
Model-Based Diagnosis versus Error Explanation
Heinz Riener∗ Görschwin Fey∗†

∗Institute of Computer Science †Institute of Space Systems
University of Bremen, Germany German Aerospace Center, Germany

{hriener, fey}@informatik.uni-bremen.de

Abstract—Debugging techniques assist a developer in localizing
and correcting faults in a system’s description when the behavior
of the system does not conform to its specification. Two fault
localization techniques are model-based diagnosis and error
explanation. In this paper we focus on fault localization for
imperative, non-concurrent programs. We compare the two fault
localization techniques in a unified setting presenting SAT-based
algorithms for both. The algorithms serve as a vantage point
for a fair comparison and allow for efficient implementations
leveraging state-of-the-art decision procedures. We implement the
SAT-based algorithms in a prototype tool utilizing a Satisfiability
Modulo Theories (SMT) solver and evaluate them on mutants
of the ANSI-C program TCAS from the Software-Artifact Infras-
tructure Repository (SIR).

I. MOTIVATION & OVERVIEW

Debugging is one of the most time consuming steps
when creating software in general and embedded software
in particular. Fault localization techniques for isolating faulty
program locations in the source code of a program have been
proposed. The techniques divide into two broad categories.
The first category [1], [2] is based on Model-Based Diagnosis
(MBD). MBD searches for components of the program that
when replaced correct the program’s misbehavior. Thus, fault
localization is closely related to program repair, i.e., a com-
ponent is potentially faulty if and only if (iff) replacing the
component makes the program correct. The second category
is formed by explanation-based techniques [3] which “explain”
a misbehavior by comparing the differences (and similarities)
between faulty and correct execution traces.

We compare an MBD-based and an explanation-based fault
localization technique. Both techniques allow for several trade-
offs. We adopt the techniques to provide a unified setting and
to allow for a fair comparison. In particular, the MBD-based
technique is similar to the approach described by Smith et
al. [2] but focuses on fault localization in software programs
rather than hardware circuits. The explanation-based technique
is an adaption of error explanation [3].

In a theoretical comparison, we show that depending on the
program source either MBD or error explanation is superior, i.e.,
we construct programs for which only one of the techniques is
able to exactly pinpoint the fault. This motivates the empirical
evaluation of both techniques on fault localization problems.

We present algorithms to formalize the fault localization
problem with respect to both techniques into logic formulae.
The inputs are the source code of an imperative, non-concurrent
program and a formal specification which is either given
by local assertions annotated into the program’s source or
by a reference implementation of the program. The output
is a set of potentially faulty program locations which we
call fault candidates. The fault candidates are determined using
transformation into the Satisfiability (SAT) problem.

This work was supported by the German Research Foundation (DFG, grant
no. FE 797/6-1).

Our SAT-based algorithms are implemented in a prototype
tool which uses Quantified-Free Bit-Vector Logic (QF_BV)
and solves the logic formulae with the aid of a Satisfiability
Modulo Theories (SMT) solver.

II. EXPERIMENTAL RESULTS

We compare both fault localization techniques experimen-
tally in a case study using the Traffic Collision Avoidance
System (TCAS) from SIR [4]. TCAS is an imperative, non-
concurrent program which implements a collision avoidance
system for aircraft in 135 ANSI-C lines. SIR provides 41
mutants of TCAS. Each mutant corresponds to the correct
program with injected faults. The mutant contains a simple
mistake with respect to the correct program. These mistakes
refer to a single or multiple faulty statements.

For the comparison, we compute fault candidates for each
mutant of TCAS with both fault localization techniques. All
our experiments were conducted on a PC AMD Phenom

TM
II

X4 Processor which has 4 cores with 3 GHz each and 8 GB
RAM. We use the 64-bit version of Boolector 1.4.1 as SMT
solver. We asses the quality of the fault candidates similar to
Renieris and Reiss [5], i.e., we count their distance from the
real faults with respect to a reference implementation of TCAS
on the Program Dependency Graph (PDG). The distance refers
to the length of the cause-effect chain the programmer has to
examine in order to locate the real fault.

TCAS consists of 247 program locations. On average, our
MBD-based algorithm reports 58 fault candidates per mutant.
For each mutant the computation finishes in less than 7 seconds.
The average of the distance of a fault candidate to a real fault
counted on the PDG ranges from 1 to 7. Our explanation-based
algorithm reports on average only 8 fault candidates. However,
the maximal time required to finish explanation for a mutant
is 79.8 seconds. The average distance of a fault candidate to a
real fault counted on the PDG ranges from 3 to 4. Thus, the
MBD-based algorithm computes a large set of fault candidates
which usually contains one fault candidate close to the real
fault. The explanation-based algorithm computes less fault
candidates. However, those fault candidates have on average a
higher distance to the real fault.

REFERENCES

[1] R. Reiter, “A theory of diagnosis from first principles,” Artificial Intelli-
gence, vol. 32, no. 1, pp. 57–95, 1987.

[2] A. Smith, A. Veneris, M. F. Ali, and A.Viglas, “Fault diagnosis and
logic debugging using boolean satisfiability,” IEEE Transactions on CAD,
vol. 24, no. 10, pp. 1606–1621, 2005.

[3] A. Groce, S. Chaki, D. Kröning, and O. Strichman, “Error explanation with
distance metrics,” International Journal on Software Tools for Technology
Transfer, vol. 8, no. 3, pp. 229–247, 2006.

[4] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,”
Empirical Software Engineering: An International Journal, vol. 10, no. 4,
pp. 405–435, 2005.

[5] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in IEEE International Conference on Automated Software
Engineering, 2003, pp. 30–39.


	Motivation & Overview
	Experimental Results
	References

