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Abstract—Due to ever increasing design sizes more

efficient tools for Automatic Test Pattern Generation

(ATPG) are needed. Recently ATPG based on Boolean

satisfiability (SAT) has been shown to be a beneficial

complement to traditional ATPG techniques.

This paper makes two contributions. Firstly, we ana-

lyze the two steps SAT-based ATPG consists of with

respect to their run time on industrial benchmarks.

Secondly, exploiting these analysis results, we propose

an incremental solving technique with the objective to

speed up the entire classification process. An exper-

imental evaluation of the proposed method shows a

significant reduction of the overall run time of the SAT-

based ATPG process.

I. Introduction

The complexity of industrial circuits increases rapidly.
The number of gates doubles every 18 months. As a result
the size of problem instances that have to be handled
by Computer Aided Design (CAD) tools also increases.
The post production test is one particular step in the
design flow. It ensures the functional correctness of a
circuit. To guarantee high quality production, this step
is very important. In practice this test is carried out by
applying input vectors – so called test patterns – to the
inputs and controlling the output response with respect
to its correctness. The test patterns are computed during
Automatic Test Pattern Generation (ATPG). ATPG tools
also have to cope with the increasing size of problem
instances.

In practice, usually a fault model is used to abstract
from the physical defects. To test the circuit for correctness
with respect to the fault model used, test patterns have to
be computed. If there exists a test pattern for a particular
fault F then F is called testable; otherwise F is called
untestable.

In this work, the Stuck-At Fault Model (SAFM) is

used. To generate a test pattern for a Stuck-at Fault

(SAF), there exist many sophisticated algorithms. The
D-algorithm [13] was the first algorithm that traversed
the search space by backtracking. Improvements concern-
ing decision strategies and propagation/justification were
given in PODEM [7] and FAN [6]. Further algorithms are
Socrates [14] and Hannibal [9]. All these algorithms have in
common that they directly work on the circuit structure.

In contrast there also exist approaches based on Boolean
satisfiability (SAT) [10], [15], [16]. These algorithms work
on a representation of the problem instance in Conjunctive

Normal Form (CNF). Since no efficient algorithms to
solve large SAT instances were available in the past, these
techniques were not applicable to large circuits. In the last
decade, however, many improvements have been made for
solving SAT [11], [12], [8], [5] and, so, the usage of SAT
solving for ATPG became applicable. Because classical
ATPG algorithms reach their limit, SAT-based ATPG is
getting more important. Nowadays, SAT-based ATPG is
a promising alternative to the classical algorithms (see
e.g. [18], [4]).

In this paper we give a detailed run time analysis of
state-of-the-art SAT-based ATPG algorithms. For large
industrial circuits it is shown that often the time for the
construction of the SAT instance dominates the overall run
time. Based on this “surprising result” (since the genera-
tion of the instance runs in linear time, while SAT solving
is NP-complete), we propose a technique to generate a par-
tial CNF. If this SAT instance is satisfiable, a test pattern
is derived. Otherwise, the SAT instance is enlarged and a
new CNF is generated. For the next run, information from
previous SAT computations can be reused. Experimental
results on large industrial circuits with more than 3 million
gates demonstrate the efficiency of the approach. By using
the proposed incremental technique speed-ups of up to a
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Fig. 1. Extraction of the influenced circuit parts

factor of eight can be observed.
This work is structured as follows: In the next section a

short overview on SAT-based ATPG is given. In Section III
the motivation is presented in more detail by an analysis
on industrial circuits. The incremental solving approach is
discussed in Section IV. Experimental results and conclu-
sions are given in Section V and Section VI, respectively.

II. Previous Work

To make the paper self-contained this section presents
a short overview on SAT-based ATPG. First a general
explanation is given. Afterwards the generation of a CNF
for a fault is illustrated.

A. SAT-based ATPG

To create a test pattern for a Stuck-At Fault (SAF), an
assignment to the inputs has to be found that guarantees
at least one different output value between the faulty
circuit and the faultless circuit. While classical algorithms
work directly on the circuit structure to find such an
assignment, in SAT-based ATPG the question whether
there exists a test pattern for a particular fault F is
encoded into a Boolean formula which is satisfiable if
and only if F is testable. Then, a SAT solver proves
either satisfiability or unsatisfiability of the formula. A test
pattern – if it exists – can be derived directly from the
satisfying assignments.

Modern SAT solvers work on instances represented as
CNFs. A CNF is a conjunction of clauses, a clause is
a disjunction of literals, and a literal is the positive or
negative occurrence of a Boolean variable. A SAT instance
is satisfied if all clauses are satisfied; a clause is satisfied
if at least one of its literals is satisfied; a positive and
a negative literal is satisfied if the respective variable is
assigned positively and negatively, respectively.

B. Circuit to CNF Conversion

In this section further insight on the generation of a SAT
instance is given.

Consider the circuit in Figure 1. After the fault location
is marked, the fault site’s output cone is traversed by a
depth first search. This determines all Primary Outputs

(POs) that may be influenced by the fault, i.e. all POs
where a difference between the faulty circuit and the
faultless circuit could be observed. The transitive fan-in of
these POs influences the detection of the fault and must be
marked, too. To generate the SAT instance for the given
fault, only this part of the circuit has to be considered.

As introduced in [15], two Boolean variables Gg and
Gf are assigned to each gate to represent the faultless
circuit and the faulty circuit, respectively. Both circuits
are generated by building the characteristic function for
each gate. To find a difference between both circuits,
additionally a Boolean variable GD is assigned to each
gate. If the variable GD is true, the gate’s value in both
circuits differ, i.e. the constraint GD = 1 → Gg 6= Gf is
added to the CNF.

To compute a test pattern for a fault, a path has to
be found from the fault site to an output where each
variable GD is true. Following the notation in [15], this
path is called a D-chain. Therefore, if a gate is on a D-
chain, one successor must be on a D-chain as well. This
constraint is also added to the SAT instance and, hence,
the SAT instance is satisfiable if and only if a D-chain
exists, i.e. the SAT instance is satisfiable if and only if the
fault is testable.

III. Run Time Analysis

As mentioned in the previous section, SAT-based ATPG
consists of two steps: building a SAT instance and solving
it. In this section we give a detailed analysis of both steps.

For our analysis SAT-based ATPG was applied to sev-
eral industrial circuits provided by NXP Semiconductors
Germany GmbH. Figure 2 gives an overview on the needed
run times for each SAT instance, i.e. each entry denotes
one run for a dedicated fault. In the diagram separate
run times (in CPU milliseconds) for generating the SAT
instance and solving the SAT instance are given on the
abscissa and on the ordinate, respectively. Moreover the
entries are distinguished between their classification result,
where ‘+’ denotes a testable fault and ‘×’ denotes an
untestable fault.

Two general observations can be made:



Fig. 2. Run time comparison for individual target

1) On many instances the generation time exceeds the
solving time.

2) The solving time of testable instances exceeds the
solving time of untestable instances significantly.

These “surprising” observations are discussed in the fol-
lowing.

A. Observation 1

From the theoretical point of view, the instance gener-
ation is only an algorithm on a Directed Acyclic Graph

(DAG), i.e. its run time is linear with respect to the
number of gates. Solving the SAT instance, however, is
NP-complete [1]. Therefore it can be expected that the
run time for solving an instance is significantly larger than
generating it.

The observations made in Figure 2 can be explained as
follows: Since the handled circuits are very large, the DAG
algorithms are very expensive (e.g. with respect to main

memory access1). Hence the instance generation is very
costly.

Solving the SAT instance, however, is often “easy” be-
cause of its regular structure, i.e. there are many implica-
tions possible that accelerate the search (see also [11], [12],
[8], [5]). Additionally, most CNFs are quite small, since the
considered part of the circuit (cf. Figure 1) is also quite
small. Moreover the data structures used in state-of-the-
art SAT solvers are very efficient. For instance, they are
tuned to reduce main memory access, so that they are able
to handle even huge instances.

B. Observation 2

To compute a test pattern, it is sufficient to find only
one D-chain. To prove untestability, however, it has to be
shown that no D-chain exists at all, i.e. there is no path
from the fault site to any output where a difference can be
observed. It could be expected, that finding a test pattern
is much easier than proving untestability.

When a SAT instance gets satisfied – i.e. a path from
the fault location to an output is found that shows a
difference between the faulty circuit and the faultless
circuit – a SAT solver could stop solving. Each unassigned
variable should become a don’t care. Modern SAT solvers
like MiniSat [5], however, prove satisfiability another way:
Instead of checking every clause for satisfiability after each
assignment, these solvers only check for conflicts. If each
variable is assigned and no conflict occurred, the instance
is satisfiable. Hence, after having found a D-chain, i.e. the
fault is testable, each variable of the entire influenced
circuit part has to be assigned without conflicts. Often,
this is a very time consuming step.

If the fault, on the other hand, is untestable, often
the conflict occurs quite fast. Due to the D-variables
used to encode the difference between the good circuit
and the faulty circuit, conflicts during propagation and
justification of the fault effect occur early and often close
to the fault site.

IV. Incremental Instance Generation

In this section, based on the observations made above,
we propose an incremental solving technique to accelerate
both steps instance generation and solving.

1These main memory accesses are one reason why classical ATPG

algorithms – that work directly on the circuit structure – reach their

limits.
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A. Overview

Based on Observation 1, to speed up SAT-based ATPG
it is insufficient to improve only the solving process.
Therefore we propose a method that accelerates instance
generation as well.

In our proposed methodology only a small portion of the
circuit is converted into a CNF, i.e. only a partial SAT
instance is generated. Therefore the instance generation
time is reduced. Since generally satisfiability can be proven
much faster on a smaller CNF (as be shown e.g. in [17])
the run time to classify testable faults can be reduced as
well.

The proposed method has one major drawback: It is nec-
essary to build the entire SAT instance to prove untesta-
bility. Therefore it cannot be expected to accelerate the
classification of untestable faults. Since each incremental
step creates some overhead (in form of additional variables
and clauses) it is even possible to slow down the classifi-
cation process if the number of incremental steps is too
large. However in a typical industrial circuit the number
of testable faults exceeds the number of untestable faults
significantly. Therefore it is likely that the improvements
thanks to incremental solving outweigh this drawback.
This will be shown by our experiments later.

Solving a problem incrementally is a known approach
in verification. For instance in [3] an incremental solving
technique for SAT-based equivalence checking is given.
Similar to our method the fan-in cones of the POs are
taken into account incrementally. However the incremental
approach is limited to the solving step; the SAT instance
is always generated completely.

Figure 3 illustrates our methodology. The initial CNF
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Fig. 4. Example circuit

only consists of clauses modeling the injection of the fault.
Afterwards the first PO’s fan-in cone is added and the
resulting SAT instance is solved by the SAT solver. If it is
satisfiable, the fault is tested. Otherwise no classification
can be given since the fault could be observed on some
other output. Therefore the initial CNF is augmented by
the second PO’s fan-in cone. This process is repeated until
no PO is left. Then the fault is untestable.

Example 1: Figure 4 shows a circuit with three primary
outputs (m,n, and o). A stuck-at fault is modeled on
signal j. Building the complete SAT instance as introduced
in Section II-B would result in a CNF for the entire circuit.
This CNF consists of 23 variables (15 variables for the
correct circuit, 4 variables for the faulty circuit, and 4 D-
chain variables).

Using our approach to build the circuit, however, results
in a much smaller CNF. The transitive fan-in of output
m consists of gates i and j and inputs a, b, c, and d. The
resulting CNF consists of only 11 variables (7 variables for
the correct circuit, 2 variables for the faulty circuit and 2
D-chain variables).

Since the fault is observable at output m, the SAT in-
stance is satisfiable. Therefore this smaller CNF with only
half of the variables needed to build up the SAT instance
for the entire circuit is sufficient to classify the fault.

B. Implementation Details

The approach discussed so far leaves the question open
in which order to chose the outputs. Furthermore, to
reduce the number of incremental steps, an option would
be to not consider one after the other, but to build groups
of outputs that are considered in parallel.



In the current implementation the POs are ordered with
respect to their distance to the fault location, i.e. short
paths are preferred. Moreover we use at most five incre-
mental steps: The initial instance is always built up with
only one fan-in cone. Each time a SAT instance has to be
extended one forth of the remaining outputs are added.

For choosing the “most promising” POs early also testa-
bility measures – as used in classical ATPG approaches [6]
– could be applied. However this has not been studied in
further detail here, but can be considered as future work.

V. Experimental Results

In this section experimental results are given. The ap-
proach described in Section IV was implemented proto-
typically into the ATPG tool of NXP Semiconductors
Germany GmbH. MiniSat [5] was used to solve the SAT
instances. All experiments were carried out on an Intel
Xeon System (3.4 GHz, 32 GByte, Linux).

In Figure 5 the run time analysis made in Section III
is repeated using the proposed method. It can be seen
that most of the testable faults (denoted by ‘+’) can be
classified with a significant speed-up on both instance
generation and solving. As predicted in Section IV the
proposed method has only small influence on untestable
faults (denoted by ‘×’).

Table I gives an overview on the overall run times using
traditional SAT-based ATPG as introduced in [4] and
the proposed method in column ‘SAT’ and column ‘Inc.
SAT’, respectively. The circuit’s name is shown in column
‘Circuit’. We considered two benchmark sets: the publicly
available ITC 99 benchmarks [2] and industrial circuits
provided by NXP Semiconductors Germany GmbH, Ham-
burg, Germany. The names of the NXP benchmarks indi-
cate the number of gates contained in a circuit, e.g. the
circuit p3852k consists of approximately 3.85 million gates.
In column ‘Targets’ and ‘Untest.’ the number of targets
and the number of untestable targets are given, respec-
tively. For each run the run time (columns ‘Time’) and
the number of aborts (columns ‘Ab.’) is shown. An abort
occurs after 7 MiniSat restarts.

It can be seen that using the proposed method results
in a significant speed-up of the entire classification process
of up to a factor of eight (circuit p141k). The number of
aborted fault can be reduced as well.

In Table II the average CNF sizes, i.e. the number of
variables (column ‘Variables’) and the number of clauses
(column ‘Clauses’), using traditional SAT-based ATPG
and using the proposed incremental approach are given.
In case of the proposed method the given numbers refer to

Fig. 5. Run time comparison for individual targets based on the

incremental approach

TABLE I

Run times for the ATPG process

SAT Inc. SAT

Circuit Targets Untest. Ab. Time Ab. Time

b17 76493 1958 0 2:51m 0 1:29m

b18 264043 2844 0 9:07m 0 4:12m

b20 45461 319 0 2:18m 0 0:46m

b21 46156 378 0 2:22m 0 0:49m

b22 67540 344 0 2:59m 0 0:57m

p44k 64105 2385 0 49:11m 0 15:18m

p77k 163310 9181 0 0:18m 0 0:12m

p80k 197834 124 0 6:30m 0 1:01m

p88k 147742 2640 0 2:19m 0 1:15m

p99k 162019 2141 2 1:35m 1 1:00m

p141k 267948 13815 1 3:02h 0 22:17m

p177k 268176 13840 0 2:35h 0 24:32m

p456k 740660 35396 194 39:03m 182 31:33m

p462k 673949 132249 11 1:09h 9 42:38m

p565k 1026851 28287 0 6:35m 0 5:42m

p1330k 1516144 44299 0 1:02h 0 54:22m

p2787k 2395388 651868 1628 14:55h 1433 12:37h

p3327k 4557842 109622 1833 48:38h 838 18:38h

p3852k 5507779 164988 1484 17:32h 604 8:25h



TABLE II

Average CNF sizes

SAT Inc. SAT

Circuit Variables Clauses Variables Clauses

b17 6,424 16,693 3,613 9,046

b18 6,134 15,667 3,262 7,918

b20 7,383 19,433 2,854 7,028

b21 7,452 19,627 2,906 7,160

b22 7,420 19,533 2,667 6,511

p44k 29,819 72,767 21,011 49,269

p77k 544 1,374 378 934

p80k 4,312 9,930 1,369 2,848

p88k 2,366 5,570 1,244 2,744

p99k 2,589 5,955 1,367 2,992

p141k 33,521 95,672 18,782 53,249

p177k 37,775 109,659 21,386 61,807

p456k 6,727 18,611 5,772 16,257

p462k 4,365 12,530 3,790 10,779

p565k 1,681 4,316 1,326 3,445

p1330k 16,704 52,338 15,510 48,871

p2787k 16,911 56,483 16,679 56,609

p3327k 34,377 75,002 27,929 59,981

p3852k 20,622 47,205 14,557 33,253

the SAT instance size after the fault has been classified. In
both approaches only the clauses added during the circuit
to CNF conversion (cf. Section II-B) are given, i.e. no
conflict clauses are considered.

It can be seen that using the proposed method results
in smaller average CNF sizes than using the traditional
approach. In one case (circuit p2787k) the number of
clauses increases slightly. This can be explained with the
unusual high number of untestable faults. On all other
benchmarks significant reductions can be observed.

VI. Conclusion and Future Work

The contribution of this paper is a detailed analysis of
state-of-the-art SAT-based ATPG algorithms with respect
to their run time. It was shown that, firstly, instance
generation often needs more run time than solving the
instance and, secondly, it is often more complex to prove
testability than proving untestability. Based on these
observations we proposed an incremental SAT instance
generation technique. The experimental results confirm
that the overall run time of the ATPG computation can
be significantly reduced using the new technique.

It is focus of future work to develop more sophisticated
heuristics to determine an order in which to add the POs’
fan-in cones incrementally.
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