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Abstract  In many application domains in VLSI CAD, like formal 
verification or test pattern generation,  the problem to be solved can be 
formulated as an instance of satisfiability (SAT). The SAT instance in this 
cases is usually derived from a circuit description.  

In this paper we propose to use techniques known from logic synthesis to 
speed up SAT solvers. By experiments it is shown that these techniques 
are orthotogonal, i.e. SAT instances can be simplified by logic synthesis 
approaches and by this are solved much faster. As a case study the 
techniques are applied to integer factorization – a class of problems that is 
known to be hard for SAT solvers. Experiments show that improvements 
of several orders of magnitude can be observed.  

 
1. Introduction 
 
SAT solvers have recently been applied to many problems in VLSI CAD with very large success  
[MS00]. The application domains range from “classical” SAT domains, like formal verification 
or test pattern generation, to routing [NSR99] or debugging [SVV03]. Especially in formal 
verification SAT algorithms have become the state-of-the-art proof technique in equivalence 
checking and (bounded) model checking. These fields largely benefit from the recent advances in 
efficient implementation of SAT solvers, like GRASP [MS99], Chaff [MMZ+01] or BerkMin 
[GN02]. 
 
In most of these VLSI CAD applications the underlying problem is given in the form of a circuit 
description. This is converted to a conjunctive normal form (CNF) in linear time and space. The 
resulting CNF is given to the SAT solver. 
 
Motivated by these results many researchers tried to combine existing proof approaches, like 
BDDs or term rewriting, with SAT (see e.g. [KGP01]). In this context also implication 
techniques [KS97] have been proposed, i.e. how to speed up SAT solvers using recursive 
learning [MG99,AS00]. In general, the main idea is to combine the different approaches and get 
the best of these techniques. But all techniques mainly originate from the verification domain. 
Furthermore, the SAT instances can be simplified using pre-processing (see e.g. [GW00,LM01]). 
But these approaches directly operate on the CNF and do not consider the underlying circuit 
description.  
  



In this paper we discuss how SAT solving can profit from using techniques from logic synthesis. 
The optimisation goal in synthesis is to minimize a given netlist. On the logic  level, the quality of 
the result in technology independent synthesis is usually measured as the number of literals. This 
optimisation can be obtained in different ways, e.g. by local circuit transformations. If the SAT 
problem is derived from a circuit description, a smaller circuit corresponds to a more compact 
SAT instance with less variables and clauses in the CNF. For this, these instances are often easier 
to solve. 
 
By an experimental study of integer factorisation this effect is demonstrated. Integer factorisation 
problems are known as being hard for SAT solvers (see e.g. [HW97, ARMS02]). Starting from 
an initial description logic optimisation is applied and it is shown that this significantly speeds up 
the proof process. For our experiments we make use of the latest version of zchaff. It is shown 
that a pre-processing of the problem instance by classical logic synthesis methods can give 
improvements of several orders of magnitude. 
 
Since the approach presented can only be seen as a first step in the direction of incorporating 
logic synthesis approaches in SAT solvers, at the end we discuss directions for future work and 
give some first experimental results from the field of equivalence checking. 
 
The paper is structured as follows: SAT is introduced in Section 2. We also briefly review how a 
SAT instance is generated from a circuit description. Synthesis algorithms and their relation to 
SAT solving are discussed in Section 3. In Section 4 our experimental results for integer 
factorisation are reported. Finally the results are summarized and directions for future work are 
discussed. 
 
2. SAT  
 
Let f be a Boolean function in conjunctive normal form (CNF), i.e. in a product-of-sum 
representation. Then the satisfiability problem is to determine an assignment of the variables of f 
such that f evaluates to 1 or to prove that such an assignment does not exist. 
 
Example : Let f=(x+y+¬z)( ¬x+z)( ¬y+z), where ¬x denotes the complement of x. Then x = 1, y 
= 1 and z=1 is a satisfying assignment, since x and y ensure that the first sum becomes 1, while z 
ensures this for the remaining. 
 
2.1 SAT Instance from a Ciruit Description 
 
In many applications, like formal verification and test pattern generation, the problem is initially 
given in the form of a circuit. This circuit can be transformed to a CNF by a simple 
transformation that is briefly described in the following. 
 
Let C be a circuit given by:  
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
The problem is to determine whether the output h can assume the logic value 1. To derive a CNF 
for the circuit the netlist is traversed in linear time and at each node a sum is added to the CNF 
corresponding to the logic gate. E.g. for the AND gate at the output it has to be fulfilled that 
h=fg. For the whole circuit we derive: 
 

h [d= ¬(ab)] [e= ¬(b + c)] [f= ¬d] [g = d + e] [h =  fg] 
 
We now have a closer look at a single NAND-gate: 
 
 
 
 
 
This can be converted as follows: 
 
 
 
 
 
 
 
 
 
If this transformation is applied in an analogous manner to all gates in the circuit, for the example 
above we derive the set of clauses: 
 

h 
(a + d)(b + d)(¬a + ¬b + ¬d) 
(¬b + ¬e)(¬c + ¬e)(b + c + e) 
(¬d + ¬f)(d + f) 
(¬d + g)(¬e + g)(d + e + ¬g) 
(f + ¬h)(g + ¬h)(¬f + ¬g + h) 

 
Even though the transformation is linear in the size of the circuit it can be seen that even for the 
small circuit above the resulting CNF can become rather complex.  
 
 

ϕd   = [d = ¬(a b)] 
= ¬[d ⊕ ¬(a b)] 
= ¬[¬(a b)¬d + a b d] 
= ¬[¬a ¬d + ¬b ¬d + a b d] 
= (a +d)(b +d)(¬a +¬b + ¬d) 
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3. Synthesis Algorithms  
 
Many different approaches to logic synthesis have been presented in the past 20 years. In the 
following only some of the essential aspects that are important in our application are reviewed. 
 
The most popular techniques are based on transformations on logic networks as it is done e.g. in 
SIS [SSL+92]. A network is given as a graph, where each internal node represents a Boolean 
function (usually with a single output only). In most cases the function is represented as a sum-
of-product, but alternatives, like product-of-sums or BDDs, can also be used. 
 
Typical optimisation steps are [DeM94]: 
 

• Elimination 
• Decomposition 
• Extraction 
• Simplification 
• Substitution 
• (Algebraic) division 

 
Alternatives to these techniques are based on functional decomposition, redundancy addition and 
removal or implication techniques. (For a recent overview of different synthesis methods see 
[DG02].) 
 
All these techniques have in common that they try to reduce the number of literals in a given 
logic circuit. By this, the CNF resulting from the circuit also becomes smaller (see Section 2). 
 
3.1 SAT Simplification based on Synthesis 
 
Even though today’s SAT solvers are very efficient, there exist several fast synthesis algorithms 
that can significantly reduce the problem size. Here, it is important to find a good compromise 
between run time of the algorithm and quality of the resulting netlist, i.e. it does not make sense 
to let a synthesis algorithm run for a long time to save a few gates, since the SAT solver will not 
profit from this.  
 
For this, in the following we restrict ourselves to simple local operations that can be computed 
efficiently. This is motivated by a parameter study (see Section 4). We only made use of the 
standard operators available in SIS [SSL+92], like simplification. Furthermore, the logic 
synthesis techniques are only used in the form of a pre-processing. 
 
4. Experimental Results:  Integer Factorisation 
 
All experiments are run on a SUN FIRE 280 R (900 MHz) with 4 GByte of main memory 
running under Unix. The program zchaff (Z-Chaff Version: ZChaff 2003.6.16) [MMZ+01] has 
been used as a SAT solver and all synthesis steps are run in SIS [SSL+92]. The run times are 
given in CPU seconds.  
 



To demonstrate the efficiency of the approach described above integer factorisation has been 
chosen as the optimisation problem for generation of SAT instances. The problem can be 
described as:  
 

Given an integer z determine a factorisation of z in x and y, i.e. z=x*y, if it exists 
with x and y not equal to 1. Return the factors in case they exist and zero otherwise.  

 
Thus, the SAT problem is satisfiable, iff  z is not a prime number. It is well known that problem 
instances of this type are hard for SAT solvers (see e.g. [HW97, ARMS02]). 
 
4. 1 Experimental Setup 
 
The multiplier circuits were automatically generated and have an array structure. For the SAT 
instance some further constraints are needed to ensure a correct and non-trivial decomposition. 
I.e. it has to be ensured that after the factorisation none of the operands x or y are equal to 0 or 1. 
But this is equivalent to the fact that at least one bit, beside the least significant bit, has to have 
the value 1. This constraint can easily by added by OR- ing all bits of each operand except the 
lowest one and set the OR-output to constant 1. Then the outputs are set to constant values to 
represent the desired number z. The SAT solver then determines  whether this number can be 
factored by finding appropriate values x and y. 
 
4.2 Selection of Synthesis Algorithm 
 
Since there exist many logic synthesis approaches in a first series of experiments, different 
techniques have been studied. Only commands integrated in SIS have been used. As a test case a 
non-satisfiable problem has been used, i.e. the factorisation of z=186917 using a 20-bit multiplier 
with 40 inputs and 40 outputs. The results are given in the Table 1. In the first column the name 
of the synthesis command or script is given. Simplify corresponds to a single command, while the 
scripts Boolean, Algebraic and Rugged correspond to a sequence of commands. The second and 
third columns give the run time of the synthesis algorithm and for zchaff, respectively. In the first 
row the original circuit is given without any optimisation.  
 

Table 1: Run times for 20-bit multiplier for different logic synthesis algorithms  
 

Synthesis procedure  Synthesis time SAT time 
Original - 790.94 
Algebraic  166.0 13.59 
Boolean 65.2 9.96 
Rugged 26.1 1.81 
Simplify 6.0 1.95 

  
It can be observed that all synthesis algorithms simplify the SAT instance. Compared to the 
original problem the speed-up is in the range from a factor of 58 to a factor of more than 400. 
There is no direct correlation between the run time of the synthesis algorithm and the run time 
needed by the SAT solver. For this, we decided to chose the simple algorithm Simplify for the 
optimisation. In general, this showed to be a good choice (see below). 
 



4.3 Run Times  
 
Problem instances of different complexity have been considered. The results regarding run time 
are given in the Table 2.  In the first column the instance number is given. (The Table 3 later 
refers to these numbers.) Bit denotes the bit-width of the multiplier and In and Out gives the 
resulting inputs and outputs, respectively. Integer reports the number of z as a decimal. If z is a 
prime number the resulting SAT instance is not satisfiable, otherwise it is. This is explicitly 
denoted in column SAT. The run times for zchaff started on the original circuit are given in 
column zchaff. The results for the approach suggested above are given in column sysSAT. We 
give the detailed numbers for the pre-processing step Simplify (column Pre), the run times of 
zchaff for the simplified complexity (column zchaff) as well as the total run times in the last 
column.  
 

Table 2: Run times for multiplier using Simplify  
 

sysSAT Instance Bit In Out Integer z SAT zchaff 
Pre zchaff total 

1 32 64 64 3719 No - 35.6 9.84 45.44 
2 32 64 64 746323 Yes 0.17 35.6 0.52 36.12 
3 32 64 64 10007 No - 35.6 3.94 39.54 
4 32 64 64 600011 No - 35.6 5.61 41.21 
5 32 64 64 1073741789 No - 35.6 - - 
6 16 32 32 678421 No 69.94 2.7 12.9 15.6 
7 16 32 32 4153 No 10.65 2.7 0.32 3.02 
8 16 32 32 86021 Yes 0.02 2.7 0.48 3.18 
9 16 32 32 3719 No 38.04 2.7 0.32 3.02 
10 20 40 40 186917 No 790.94 6.0 1.95 7.95 

 
As can be seen the pre-processing often saves significant run time. In many cases – especially the 
hard ones – zchaff was able to finish the computation after a few seconds, while the instance 
without the synthesis step was too hard to be solved within 1 CPU hour. It is obvious that in the 
case of prime numbers the problem is much harder, since no satisfying inputs can be generated. It 
is interesting to notice that for satisfying assignments, i.e. integer numbers that can be factored, 
the optimization even slowed down the proof process. But in these cases it is much easier to 
determine a solution. E.g. for z=746323 (Instance 2) 3 factors exist, i.e. z=746323= 167 * 109 * 
41. But the overhead due to the pre-processing is moderate. While in other cases the problem 
could only be solved within the given time limit if the pre-processing was used. 
 
4.4 Details on Problem Instances and SAT Run 
 
Finally, some further information on the problem sizes and on the added conflict clauses during 
the run of the SAT solver is given.  In Table 3 for each instance the number of clauses, the 
number of literals, the added number of clauses and the added number of literals are given in 
columns clauses, literals, conf. cl. and conf. li., respectively. The information is provided for the 
original description (column Original) and after the pre-processing using synthesis techniques 
(column sysSAT). 
 



 
Table 3: Clauses and literals for multiplier using Simplify  

 
Original sysSAT Instance 

clauses literals conf. cl. conf. li. clauses literals conf. cl. conf. li. 
1 45673 109783 - - 42627 100901 8823 922766 
2 45673 109783 20 38074 42627 100901 529 76832 
3 45673 109783 - - 42627 100901 4928 400077 
4 45673 109783 - - 42627 100901 7488 848024 
5 45673 109783 - - 42627 100901 - - 
6 11065 26487 49275 11351087 10307 24341 12911 1855765 
7 11065 26487 13080 1959975 10307 24341 741 50555 
8 11065 26487 5 2160 10307 24341 880 86467 
9 11065 26487 30289 5919916 10307 24341 778 53383 
10 17509 41983 223481 84589531 16323 38585 3058 340910 

 
It can be observed that the reduction in number of clauses and literals is not very large, but as the 
run times above showed the effect is significant. 
 
5. Discussion and Future Work  
 
In this paper a new approach to improve the performance of SAT solvers has been proposed. 
While most methods so far tried to combine existing techniques known from the verification 
domain, like BDD or ATPG, with SAT proof engines, here we suggest the use of techniques 
known from logic synthesis. This reduces the size of the problem description at moderate cost, 
while first experiments show that the reduction in run time for hard instances is significant. 
Experiments on integer factorisation – a problem known to be hard for SAT solvers – 
demonstrated the efficiency of the technique. After a pre-processing based on synthesis 
algorithms many instances could be solved within a few CPU seconds, while the original problem 
could not be solved within one hour. 
 
The work presented in this paper can only be seen as first step in the direction of combining SAT 
techniques and logic synthesis. So far the synthesis approach is done in the form of a pre-
processing. It is focus of current work to fully integrate the method in the SAT solver run. 
Motivated by the promising results of the approach obtained from a pure pre-processing step 
important questions are: 
 

• How to integrate synthesis operation in a SAT solver?  
• How to ensure that the synthesis techniques do not slow down the proof process (as has 

e.g. been observed for the satisfiable instances in Table 2)? 
• How to develop fast heuristics in logic synthesis that are dedicated to this problem 

domain?  
 
In contrast to logic synthesis – where a high optimisation counted in the number of literals is 
required – here the main focus is on reduction of run time.  
 



Furthermore, other SAT instances resulting from equivalence checking and bounded model 
checking problems have to be studied. In some preliminary experiments the technique has been 
applied to equivalence checking. Some of the ISCAS85 circuits have been compared to a version 
that has been optimized by SIS using script Rugged. For some benchmarks, like C499 and C880, 
the proof process could be sped up by a factor of 10, while for C3540 it took nearly two times 
longer.  
 
It can be expected that the technique presented in this paper works especially well in the domain 
of bounded model checking. There, beside the circuit a property is synthesized to gates. Usually, 
the property only influences a small part of the circuit and this can easily be identified by 
synthesis operations.  
 
It is focus of current work to study these application domains in more detail.  
 
Acknowledgement 
 
The author likes to thank Marc Herbstritt for helpful discussions and for providing the instances 
of the equivalence checking problems considered in Section 5. 
 
References 
 
[AS00] F. Aloul, K. Sakallah, An Experimental Evaluation of Conflict Diagnosis and Recursive 

Learning in Boolean Satisfiability, IWLS, pp. 117-122, 2000 
  
[ARMS02] F. Aloul, A. Ramani, I. Markov, K. Sakallah, Solving Difficult SAT Instances in the 

Presence of Symmetry, DAC, pp. 731-736, 2002 
 
[DeM94] G. DeMicheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994 
 
[DG02] R. Drechsler, W. Günther, Towards One-Pass Synthesis, Kluwer Academic Publishers, 

2002 
 
[GN02] E. Golberg, Y. Novikov. Berkmin: a fast and robust sat-solver. DATE'02, pages 142-149, 

2002. 
 
[GW00] J. Groote, J. Warners. The propositional formula checker HeerHugo. In Ian Gent, H. van 

Maaren, T. Walsh (editors), SAT20000: Highlights of Satisfiability Research in the year 
2000, Frontiers in Artificial Intelligence and Applications. Kluwer Academic Publishers, 
2000. 

 
[HW97] S. Horie, O. Watanabe Hard instance generation for SAT, ISAAC'97, Lecture Notes in 

CS, Vol.1350, 22-31, 1997 
 
[KGP01] A. Kuehlmann, M. Ganai and V. Paruthi, Circuit-Based Boolean Reasoning, DAC, 

pages 232-237, 2001 
 
[KS97] W. Kunz, D. Stoffel, Reasoning in Boolean Networks, Kluwer Academic Publishers, 

1997 



 
[LM01] I. Lynce, J.P. Marques-Silva, The Interaction Between Simplification and Search in 

Propositional Satisfiability, CP'01 Workshop on Modeling and Problem Formulation 
(Formul '01), 2001. 

 
[MMZ+01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff: 

Engineering an Efficient SAT Solver, DAC, pages 530-535, 2001 
 
[MG99] J.P. Marques-Silva, T. Glass, Combinational Equivalence Checking Using Satisfiability 

and Recursive Learning, DATE, pp. 145-149, 1999 
  
[MS99] J.P. Marques-Silva and K.A. Sakallah, GRASP: A Search Algorithm for Propositional 

Satisfiability, IEEE Transactions on Computers, Vol. 48, No. 5, pages 506-521, 1999   
 
[MS00] J.P. Marques-Silva and K.A. Sakallah, Boolean Satisfiability in Electronic Design 

Automation, DAC, pages 675-680, 2000 
 
[NSR99] G.-J. Nam, K.A. Sakallah, R.A. Rutenbar, Satisfiability-Based Layout Revisted: 

Detailed Routing of Complex FPGAs Via Search-Based Boolean SAT, Int'l Symp. on 
FPGAs for Custom Computing Machines, pages 167-175, 1999 

[SSL+92] E. Sentovich, K. Singh, L. Lavagno, Ch. Moon, R. Murgai, A. Saldanha, H. Savoj, P. 
Stephan, R. Brayton and A. Sangiovanni-Vincentelli, SIS: A system for sequential circuit 
synthesis, University of Berkeley, 1992  

[SVV03] A. Smith, A. Veneris, A. Viglas, Design Diagnosis using Boolean Satisfyability,  4th 
International Workshop on Microprocessor Test and Verification (MTV'03), 2003 

 
 
 
 
 
 


