
FAuST: A Framework for Formal Verification,
Automated Debugging, and Software Test

Generation?

Heinz Riener1 and Görschwin Fey1,2

1 Institute of Computer Science, University Bremen, Germany,
{hriener,fey}@informatik.uni-bremen.de,

http://www.informatik.uni-bremen.de/agra/
2 Institute of Space Systems, German Aerospace Center, Germany,

goerschwin.fey@dlr.de,
http://www.dlr.de/irs/

Abstract. We present FAuST, an extensible framework for Formal veri-
fication, Automated debugging, and Software Test generation. Our frame-
work uses a highly customizeable Bounded Model Checking (BMC) algo-
rithm for formal reasoning about software programs and provides different
applications, e.g., property checking, functional equivalence checking, test
case generation, and fault localization. FAuST supports dynamic execution
and parallel symbolic reasoning using the LLVM compiler infrastructure
and an abstraction layer for decision procedures.

Keywords: Formal verification, Debugging, SAT

1 Introduction

Bounded Model Checking (BMC) [3,7] is a technique to check whether finite-state
systems conform to their specifications. BMC searches for counterexamples of
bounded length and successively increases the bound until either a counterexample
is found or the system’s correctness can be guaranteed. The BMC problem is
represented symbolically as multiple instances of the Satisfiability (SAT) problem.
In practice BMC serves as a refutation technique because BMC problems often
exhaust a resource limit before the system is proven correct. The instances are
then solved using a corresponding Decision Procedures (DP), called Satisfiability
Modulo Theories (SMT) solver.

More recently, BMC is used in software verification [6,12]: the behavior of
a program is extracted from its source code and modeled using logic formulae.
Today, flexible compilers like the Low Level Virtual Machine (LLVM) [14] compiler
allow for program analysis and verification directly on the compiler’s intermediate
representation.

We present FAuST, an extensible framework for Formal verification, Automated
debugging, and Software Test generation. FAuST offers a tool bench for different
verification and debugging applications exploiting their similarities. The input of
each FAuST tool is a software program. The output depends on its application.
For instance, in fault-based test generation [22] the output is a test suite and in
fault localization [23] the output is a set of potentially faulty program locations.
The core engine of each tool is a highly customizable BMC algorithm.

The conceptual architecture of FAuST is built in three layers: (1) in the
program layer FAuST deals with analyzing and transforming the input program.
(2) In the application layer FAuST chooses a suitable background theory and

? This work was supported by the German Research Foundation (DFG, grant no. FE
797/6-1)

http://www.informatik.uni-bremen.de/agra/
http://www.dlr.de/irs/

2 Formal Verification, Automated Debugging, and Software Test Generation

builds a SAT problem from the transformed program depends on the application.
(3) In the logic layer the SAT problem is simplified and solved using SAT and
SMT solvers.

Figure 1 shows the flow of the BMC tool in the FAuST framework for property
checking. Dashed boxes denote objects and solid boxes denote transformations on
those objects. In the program layer we leverage the LLVM compiler to lower the
input program to LLVM’s intermediate representation, LLVM-IR. In the application
layer we instantiate an encoder with respect to the application, i.e., a customized
BMC algorithm which generates a SAT instance from the transformed program.
In the logic layer we use metaSMT [10] as a generic API interface to different
SAT and SMT solvers. Other FAuST tools operate similarly.

Transform

Program Compiler
frontend

LLVM-IR Encode Logic DP
UNSAT

SAT

Program layer
Application layer

Logic layer

Fig. 1: Flow of the BMC tool within the FAuST framework for property checking

FAuST is the first tool bench which integrates formal verification, automatic
debugging, and test generation into a unified framework. The main features are:
(1) state-of-the-art compiler technology built on the LLVM compiler infrastructure,
(2) dynamic execution using Just-In-Time (JIT) compilation, (3) an abstraction
layer for decision procedures leveraging metaSMT, and (4) parallel solving using
multiple SAT and SMT solvers simultaneously.

The remainder of the paper is structured as follows: In Section 2 we describe
the BMC-based approach to formalize LLVM-IR into logic. In Section 3 we discuss
the applications currently integrated into FAuST. In Section 4 we present related
work. In Section 5 concludes the paper.

2 Formalizing LLVM-IR into Logic using BMC

We use a BMC approach to formalize LLVM-IR into logic: given an imperative,
non-concurrent program P and an unrolling bound k, we unroll loops and
recursive functions in the program with respect to k and transform the unrolled
program into Static Single Assignment (SSA) [24] form. The transformations for
loop unrolling and to establish SSA form are provided by the LLVM compiler
infrastructure.

The resulting program consists of global program variables and a set of func-
tions with one entry function. A function f defines a Control Flow Graph (CFG)
CFG(f) := (Vf , Ef) with nodes Vf and edges Ef . The nodes v ∈ Vf correspond
to basic blocks and the edges e ∈ Ef correspond to possible control flow transfers
between basic blocks. Each basic block is a sequence of instructions over program
variables and constant values and has a unique label. We write Pred(v) and Inst(v)
to denote the set of predecessors and the set of instructions of the basic block v.

Suppose P is a program consisting of functions fi, 0 ≤ i ≤ n, with the entry
function f0 we encode the program into a logic formula,

p :=
n∧

i=0

∧
b∈Vfi

 ∨
b′∈Pred(b)

eb′,b ↔
∧

s∈Inst(b)

Encode(s)

 ∧ ef0 ,

Formal Verification, Automated Debugging, and Software Test Generation 3

i.e., an instance of the SAT problem. We introduce a logic variable with corre-
sponding data type for each program variable and a constant symbol for each
constant value in P . The program is encoded by formalizing the semantics of
each function, each basic block, and each instruction. The LLVM-IR instruction
set is discussed in detail in the LLVM Language Reference Manual [15]. Encoding
the individual instruction types is straightforward, i.e,. either the logic of choice
provides a corresponding word-level operation or we use an approach similar
to Tseitin’s encoding [25] to lower the operation to a semantically equivalent
logic formula using Boolean connectives. We write Encode(s) to denote the logic
formula obtained from encoding instruction s.

In order to encode the control flow of a program, we introduce one Boolean
variable for each edge in a CFG(fi), 0 ≤ i ≤ n, and additional Boolean variables
for each function call and return from a function to the callers site. The value of
a Boolean variable corresponds to a control flow transfer in the program, i.e., the
value is true if the control flow transfers when the program is executed and false
otherwise. We write eb′,b to denote the Boolean variable which corresponds to
the control flow transfer from basic block b′ to basic block b and we write efi

to
denote the Boolean variable which corresponds to the entry of function fi.

Each satisfying assignment of the resulting logic formula p corresponds to a
possible assignment to the program variables in P and determines an execution
of the program. Figure 2 shows a fragment of an LLVM program and the logic
formula in SMT-LIB version 2 [1] format. The program stores the minimum of
two given program variables a and b in program variable c.

0.;<label>:1
1. %2 = icmp slt i32 %a, %b
2. br i1 %2, label %3, label %4
3.
4.;<label>:3
5. br label %5
6.
7.;<label>:4
8. br label %5
9.

10.;<label>:5
11. %c = phi i32 [%a, %3], [%b, %4]

0.(set-logic QF_BV)
1.(declare-fun |%a| () (_ BitVec 32))
2.(declare-fun |%b| () (_ BitVec 32))
3.(declare-fun |%c| () (_ BitVec 32))
4.(declare-fun |%2| () Bool)
5.(declare-fun |-->%1| () Bool)
6.(declare-fun |%1-->%3| () Bool)
7.(declare-fun |%1-->%4| () Bool)
8.(declare-fun |%3-->%5| () Bool)
9.(declare-fun |%4-->%5| () Bool)

10.(assert (=> |-->%1|
11. (= |%2| (bvslt |%a| |%b|))))
12.(assert (=> |-->%1|
13. (and (=> |%2| |%1-->%3|)
14. (=> (not |%2|) |%1-->%4|))))
15.(assert (= |%1-->%3| |%3-->%5|))
16.(assert (= |%1-->%4| |%4-->%5|))
17.(assert (=> (or |%3-->%5| |%4-->%5|)
18. (= |%c| (ite |%3-->%5| |%a| |%b|))))

Fig. 2: A fragment of an LLVM program (on the left) and the corresponding logic
formula in SMT-LIB version 2 format (on the right).

3 Applications

In this section we outline the applications currently implemented as FAuST tools
and list their runtimes for the ANSI-C program TCAS from the Software-Artifact
Infrastructure Repository (SIR) using specific SMT solvers. However, FAuST
supports a large set of different SAT and SMT solvers via API calls and can pass
formulae to any interactive SMT solver supporting SMT-LIB version 2 format.
We mainly use FAuST to deal with C and C++ programs. However, FAuSTcan be
used for other programming language if an LLVM compiler front-end is available

4 Formal Verification, Automated Debugging, and Software Test Generation

which transforms programs into LLVM-IR. In order to use any tool from FAuST,
a user has to mark the program’s input variables with special function calls
FAuST input. The program variables are then treated as open variables with

non-deterministic values when encoded. Moreover, the user has to pass the name
of the entry function to be checked to a tool.

3.1 Formal Verification

FAuST provides a standard BMC tool for formal verification which supports
property checking and functional equivalence checking. In the former case the user
has to provide local assertions in the program’s source code. In the latter case a
reference implementation serves as the formal specification. Then, the user has
to mark corresponding pairs of program variables in the two implementations to
be compared with a special function call FAuST output. Counterexamples can
either be viewed on LLVM-IR or mapped back to the source code passed to the
LLVM compiler front-end utilizing LLVM metadata. Optionally, FAuST allows for
validation of counterexamples on the real program using LLVM’s JIT compiler
and execution engine, i.e., a test driver with the values of the counterexample
is automatically synthesized, compiled, and executed. Functional equivalence
checking of TCAS takes 0.18 seconds using Z3 as SMT solver which is comparable
to state-of-the-art BMC tools.

3.2 Automatic Debugging

FAuST provides an extension of the BMC tool for automatic debugging. Given
a program that does not conform to its formal specification, the tool computes
statements which are potentially faulty. Basically, two strategies are supported:
Model-Based Diagnosis (MBD) [21,8] and Error Explanation (EE) [9]. The
MBD strategy computes program variables which when replaced with open
variables in the SAT instance correct the program. The EE strategy selects a
counterexample and compares the values assigned to the program variables to
the values assigned in the most similar execution trace which does not refute
the formal specification. Different values indicate potentially faulty statements.
In contrast to the Explain [9] tool, FAuST does not use a Pseudo Boolean (PB)
solver but solves the optimization problem as a binary search over logic variables
utilizing incremental SAT. For 41 mutants of TCAS, we computed potentially
faulty program locations using both strategies [23]: on average the computation
takes 4.37 seconds with strategy MBD and 39.29 seconds with strategy EE using
Boolector as SMT solver.

3.3 Test Generation

FAuST provides a mutation-based test generator [22]: a given LLVM-IR program
is seeded with artificial faults. The fault seeding is implemented as an LLVM
compiler pass. The resulting program, called meta-mutant, contains all faults
each guarded with a condition. FAuST instantiates the BMC tool to generate a
counterexample for each fault by successively asserting a single guard condition
to be true, respectively. From each counterexample a test case is extracted.

Other recent test generators are FShell [11], KLEE [4], and KLOVER [16].
KLEE and KLOVER use a symbolic execution procedure. FShell is a front-end
to CBMC and provides a query engine for formulating testing goals. All three
tools focus on test case generation subject to traditional coverage criteria. In
contrast, our test generator is fault-based, i.e., it imposes constraints that a

Formal Verification, Automated Debugging, and Software Test Generation 5

fault has to be reached, the program state has to be infected, and the infected
program state has to propagated to an observable program output. The strength
of mutation-based testing criteria was investigated by Offutt and Voes [19]. They
outlined that mutation-based criteria subsume several other coverage criteria
including Modified Condition/Decision Coverage (MC/DC) when a certain set of
standard mutations is used.

4 Related Work

Today, BMC is a well established technique for searching bugs in hardware and
software. Clarke et al. [6] introduced the C Bounded Model Checker (CBMC) which
implements BMC considering finite-state systems given as ANSI-C programs.
However, CBMC uses its own ANSI-C language parser and relies on a custom-
made intermediate representation, called GOTO programs. Our BMC core engine
is similar to CBMC but uses LLVM-IR as intermediate representation. A program
in LLVM-IR is similar to a GOTO program which makes tools based on LLVM-IR
neither less efficient nor more abstract than CBMC. However, LLVM-IR is the
compiler’s intermediate representation which is finally translated into the target
code which makes it more suitable for verification and debugging. For instance,
it provides the additional capability to detect bugs after certain optimizing
transformations are applied to the source code. Also, the LLVM compiler provides a
rich tool support for LLVM-IR including a compiler, linker, optimizer, disassembler,
and debugger.

Researchers proposed prototype tools based on LLVM [4,17,20,5,16,13,18]
for applications like symbolic execution, test generation, and BMC. The most
recent BMC tool is LLBMC [18] which focuses entirely on detecting bugs in
C/C++ programs either checking for assertions provided by the user or built-in
checks, e.g., for overflow detection or memory consistency. However, FAuST is a
framework for different applications additionally allowing for test case generation
and automatic debugging.

CPAChecker [2] is a configuration software verification platform and follows
the idea of having a unified framework for different, formal applications. Programs
written in the C and C++ programming language are parsed and transformed
into Control Flow Automata (CFA) utilizing Eclipse’s CDT plugin. However, the
existing procedures implemented for CPAChecker target software verification
similar to CBMC.

5 Conclusions

We have presented FAuST, an extensible framework for Formal verification,
Automated debugging, and Software Test generation. The framework offers a
tool bench for different verification and debugging applications. FAuST utilizes
the LLVM compiler infrastructure for analyzing and transforming programs and
metaSMT as a generic API interface to different SAT and SMT solvers.

References

1. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard version 2.0, 2010.
2. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software

verification. In Conference on Computer Aided Verification, pages 184–190, 2011.
3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 193–207, 1999.

6 Formal Verification, Automated Debugging, and Software Test Generation

4. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Symposium on Operating
Systems Design and Implementation, pages 209–224, 2008.

5. V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo multi-
path analysis of software systems. In Conference on Architectural Support for
Programming Languages and Operating Systems, pages 265–278, 2011.

6. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 168–176,
2004.

7. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

8. J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97–130, 1987.

9. A. Groce, S. Chaki, D. Kröning, and O. Strichman. Error explanation with distance
metrics. International Journal on Software Tools for Technology Transfer, 8(3):229–
247, 2006.

10. F. Haedicke, S. Frehse, G. Fey, D. Große, and R. Drechsler. metaSMT: Focus on
your application not on solver integration. In International Workshop on Design
and Implementation of Formal Tools and Systems, pages 22–29, 2011.

11. A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. FShell: Systematic test case
generation for dynamic analysis and measurement. In Conference on Computer
Aided Verification, pages 209–213, 2008.

12. D. Kröning. Software verification. In A. Biere, M. Heule, H. van Maaren, and
T. Walsh, editors, Handbook of Satisfiability, pages 505–532. IOS Press, 2009.

13. M. Vujos̆ević-Janic̆ić V. Kuncak. Development and evaluation of LAV: An SMT-
based error finding platform. In International Conference on Verified Software:
Theories, Tools and Experiments, pages 98–113, 2012.

14. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and
Optimization, pages 75–88, 2004.

15. C. Lattner and V. Adve. LLVM language reference manual, 2012. Last visit on
27th of March, 2012.

16. G. Li, I. Ghosh, and S. Rajan. KLOVER: A symbolic execution and automatic test
generation tool for C++ programs. In Conference on Computer Aided Verification,
pages 609–615, 2011.

17. L. McMillan. Lazy annotation for program testing and verification. In Conference
on Computer Aided Verification, pages 104–118, 2010.

18. F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded model checking of C and C++
programs using a compiler IR. In International Conference on Verified Software:
Theories, Tools and Experiments, pages 146–161, 2012.

19. J. Offutt and J. M. Voas. Subsumption of condition coverage techniques by mutation
testing. Technical Report ISSE-TR-96-01, George Mason University, 1996.

20. D. A. Ramos and D. R. Engler. Practical, low-effort equivalence verification of real
code. In Conference on Computer Aided Verification, pages 669–685, 2011.

21. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

22. H. Riener, R. Bloem, and G. Fey. Test case generation from mutants using
model checking techniques. In IEEE International Conference on Software Testing,
Verification, and Validation Workshops, pages 388 – 397, 2011.

23. H. Riener and G. Fey. Model-based diagnosis versus error explanation. In In-
ternational Conference on Formal Methods and Models for Codesign, 2012. To
Appear.

24. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Symposium on Princples of Programming Languages,
pages 12–27, 1988.

25. G. S. Tseitin. On the complexity of derivation in propotional calculus. In Automation
and Reasoning: Classical Papers in Computational Logic 1967-1970, 1983. Originally
published in 1970.

	Lecture Notes in Computer Science
	Introduction
	Formalizing LLVM-IR into Logic using BMC
	Applications
	Formal Verification
	Automatic Debugging
	Test Generation

	Related Work
	Conclusions

