
Documentation Driven Software Development for
Embedded Systems

Beate Muranko Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
Email: {bmuranko, drechsle}@informatik.uni-bremen.de

Abstract
The system architecture of embedded systems includes both, i.e. software and hardware
components. Embedded systems are integrated in e.g. dvd-players, television sets, telephones, cars,
airplanes, etc. They are a part of our everyday life. Embedded systems are developed using
traditional software and hardware development models, which often leads to a deficiency in
documentation, since this is not explicitly addressed in these models. However, the complexity of
such systems and the fact that their components are often reused good documentation is not an
option, it is a necessity.

In this paper we present an approach regarding the integration of the documentation workflow into
a software development process, i.e. the V-model. This model is studied, since it also includes
validation and verification aspects. By this, we provide an integrated development model that
ensures high quality of the software development process for embedded systems.

1. Introduction

Embedded systems (system-on-a-chip) are used in nearly all technical systems e.g.
dvd-player, televisions, telephones, cars, airplanes etc. Already in the year 1996 it
was ascertained that an American person mingle with approximately 60
microprocessors in one day [1]. It is obvious that embedded systems play an
important role in our everyday life. This type of systems can be characterized by
containing software as well as hardware components. The design of such systems
presents an enormous challenge, because

• modern circuits already consist of several hundred million transistors and

• in accordance to Moore's Law grow.
With the hardware also the software complexity grows. In the meantime – due to
intensive use of caches and memory – the effort for software development for
embedded systems is at least in the same range as for hardware. E.g. in [2] it is

reported that “software can account for 80% of the embedded-systems development
cost”.

To keep these costs under control, it is important to make use of software
development models. Several models have been proposed for “pure” software
development. But in the context of embedded systems the focus is different. In
embedded systems, which are often applied in safety critical applications, software
bugs might cause serious harm. Consider e.g. the fatal consequences in areas like
airbag design, brake-by-wire, etc. In order to guarantee the correct functionality in
embedded systems and to prevent errors validation and verification are very
important processes. But, “software is intrinsically harder to verify – it has more
complex, dynamic data and an enormous state space” [2]. Furthermore, due to the
complexity, reuse of components is very important. For such reusable parts a good
thorough documentation is mandatory.

In summary, although verification, validation and technical documentation are very
important for embedded systems, no software development model including all these
aspects has been proposed so far. This is why, particularly for complex systems,
finding a new development process is necessary, one that fully includes validation,
verification and an elaborate documentation workflow.

Recently, in [3] the status quo of present technical documentation in soft- and
hardware development models has been analyzed. The study delivered as a result that
the importance of technical documentation has increased significantly over years but
it is treated insufficiently. With the integration of the documentation workflow into
the Waterfall model a possible approach was presented in [3]. Even though the
Waterfall model is well known and easy to understand, it is not considered state-of-
the-art in software development, since aspects of validation and verification are not
integrated. Especially for the application domains discussed above this is mandatory.

On the other hand, there exist modern software development models, like e.g. the V-
model [4] (see Figure 1) that also take validation and verification into account. But in
this case, the aspect of technical documentation is not discussed.

In this paper we study the V-model which we analyze with respect to an integration
of technical documentation. The result of this paper shows our approach for such a
software development model for embedded systems.

System
Requirements

Component
Implementation

Test Cases

Application Scenarios

Test Cases

Test Cases

Acceptance
Test

High Level
Design

ModuleTest

Integration
Test

SystemTest

Validation

Verification

Low Level
Design

Fig. 1: V-model

The paper is structured as follows: Section 2 reviews previous work. To make the
paper self-contained, we also provide a brief introduction to technical documentation
and discuss the relevant aspects of the V-model. In Section 3 a workflow of a
documentation process is presented. Section 4 describes the approach for the
integration of the documentation workflow into the V-model. Finally, a summary of
the results is given and future work is discussed.

2. Related Work and Preliminaries

Recently, in [3] technical documentation has been discussed in the context of
embedded systems. In the following we summarize the key aspects presented there:
Documentation is composed of technical documentation (all necessary information
which are important for the product and its use), internal documentation (all
information and instructions which are essential for internal usage), and external
documentation (all instructions and user information about the product which are
delivered to the customer). Beyond this, there is a further subdivision in
documentation areas. The areas are: project documentation, development
documentation, product documentation and user documentation. Only the technical
documentation differs; it lacks the project documentation. This short framework
provides an understanding of the term technical documentation.

Furthermore an analysis of the integration of technical documentation into currently
established soft- and hardware development models in [3] showed that
documentation is treated insufficiently and superficially. As a first step the
integration of a documentation flow into the Waterfall model was discussed and
presented. But the Waterfall model does not include a verification phase, which is
very important for the development of embedded systems (see Section 1).

Requirement Analysis

Maintenance

Planning

Design

Fig. 2: Documentation workflow

Therefore in our approach we evaluate an integration of the documentation flow in
the context of the V-model, where validation and verification is explicitly included.

For completeness, in the following the V-model is briefly discussed (for more details
see [4]): The V-model includes aspects of quality assurance. In detail, it includes
validation and verification concepts. The term verification means checking the
implementation of the system against its specification. If they match, the system is
correct. In this context, validation means the testing for correctness of the system.
The system should cope in an adequate manner with the issue it was intended to
solve.

3. Documentation Workflow

In this section we give a brief overview of the documentation workflow which is
derived from practical experience [5], [6], [7] (see Figure 2). It is structured into four
phases which are described below:

• Requirement Analysis
Here, the system requirements have to be analyzed. In order to decide the level
of detail for the instruction material the target group (e.g. beginner or expert)
has to be determined. On the basis of the target group the technical depth of the
documentation is determined. In this phase, the authors of the documentation
familiarize themselves with the product. Furthermore the resulting draft has to
be coordinated with all persons or departments involved and it has to be
subsequently approved. This way, misunderstandings are eliminated early on.

• Planning
The planning phase is supposed to yield a structured version of the draft from
the previous phase. The responsibilities are divided among the documentation
team: the layout, the level of detail and the rough structure are specified.
Additionally the product is checked for compliance with the specific legal
standards. This is also the phase where the rest of the documentation workflow
is planned.

• Design
In this phase the actual documentation is compiled in three consecutive
versions: the alpha, the beta and the final version. These versions are created
concurrent to the corresponding implementation phase. Any revisions by the
staff members are transferred to the next version.

• Maintenance
Once the documentation is in use, insufficient or incorrect information is
reported which must then be revised. The care and update of the documentation
must be done on a continuous basis.

In the following we study how this documentation flow can be integrated in the
software development model.

4. Integrated Approach

In order to integrate documentation into the development model we first compare the
documentation workflow presented in the previous section with the V-model. Then
the V-model is extended by establishing connections between the respective
documentation phases (see Figure 3). This shows explicitly where documentation
needs to be integrated into the V-model.

On the left hand side of Figure 3 the documentation workflow is illustrated. It has
been extended by feedback connections between its phases. Thus, connections allow
that interaction can take place. Each individual phase is connected by dashed arrows
with its predecessor. An example for such a feedback action is to go back from
“Design phase” to “Planning phase”.

System
Requirements

Component
Implementation

Test Cases

Application Scenarios

Test Cases

Test Cases

AcceptanceTest

High Level Design

ModuleTest

IntegrationTest

SystemTest

Validation
Verification

Low Level Design

Requirement Analysis

Maintenance

Planning

Design

Fig. 3: Initial model

• System Requirement
In the system requirement phase the system is specified and application
scenarios for the final acceptance test are developed. It is important to record
documentation requirements at the same time one decides on the specification
of the system. At this point it is also necessary to establish the target group of
the manual, thereby also determining the level of detail for the technical
descriptions. Furthermore, at this stage the publishing venues for the
documentation are also defined (print, web, etc.).

• High Level Design and Low Level Design
The phases “High Level Design” and “Low Level Design” deal with an
architectural view of the system. Here, the specification of subsystems is
accomplished and the corresponding system architecture is constructed.
Testing is also culminating in a final system test at the end of the phase.

In this phase it is imperative that documenting is even more tightly coordinated
with the actual implementation, since the individual documentation versions
(Alpha-, Beta- and Final Version) need to match the corresponding stages of
the product as perfectly as possible. This way updates in the level design can
be incorporated directly into the documentation, thereby correctly reflecting the
status quo.

• Component Implementation
In the Component Implementation phase the individual components are
specified, implemented and tested (Module Test). If changes take place in this
phase, they also should be transferred directly in the documentation. Especially

System
Requirements

Component
Implementation

Application Scenarios AcceptanceTest

High Level Design

ModuleTest

IntegrationTest

SystemTest

Validation
Verification

Low Level Design

Requirement
Analysis

AlphaVersion

Beta Version

FinalVersion

Planning

Maintenance

Fig. 4: Merged model

in this phase it is more important than ever that the documentation reflects precisely
the state of the product.

Figure 4 displays the merged result as a new model. Obviously not all phases of the
resulting compound model contain documentation. Figure 5 displays only those
phases which contain documentation, validation and verification.

High Level Design and Low Level Design both deal with design and are therefore
merged into a single phase which we label Design (see Figure 6).

Integrating the documentation demands for an extension of the development model
by a phase which otherwise would not have been considered. The operation phase is
not part of the actual development process. Therefore we add this to the model (see
Figure 7). We include the important maintenance phase of documentation design into
the model. This extension complicates the model. It also emphasizes the fact that the

Requirement Analysis

Maintenance

Planning

Design

System Requirements

Component Implementation

High Level Design

Low Level Design

Fig. 5: Universal model

Requirement Analysis

Maintenance

Planning

Design

System Requirements

Design

Component Implementation

Fig. 6: Universal model with single design phase

Requirement Analysis

Maintenance

Planning

Design

System Requirements

Operation

Design

Component Implementation

Fig. 7: Universal model with additional operation phase

developers' involvement with a product does not end with its release into the market
but rather continues for the whole of its life cycle.

In a direct comparison of the universal model (see Figure 7) to the universal model of
the Waterfall model in [3] a significant similarity is identifiable. Consequently both
models have identical documentation development workflows. But as a major
advantage in contrast to the Waterfall model, the software development model
considered in our approach also includes validation and verification phases.

5. Conclusion

In this paper we have presented a framework for including technical documentation
in a software development model. This framework ranged from a documentation
workflow which is derived from practical experience to the V-model. Both
workflows/models are particularly useful for embedded systems with their high
demands for reusability of components and quality ensured by validation and
verification approaches. A complete integration of the documentation into the V-
model has been presented. It is focus of current work to discuss the concepts
developed in this paper in the context of the newly developed V-model XT [8].

References

[1] P. Marwedel, Embedded System Design. Kluwer, 2003.
[2] The International Technology Roadmap for Semiconductors, Edition design.
 http://www.itrs.net/Links/2005ITRS/Design2005.pdf, 2005.
[3] B. Muranko and R. Drechsler, Technical Documentation of Software and

Hardware in Embedded Systems. IFIP VLSI-SOC, 2006, page 261-266.
[4] IABG Information Technology, V-Model: Lifecycle Process Model. www.v-

modell.iabg.de/kurzb/vm/k_vm_e.doc, 1993.
[5] T. Barker, Writing Software Documentation: A Task-Oriented Approach.

Longman, 2003.
[6] A. Sikora and R. Drechsler, Software-Engineering und Hardware-Design: Eine

systematische Einführung. Hanser, 2002.
[7] J. Price and H. Korman, How to Communicate Technical Information: A

Handbook of Software and Hardware Documentation. Addison-Wesley, 1993.
[8] Bundesrepublik Deutschland, V-Model XT: Part 1: Fundamentals of the V-

Modell. http://v-modell.iabg.de/index.php?option=com_docman&task=doc_
download&gid=32, 2004.

