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Abstract

BDDs are used in several fields as e.g. formal verifica-
tion or synthesis. Minimizing the number of nodes in a BDD
is a common technique, to reduce the memory needed to ex-
press a function. But recently applications like SAT-solving
or synthesis have been shown to benefit from a small num-
ber of paths in a BDD. Here we present an algorithm and its
implementation to carry out the minimization of a BDD with
respect to the number of paths. After showing the existence
of functions that can not be represented by a BDD that is
minimal in the number of nodes and the number of paths at
once, statistical experiments on the ISCAS89 benchmark set
show the efficiency of the technique. In another set of exper-
iments the minimization of numbers of paths is compared to
that of the number of nodes.

1 Introduction

Binary Decision Diagrams(BDDs) are widely used in
VLSI CAD applications. Due to the canonical represen-
tation of Boolean functions they are very suitable for for-
mal verification problems and used in a lot of tools to date
[3, 4, 5]. It is standard to measure the size of a BDD in
the number of nodes since this is proportional to the mem-
ory needed. The variable order determines the number of
nodes. Many techniques are known for the reduction of the
number of nodes (see e.g. [10, 12]).

On the other hand, recently some applications have been
studied where it turned out that the number of paths to
one, also called one-paths in the following, in a BDD is
important. In formal verification SAT techniques play an
important role and the number of steps needed to solve
a SAT problem can be measured by the number of paths
in a BDD [11]. Also in the minimization during synthe-
sis the influence of the number of paths in a BDD was
shown [9, 14] and a minimized Disjoint-Sum-of-Product-
representation can directly be extracted from the BDD [7].

Therefore, in this paper we present a technique to re-
duce the number of paths to one in a BDD. Our technique is
based on local variable swapping. This allows for an easy
integration into other techniques for reducing the size of a
BDD.

We show the existence of functions with different BDDs
for minimal size and minimal number of paths. Finally in
our experiments we show the efficiency of our algorithm
with statistical information and compare the minimization
of paths to that of size.

The structure of the paper is as follows: Section2 in-
troduces the necessary notation to make the paper self-
contained. In Section3.1 the swapping procedure and the
modification of sifting is explained. Experimental results
are given in Section4 followed by the conclusions in Sec-
tion 5.

2 Preliminaries

2.1 BDDs

As is well-known a reduced ordered BDD is a directed
acyclic graphG = (V,E) representing a Boolean function
[2]. The Shannon decomposition is carried out in each of its
nodes on a given variable. By usingComplemented Edges
(CEs) the size of a BDD can be further reduced [1]. In
the following we refer to reduced ordered BDDs with CEs
simply as BDDs.

Formally the order of then variables of a Boolean func-
tion can be given by mapping the variable index to a level
in the graphG:

π : {0, . . . , n− 1} → {0, . . . , n− 1}

A BDD with CEs has exactly one terminal node without
any successors, denoted by1. Each other nodev ∈ V is
labeled with an indexindex(v) ∈ {0, . . . , n} and has two
successors, denoted asThenChild(v) andElseChild(v).



Due to the orderπ the inequation

π(index(v)) < min(π(index(ThenChild(v))),
π(index(ElseChild(v))))

always holds (i.e. a node is always above its children), ex-
cept if a child is the terminal1. For an edgee ∈ E the
attributeComplementedEdge(e) is true, iff e is a CE.

More than one function can be represented in one BDD
by sharing isomorphic subgraphs between the functions,
these functions are referred to as outputs in analogy to the
outputs of a circuit.

Later on we need to split the predecessors of a nodew
into those having a CE tow and those having a non CE to
w, therefore we define two sets:

M1(w):={v : w can be reached fromv via a non CE}
M0(w):= {v : w can be reached fromv via a CE}

2.2 Paths in BDDs

Definition 1. 1. An ordered tuple

p = (v0, e0, v1, e1, . . . , el−1, vl)

with vi ∈ V, ei = (vi, vi+1) ∈ E is called apath from
v0 to vl. The edgesei may be complemented or non
complemented.

2. Two paths

p1 = (v0, e0, v1, e1, . . . , el−1, vl)
p2 = (w0, f0, w1, f1, . . . , fl−1, wl)

with vi, wi ∈ V andei, fi ∈ E areidentical, iff

∀i ∈ {0, . . . , l} vi = wi,

∀i ∈ {0, . . . , l − 1} ei = fi.

Otherwise the two paths are calleddifferent.

3. A pathp = (v0, e0, v1, e1, . . . , el−1, vl) is calledcom-
plemented, iff it leads fromv0 to vl via an odd number
of CEs, i.e.

|{e : (e is an edge inp) ∧
ComplementedEdge(e)}| = 2i + 1

for i ∈ N, otherwise the path is callednon comple-
mented.

4. A path p = (v0, e0, v1, e1, . . . , el−1, vl) is called a
one-path fromv0, iff the path is non complemented
andvl = 1.

5. A path p = (v0, e0, v1, e1, . . . , el−1, vl) is called a
zero-path fromv0, iff the path is complemented and
vl = 1.

By P1(π) we denote the sum of all different one-paths
from any of the outputs (i.e. roots of the BDD) to the ter-
minal 1 with respect to the variable orderπ. By P0(π) we
denote the sum of all different zero-paths from any of the
outputs with respect to the variable orderπ.

3 Minimizing the Number of Paths

3.1 Examples

Two introductory examples briefly clarify the difference
between representing a function with BDDs of minimal
path number or minimal size. Then the technique for ef-
ficiently calculating the number of paths is introduced, the
two steps of keeping track of changes and propagating these
changes are shown in detail. The section ends with the inte-
gration of the technique into Rudell’s sifting algorithm [12].
Example 1. It is well-known that the EXOR-functionf1 =
x0 ⊕ . . . ⊕ xn is represented by a BDD that has a number
of nodes linear inn. The corresponding BDD is shown in
Figure1(a). Nonetheless the number of paths is exponential
in n and, even worse, all BDDs representingf1 have a num-
ber of paths exponential inn. This can be easily seen, since
all BDDs representingf1 have the same shape regardless of
the variable order due to the symmetry off1.
Example 2. On the other hand the functionf2 = x0x1x2 +
x0x1x3 + x0x1x2x3 + x0x1x2x3 is an example where dif-
ferent variable orders lead to a BDD with either a minimal
number of nodes (Figure1(b)) or a minimal number of paths
to one (Figure1(c)). While the BDD minimal in size has six
nodes (including the terminal) and five one-paths, the BDD
minimal in the number of one paths has two more nodes,
but only four one-paths.

3.2 Swapping Variables

Swapping two adjacent variablesxi, xj in the variable
orderπ results in the new variable orderπ′ with

π′(k) =

 π(k) if k 6= i, j
π(i) if k = j
π(j) if k = i

.

This operation has local effects on the BDD only regarding
the number of nodes and is therefore used in most of the
common reordering routines for BDDs. The operation in-
fluences the nodes in the two levelsπ(i) andπ(j) but leaves
all other nodes untouched. This way it is easy to keep track
of the number of nodes in the BDD. One case that occurs
during the swap of levels is illustrated in Figure2. Due to
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Figure 1. Examples of BDDs

the swap ofxi andxj three nodes instead of the previous
two are needed.

While swapping two variables is a local operation to
counting the number of nodes [8], this is not the case in cal-
culating the number of paths. If we know the numberp1(w)
of non complemented paths from the outputs to a nodew
and we also know the number of non complemented paths
from w to 1, the number of paths from the outputs to1 via
w is simply the product of both (of course, to get the total

number of one-paths viaw one has to also add the number
of complemented paths tow multiplied by the number of
zero-paths fromw). By keeping track of all changes we can
calculateP1(π′), if P1(π) is also given. But a change in
p1(w) will affect p1 of all nodes on a path fromw to 1 as
well and we have to update all this values to be able to do the
efficient calculation ofP1 during further swap operations.

Therefore we calculateP1(π′) by keeping track of all
the changes ofp1(w) for all nodesw in levels belowπ(i)
during the swap and propagate these changes down to the
terminal1 afterwards. Obviously the number of paths from
the outputs to one,P1(π′), is equal top1(1) after the prop-
agation.

For every nodew of the BDD the valuep1(w) (p0(w))
denotes the number of non complemented (complemented)
paths from the outputs tow. p0(w) andp1(w) can be cal-
culated from valuesp0 andp1 of all predecessors ofw:

p0(w) =
∑

v∈M1(w) p0(v) +
∑

v∈M0(w) p1(v) (1)

p1(w) =
∑

v∈M1(w) p1(v) +
∑

v∈M0(w) p0(v) (2)

At first we show how to keep track of the changes and then
how the propagation is done.

3.3 Keeping Track of Changes

For each noded1(t) (d0(t)) denotes the difference in
the number of non complemented (complemented) paths
from the outputs tot before and after the swap. Looking
at Figure2 again one can see the changes in the number of
paths.p0(w) (p1(w)) does not change and therefored0(w)
(d1(w)) is not changed either. Before the swap the nodeu
did not havev as a predecessor in previous calculations of
p0(u) (p1(u)), so we update

p0(u)← p0(u) + p0(v) (p1(u)← p1(u) + p1(v))
and

d0(u)← d0(u) + p0(v) (d1(u)← d1(u) + p1(v)).

Of course, Figure2 is just one case of the changes made to
nodes in levels belowπ(i) but the schema of the updates
applies in all other cases as well.

By iterating the nodes of levelπ(i) all the changes are
accumulated in the valuesd0 andd1 of nodes in levels be-
low π(i) (consider the case resulting from going through
the example in Figure2 from right to left).

For efficiency a stacks(k) is assigned to each level
k of the BDD. Every time a valued0(v) or d1(v) is
changed the corresponding nodev is pushed onto the stack
s(π′(index(v))). Thereby we assure that during propaga-
tion of changes we only look at those nodes in each level of
the BDD where a change in the number of paths may have
occurred.
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This method to keep track of changes does not change
the asymptotical time complexity of the swapping opera-
tion, since only a constant number of operations (additions
and look-ups) on nodes that are touched anyway are added.

3.4 Propagation of Changes

Looking at Equation (1) and (2) the differencesd0(w)
andd1(w) can be calculated from the differences of all pre-
decessors ofw, respectively:

d0(w) =
∑

v∈M1(w) d0(v) +
∑

v∈M0(w) d1(v) (3)

d1(w) =
∑

v∈M1(w) d1(v) +
∑

v∈M0(w) d0(v) (4)

The algorithm works in a different way since efficient im-
plementations of BDD packages only store information
about the children of a node, but not of its predecessors. All
nodes in the stacks are candidates for a change in the num-
ber of paths leading to the node from the outputs. Figure3
shows the algorithm to propagate the changes.PopFrom-
Stacks returns inv the first element in the topmost stack
that is not empty, topmost means associated to the highest
level. This leads to a levelwise propagation of changes. All
predecessors of a nodev were visited before the node itself.
Thus, Equations (3) and (4) have been evaluated correctly
whenv is visited.

It is checked ifd0(v) or d1(v) is unequal zero, becausev
might be on the stack twice (when pushingv onto the stack
it is not checked ifv is an element of the stack already).

The case of a CE can only occur when looking at an else-
child of a node. Edges to a then-child are never comple-
mented. This is due to the case normalization [1]. If the
terminal node is reached no further propagation is neces-
sary and the node is not pushed onto the stacks. Otherwise
the node is pushed onto the stacks only if the update led to
a difference in the numbers of paths.PushOntoStacks
pushes the node onto the stack corresponding to the node’s
level in the BDD.

After propagating all updates from a nodev, d0(v) and
d1(v) have to be reset before visiting the node a second time
and before the next swap operation.

(0) while PopFromStacks (&v) do
(1) if d0(v) 6= 0 or d1(v) 6= 0 then
(2) w ← ThenChild (v)
(3) p0(w)← p0(w) + d0(v)
(4) d0(w)← d0(w) + d0(v)
(5) p1(w)← p1(w) + d1(v)
(6) d1(w)← d1(w) + d1(v)
(7) if not IsTerminal (w)

and (d0(w) 6= 0 or d1(w) 6= 0)
then

(8) PushOntoStacks (w)
(9) fi
(10) w ← ElseChild (v)
(11) if ComplementedEdge (v,w) then
(12) p0(w)← p0(w) + d1(v)
(13) d0(w)← d0(w) + d1(v)
(14) p1(w)← p1(w) + d0(v)
(15) d1(w)← d1(w) + d0(v)
(16) else
(17) p0(w)← p0(w) + d0(v)
(18) d0(w)← d0(w) + d0(v)
(19) p1(w)← p1(w) + d1(v)
(20) d1(w)← d1(w) + d1(v)
(21) fi
(22) if not IsTerminal (w)

and (d0(w) 6= 0 or d1(w) 6= 0)
then

(23) PushOntoStacks (w)
(24) fi
(25) d0(v)← 0
(26) d1(v)← 0
(27) fi
(28) od

Figure 3. Algorithm to propagate changes

Despite our application to calculating the number of one-
paths this technique also calculates the number of zero-
paths,P0(π) in p0(1), and the number of all paths in the
BDD which is given byP0(π) + P1(π).



3.5 Modification of Sifting

With a swapping procedure that calculates the number
one-paths it is no problem to modify Rudell’s sifting algo-
rithm to minimize the number of paths instead of the size
of a given BDD. In the original algorithm every variable is
moved up and down in the variable order. At each position
the size of the BDDs is measured and finally the variable is
fixed at that position where the BDD was smallest. All the
changes in the variable order are done by swapping adjacent
variables.

If the described swapping procedure is used, the num-
ber of paths in the BDD can be used as the criterion which
position to chose for a variable rather than the size of the
BDD.

4 Experimental Results

Two experiments were made to demonstrate the differ-
ence between the BDDs minimal in the number of paths and
those minimal in size. The first experiment was to enumer-
ate all functions of up to four variables, in the second ex-
periment we investigated the benchmark set ISCAS89 and
compared the modified sifting algorithm to Rudell’s sift-
ing algorithm. For the modified algorithm we also gathered
some statistical information to validate the efficiency of the
technique.

The experiments were carried out on a Pentium II sys-
tem at 400 MHz and 128 MB of physical memory. The
machine was running under Linux. The algorithms were
integrated into the CUDD package [13]. For the compar-
ison with Rudell’s sifting the implementation included in
this package was used .

4.1 Enumerating Functions

For a given function we iterated through all possible vari-
able orders, collecting all BDDs that were minimal in size
or number of paths. Enumerating all functions of two or
three variables gives the following result:
Lemma 1. For all Boolean functions of two or three vari-
ables exists a BDD that is minimal in size and in the number
of paths at the same time.

This is not true for functions of four variables. Com-
paring the BDDs minimal in size with those minimal in the
number of paths we found that 2.3 percent of the functions
have no BDD that is minimal in size and number of one-
paths at the same time. One of the functions was given in
Section3.1 already, the corresponding BDDs are shown in
Figure1(b)and1(c), respectively. This leads to:
Lemma 2. There are Boolean functions that do not have a
BDD that is minimal in size and in the number of paths to
one at the same time.

Table 1. Statistical results for the modified
sifting algorithm

Number of nodes
Circuit all BDDs below visited
s1196 2957008 903030 69472
s1238 2957008 903030 69505
s1488 169021 52222 16631
s1494 169021 52222 16453
s208 85715 32565 4031
s27 1033 303 8
s298 42373 12822 730
s344 127781 42715 2236
s349 127781 42715 2240
s382 156606 67255 1484
s386 47334 17871 1484
s400 156606 67255 1475
s444 188077 62300 1594
s510 867230 364534 80065
s526 161321 56969 1818
s526n 161321 56969 1812
s641 4470758 1914101 39815
s713 4470758 1914101 39858
s820 360140 132114 20666
s832 360140 132114 20719∑

18037032 6827207 392096

4.2 Benchmark Set

Due to the propagation of changes towards the terminal
the minimization of paths is more time consuming than min-
imizing the size. Not only the descent has to be done but
also more memory per node is needed because of the extra
informationp1, p0, d1 andd0 associated with every node
and in addition the stacks are needed. The sifting algorithms
were applied after constructing the BDD of a circuit.

In the first experiment we gathered statistical informa-
tion to judge the quality of our technique. Table1 summa-
rizes the results for those circuits of the ISCAS89 bench-
marks the algorithm handled within the time bound of one
hour. The column “visited” gives the number of nodes our
algorithm has visited during sifting to propagate changes
downward. Column “all BDDs” is the sum of nodes in all
BDDs that were constructed for the different variable orders
during sifting, in other words this is the number of nodes a
brute force algorithm that visits each node would consider
during the calculation of the number of paths. This justifies
the use of memory to keep the extra informationp1, p0, d1

andd0 for every node.
Column “below” gives the sum of all nodes that are be-

low level π(j) during all swap operations and therefore is
the number of nodes that have to be visited without using



Table 2. Comparison of BDDs resulting from
Rudell’s and modified sifting

modified Rudell
Circuit size P1 size P1

s1196 1523 2874 641 3511
s1238 1523 2874 641 3511
s1488 500 369 388 543
s1494 500 369 388 543
s208 62 53 61 79
s27 13 16 10 17
s298 91 70 78 73
s344 104 330 104 330
s349 104 330 104 330
s382 152 238 121 315
s386 158 61 123 70
s400 152 238 121 315
s444 154 243 161 447
s510 184 170 165 206
s526 153 162 141 368
s526n 153 162 141 368
s641 768 1700 629 2167
s713 768 1700 629 2167
s820 310 155 259 184
s832 310 155 259 184∑

7682 12269 5164 15728

the stacks, since every level would have to be completely
iterated.

Summarized, the modified algorithm only had to visit
2.2% of the nodes a brute force algorithm had to. Further-
more for most of the nodes obviously no change in the num-
ber of paths had to be propagated, since the modified algo-
rithm only visited 5.7% of the nodes below the swapped
levels.

In a second run our algorithm was compared to Rudell’s
sifting algorithm. On some circuits only Rudell’s sifting
algorithm finished within the time bound of one hour, on
some benchmarks both algorithms did not finish. In Table2
we only list results for those circuits both algorithms were
able to cope with.

The table lists for both algorithms the number of nodes
and the number of one-paths of the BDD for each circuit. In
the sum the modified algorithm produced BDDs with only
78% of the paths to one, while the size increased 1.48 times.
For all circuits the modified algorithm produced a BDD
smaller in the number of one-paths than the original sifting
algorithm, as a consequence the size increased in general.
Exceptions are the circuits “s344” and “s349” where nei-
ther the number of one-paths nor the size changed. For the
circuit “s444” not only the number of paths but also the size

of the BDD decreased when the modified algorithm was ap-
plied.

5 Conclusions and Future Work

In this paper we investigated minimization techniques
for the number of one-paths in BDDs. First, we showed
that size optimal BDDs do not imply path minimality. Then
we gave an algorithm and its implementation. Experiments
showed that in some cases more than a factor of two can be
saved.

To further speed up the algorithm, it is focus of current
work to apply techniques known from size minimization,
like lower bounds [6] and variable grouping [10].
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