
Automatically Connecting Hardware Blocks
via Light-Weight Matching Techniques

Extended Abstract
Jan Malburg∗ Niklas Krafczyk∗ Goerschwin Fey∗†

∗Institute of Computer Science †Institute of Space Systems
University of Bremen German Aerospace Center

28359 Bremen, Germany 28359 Bremen, Germany
malburg@informatik.uni-bremen.de Goerschwin.Fey@dlr.de

I. INTRODUCTION

Modern chip designs are composed out of several different blocks.
Blocks are typically described in a Hardware Description Language
(HDL). Often these blocks are from different developers or even third
party blocks licensed from other companies and have to be assembled
into a single chip. Writing the corresponding connections is a tedious
task for a developer, as he needs to connect several hundreds or even
thousands of different ports. Hence, automation is desirable.

Currently, tools for automatically connecting ports of different
blocks require either exact name matching, e.g., Emacs Verilog-
Mode [1] or require additional input, e.g., MKTREE[2], ShapeUp [3].
MKTREE requires a description of the intended connection and
ShapeUp uses a specification of the different blocks in order to
generate correct connections.

In this work we present a technique for connecting ports of
different blocks, that neither requires exact name matching nor
additional user input. The presented technique focuses on fast light-
weight techniques based on similarities between strings.

II. TECHNIQUE

The basic flow of our approach is shown in Figure 1. As input a list
of Verilog modules, the source code of each module, and, optionally,
the amount how often each module should be instantiated is used.
First, a set of prohibiting heuristics is applied on the modules. The
prohibiting heuristics mark connections as forbidden, either because
they are very unlikely or would result in nonsynthesizable code.

Next, supporting heuristics are used to compute a likelihood for
two ports to be connected. We use a name matching heuristic, an
extended name matching heuristic and an event checking heuristic.
The name matching heuristic is based on the similarity of the
port-names. We assume that for most design the name of the port
corresponds to the data which is sent over the port. The name
matching heuristic can use three different string-similarity metrics:
Jaro-distance [4], Levenshtein-distance [5] and longest-common-
substring. The extended name matching heuristic not only considers
port-names but also the names of the modules and their submodules.
The event checking heuristic tries to find the clock and reset signals
of a design and connect them correspondingly.

The last step in the computation is the application of a connection
strategy. We implemented several different strategies of different
complexity for choosing the connections between the ports. All
connection strategies use a threshold value which decide if a con-
nection should be created at all. Based on preliminary results the
threshold value was set to two third of the maximal value of the
supporting heuristics. The simplest is a greedy strategy, always
creating the connection which has the highest value assigned by the
supporting heuristics and no previously created connection prevents
the connection. More complex connection strategies rate connections
higher, if the modules which they connect are already connected by
other connections or consider all possible connections of a port and

Figure 1. The basic flow of our approach

prefer those connections for which the other port has only poorly
ranked alternatives.

III. EVALUATION

For evaluating our approach we use eight designs of different size,
of different purpose, and from different authors. For the evaluation we
removed the sub-module instantiations from the top-modules of the
designs and then applied our approach to recreate the instantiations.
We used Emacs Verilog-Mode as a baseline-comparison. For com-
paring both approaches we used a metric approximating the effort a
developer saves using an automatic tool.

The evaluation shows that in most cases the event checking heuris-
tic reduces the quality of the result. For several of the considered
designs, the more advanced connection strategies are heavily affected
by small changes to the supporting heuristic. However, the pure
greedy approach achieves good result for all the designs. Further, the
evaluation showed that the technique is most effective if the designs
follow a clear naming conventions for the port names.

The best average results are computed by the combination of the
name matching heuristic and the extended name matching heuristic
both using the Levenshtein-distance together with the pure greedy
connection strategy. This combination yields better results than
Emacs Verilog-Mode in seven of eight design. This includes a
design which is optimized towards Emacs Verilog-Mode. Further,
for a design which Emacs Verilog-Mode is not able to create any
connection our approach is able to create a perfect set of connections.

REFERENCES

[1] W. Snyder, “Verilog-mode: Reducing the veri-tedium,” in Synopsys Users
Group Conference, San Jose, 2001.

[2] “MKTREE,” accesss date: 12.09.2013. [Online]. Available: http:
//www.angelfire.com/biz/mktree/

[3] C. Neely, G. Brebner, and W. Shang, “ShapeUp: A High-Level Design
Approach to Simplify Module Interconnection on FPGAs,” in IEEE
Annual International Symposium on Field-Programmable Custom Com-
puting Machines, 2010, pp. 141–148.

[4] W. E. Winkler, “String comparator metrics and enhanced decision rules in
the fellegi-sunter model of record linkage.” in Survey Research Methods
Section, American Statistical Association, 1990, pp. 354–359.

[5] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals,” in Soviet physics doklady, vol. 10, 1966, pp. 707–710.


