Runtime Log file.



TABLE I: Extracted Parameters from the Runtime Log File

Parameters Description
xi,1 · · ·xi,39 Instruction counts for LUI, AUIPC, JAL, JALR,

BEQ, BNE, BLT, BGE, BLTU, BGEU, LB, LH,
LW, LBU, LHU, SB, SH, SW, ADDI, SLTI,
XORI, ORI, ANDI, SLLI, SRLI, SRAI, ADD,
SLL, SLT, SLTU, XOR, SRL, SRA, OR, AND,
SUB, SLTIU, FENCE, ECALL

xi,40 · · ·xi,47 Instruction counts for MUL, MULH, MULHSU,
MULHU, DIV, DIVU, REM, REMU

yi Total cycles

After extracting the runtime data, the training dataset can
be generated, and it consists of two main elements which
are inputs (the predictors) and the corresponding output (the
response). A pair of predictors and responses is considered
one observation. According to the performance equation, the
number of executed cycles is related to the instruction counts.
The training dataset T consists of a set of observations and is
defined as follows:

T = {ti|ti = {yi, (xi,1, · · ·xi,M )}; 1 ≤ i ≤ N} (1)

where each observation t is an (M + 1)-dimensional vector
where M is the number of instructions of the corresponding
ISA. The size of T equals the number of training programs N .

In order to create clean code and increase code performance
in the next phase, the data needs to be pre-processed (e.g.,
re-shaping, vectorization) to form the training dataset before
being used to create the predictive model. Therefore, the two
elements of training dataset T are vectorized as an N×M
matrix X and an N×1 column vector y, represented as
follows:

X =

x1,1 · · · x1,M

...
. . .

...
xN,1 · · · xN,M

 ;y =

 y1
...
yN

 (2)

Table I illustrates the details of the parameters extracted
from the Runtime Log for the ith program. RV32I contains
40 unique instructions, but the EBREAK instruction is used
to return control to a debugging environment. Thus, it is
excluded in this paper and the RV32I instructions are reduced
to 39 in total (i.e., M = 39). In addition to the base
integer instructions, RV32IM contains eight standard integer
multiplication and division instructions. During decoding, the
compressed instructions in RV32IC are expanded to 32-bit
base ISA, so it contains the same number of instructions as
RV32I.

C. Predictive Model Generation
Due to their simplicity and adaptability to the non-linear

behavior of software performance estimation, feedforward and
backpropagation ANNs are used in the ML process to create
performance predictive models in this phase. Our networks
are composed of an input layer, one or several hidden layers,
and an output layer. Each layer may have a different number
of neurons and different activation functions. Fig. 2 shows
schematically the structure of the ANN. The ANN with 1
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Fig. 2: ANN-based performance estimation model.

hidden layer (or ≤ 2 hidden layers) is defined as Shallow
Neural Network (SNN) while the network with multiple hid-
den layers is defined as Deep Neural Network (DNN). The
matrix X obtained in the previous phase is fed into the input
layer. The instruction counts in the matrix are sent forward
through different connections from one neuron to another in
the network. Each neuron holds a number bias and has an
activation function, and each connection holds a weight. Once
they reach the output layer, the estimated cycle is obtained.
This procedure is called feedforward. Backpropagation is for
calculating the gradients efficiently. The process always starts
from the output layer and propagates backward, updating
weights and biases for each layer to obtain the desired output
in the output layer.

The ANN-based model architecture is determined by a set
of hyperparameters. In contrast with normal parameters of an
ML algorithm, hyperparameters are parameters that must be
set before the algorithm is executed, as opposed to normal
parameters of an algorithm that are not fixed before execution
but optimized during training. To find the optimal hyperparam-
eters, the hyperparameter tuning technique is used to explore a
range of possibilities and choose the ideal model architecture.
In our experiments, five hyperparameters are tuned: learning
rate, number of hidden layers, number of neurons in each layer,
activation function in each layer, and the number of epochs.
After hyperparameter tuning, the best model with less error is
obtained.

Hyperparameters are not model parameters. Model param-
eters such as weights and bias are learned during the training
phase when a loss function is optimized using backpropagation
to calculate the gradients. In the Optimization module (Fig.1,
phase 3), Mean Squared Error (MSE), defined in (3), where
the squared L2 norm is computed as the sum of squared
errors, is used as a cost function, and the Adaptive Moment
Estimation (Adam) optimizer is used to minimize the MSE.
The parameter ŷ is the predicted output of ANN. The PM is
generated when Adam converges to the optimal solution. For
each RISC-V ISA, a different PM is generated.

MSE =
1

N
∥y − ŷ∥22 (3)

D. Utilization of Predictive Model

In this phase, the PM is tested by a set of standard and new
embedded software. The new embedded software is compiled



to generate the ELF file for the RISC-V processor as described
in Section III-A. Since the generated ELF file is compact and
is not a human-readable file, we take advantage of an open-
source functional simulator RV8 [2] to execute the ELF file,
which can provide a detailed trace of the executed instructions.
By implementing a runtime data collector module in RV8,
instruction information including instruction counts is stored
after execution. The extracted instruction counts of K pieces of
embedded software are then pre-processed into a matrix Xtest

as shown in (4) and used as inputs of the PM to estimate the
total number of cycles required by the embedded software.

Xtest =

x1,1 · · · x1,M

...
. . .

...
xK,1 · · · xK,M

 (4)

To assess the quality of the generated PMs, we tested a new
set of embedded software on the PMs. Predictions post-process
can be applied to the estimated cycles. The new software ELF
is obtained in phase 1 of Fig. 1. The Runtime Log containing
the real cycle of the new embedded software is generated by
executing the ELF file on RISC-V VP. In order to check the
performance of our PMs, the Absolute Percentage Error (APE)
for new embedded software is calculated and Mean Absolute
Percentage Error (MAPE) for the overall new embedded
software set, defined in (5), is applied. Values for percent
errors and MAPE are between zero to one, where a value
of one stands for an error of 100%.

MAPE =
100%

K

∥∥∥∥y − ŷ

y

∥∥∥∥
1

(5)

IV. EXPERIMENTAL RESULTS

The proposed approach was evaluated against a set
of standard benchmarks provided by Embench [24],
TACLeBench [23] and RV8-bench [22]. These benchmarks
cover different domains, such as signal processing, cryptog-
raphy, and sorting algorithms, and are freely available and
designed specifically for embedded systems. For each bench-
mark, the simulation behavior is extracted by the Runtime
Data Collector module (Fig. 1) and stored in the Runtime
Log file. The extracted information is then pre-processed
to generate a test dataset, which will be used to validate
the PMs. The Runtime Data Collector module was written
in C. The programs for the pre-processing datasets and for
creating the PMs were written in Python. Three ISAs were
considered, i.e., RV32I, RV32IM, and RV32IC. For each ISA,
one PM based on the instruction counts was generated. We
evaluated the simulation speed and accuracy of the generated
PMs by comparing them with the SystemC-based RISC-V
VP model [14]. The experimental evaluation is described
in two parts. Section IV-A illustrates the structure of PMs.
Section IV-B gives the experimental results for each ISA and
briefly discusses the obtained results to evaluate the quality of
the proposed method. The ANN for each PM was constructed
with the open-source library Keras [26]. We conducted our
experiments on a Linux system running at 1.4 GHz with 38
GB of RAM and an AMD Ryzen 7 PRO 4750U processor.

A. Structure of Predictive Models

Several experiments were conducted to determine more
robust hyperparameters for ANNs. For different PMs, some
hyperparameters were changed. We provided a wide hyperpa-
rameter search space. Random search [27] is used as a tuner.
Each hyperparameter is randomly chosen from a given search
space. MSE is used as an optimizer parameter. Table II sum-
marized the parameters and the search space used in our tuning
approach. The search space along with the selected values are
also listed. The first column lists the tuned hyperparameters.
The column search space defines the domain through which
the tuner searches. The next three columns show the best
values of PMs for three ISAs where PM1, PM2, and PM3
correspond to RV32I, RV32IM, and RV32IC, respectively.

In the training phase, we took advantage of 167 programs as
training software to create the training dataset and generate the
PM1. The total number of executed instructions for the training
software set ranges from 4.2×103 to 7.2×109. To generate the
PM2, 133 programs were used as training software sets. The
total number of executed instructions is between 2.1× 105 to
3.0× 108. For PM3, the total number of executed instructions
of 125 training programs ranges from 1.5× 106 to 3.7× 107.
For each PM, the ANN has a fixed number of neurons in the
input and output layers, and its detailed structure is obtained
by minimizing the MSE during the training phase. Take PM1
as an example, the input layer has 39 neurons and 1 neuron
in the output layer. For the given training dataset, the best
model calculated by the tuner is a DNN with 3 hidden layers,
each with 208, 384, and 16 neurons. To validate the quality
of the generated PMs, the experimental results of testing each
PM against a set of benchmarks are shown in the following
subsection.

B. Performance of RISC-V Predictive Models

The new software used in the validation phase is completely
different from the software used in the training phase to con-
struct the training dataset. To validate each PM, 10 benchmarks
were used. Fig. 3 and Table III demonstrate the overall em-
bedded software performance estimation accuracy of applying
the 10 standard benchmarks to our proposed performance
estimation approach on RV32I, RV32IM, RV32IC and to [21].
Moreover, they show the speed-up comparison between our
approach and RISC-V VP. Fig. 3 illustrates the results for
RV32I and RV32IM. In the case of RV32I and RV32IM,
we compare the accuracy of the proposed approach to the
method presented in [21]. The quality of each PM is measured
using the MAPE (i.e., Average) metric introduce in (5). The
speed-up comparison is based on each execution time. The
execution time of the proposed approach consists of two main
parts which are 1) the required time for the RV8 simulator
to generate the runtime trace of a given piece of software
and 2) the time used by PM to estimate the cycle count of
the software. Due to the fact that PM requires significantly
less time than RV8 simulation, the time spent on RV8 can
be seen as the total execution time to estimate the number
of cycles the software requires. The results for RV32IC are
presented in Table III. The first column lists the name and



TABLE II: Hyperparameter Tuning Results of ANN based on Random Search

Parameters Search space PM1 PM2 PM3
Learning rate 0.002 to 0.06 0.012 0.03 0.026

# hidden layers 1 to 9 3 6 9
# neurons in 16 to 512 208/384/16 256/224/464/ 304/16/16/16/

each hidden layer 112/288/96 16/16/16/16/16
Activation in sigmoid/softsign/tanh/ softsign/softplus/sigmoid/ sigmoid/sigmoid/selu/ relu/sigmoid/sigmoid/sigmoid/

each hidden and selu/elu/exponential/ softplus softsign/exponential/ sigmoid/sigmoid/sigmoid/
output layer LeakyReLU/relu sigmoid/LeakyReLU sigmoid/sigmoid/elu

Epochs 1 to 350 24 12 46

source of the benchmark. The following two columns show the
total number of executed instructions (#instr-exec.) and Lines
of Code (LoC) of each benchmark, respectively. In the VP
column, the cycle count (#Cycle) and execution time (Time)
reported from RISC-V VP are presented. Column Ours con-
sists of four subcolumns showing the results obtained from the
PM. The first two subcolumns indicate the execution time of
the proposed approach and the obtained speed-up compared to
the RISC-V VP. The following two subcolumns represent the
estimated number of cycles reported from PM and the percent
errors between estimated cycles and actual cycles reported
from RISC-V VP, respectively

For RV32I, the MAPE in estimating the performance of the
entire software set with our approach is about 2.1%, while the
worse-case estimation error is less than 6.1%. In comparison
to [21], for most benchmarks, our approach achieves better
accuracy. For the overall benchmarks, our approach shows
better accuracy in performance estimation compared to [21]
with the MAPE 3.7% and achieves an average speed-up of
3.7× over RISC-V VP. In [21], the linear regression formulas
based on the total number of instructions and the instruction
formats for RV32I and RV32IM are given. We took advantage
of more detailed runtime information (i.e., the number of
each instruction), and ANNs which provide a better estimation
model for non-linear behavior. Fig. 3b demonstrates that our
proposed approach is also effective for RV32IM, and it can
estimate the number of cycles up to 3.9× faster on average
than RISC-V VP while a MAPE of 2.00% is obtained. In
comparison to [21] where the worst-case error value of 26.5%
and MAPE 5.0% are reported, the proposed approach has a
worst-case error of 4.00% and MAPE 2.00%. This means
that the linear regression-based methods may have certain
limitations, especially if no linear dependency is available. Due
to the MAPE metric, our proposed approach also outperforms
[21] for the case of RV32IM. Since [21] takes advantage of
the ML technique for performance estimation, its execution
time is almost similar to ours.

As shown in Table III, the speed-up achieved by our ap-
proach over the RISC-V VP is up to 4.41× for RV32IC while
the MAPE is 2.64%. Since [21] does not support RV32IC, no
comparison is performed for this case.

The experimental results demonstrate that the proposed
approach based on ANN provides designers with a fast per-
formance estimation solution and promising results even with
a small training dataset. The fast simulation time in phase 4 as
shown in Fig. 1 is due to two main reasons. First, we utilized
a fast functional simulator to obtain the runtime trace of

embedded software including accurate information about the
number of instructions and their types, compared to the extra
effort required by the VP to execute the software to obtain
the accurate number of cycles. Second, we took advantage
of ML-based PMs that can quickly estimate the performance
of the embedded software. The MAPE values in each table
show a small gap between the cycle counts obtained from
our PMs and VP, indicating the effectiveness of our proposed
approach. In comparison to other simple algorithms like lin-
ear regression (which use only input and output nodes for
estimation), neural networks obtain better results in predictive
analytics due to hidden layers. Furthermore, neural networks
have a large number of free parameters (the weights and biases
between interconnected neurons) which enables them to fit
highly complex data (when trained correctly) that other models
cannot.

V. CONCLUSIONS

In this paper, we presented a novel ANN-based approach
for estimating the performance of a given piece of embedded
software on a RISC-V processor at the early stage of the design
process. We illustrated how the performance of a given piece
of embedded software on RISC-V processor can be estimated
by taking advantage of only the runtime trace of the software
through a fast functional simulator. In our experiments, a
cycle-accurate RISC-V VP with advanced features such as
cache, pipelines, and branch prediction was used to evaluate
the speed-up and estimation accuracy on a set of benchmarks.
A MAPE of 2.00% and speed-up up to 4.41× have been
obtained. With the use of ANN, we showed that even small
datasets can produce promising results. Our proposed method
facilitates the early performance estimation of embedded
systems for DSE and is independent of microarchitecture
implementation.
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