
GAME-HDL: Implementation of Evolutionary
Algorithms using Hardware Description Languages

Rolf Drechsler Nicole Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
Email: drechsle@informatik.uni-bremen.de

Abstract. Evolutionary Algorithms (EAs) have been proposed as a very
powerful heuristic optimization technique to solve complex problems.
Many case studies have shown that they work very efficient on a large
set of problems, but in general the high qualities can only be obtained
by high run time costs. In the past several approaches based on parallel
implementations have been studied to speed up EAs. In this paper we
present a technique for the implementation of EAs in hardware based
on a the concept of reusable modules. These modules are described in a
Hardware Description Language (HDL). The resulting “hardware EA”
can be directly synthesized and mapped to Application Specific
Integrated Circuits (ASICs) or Field Programmable Gate Arrays
(FPGAs). This approach finds direct application in signal processing,
where hardware implementations are often needed to meet the run time
requirements of a real-time system. In our prototype implementation we
used VHDL and synthesized an EA for solving the OneMax problem.
Simulation results show the feasibility of the approach. Due to the use
of a standard HDL, the components can be reused in the form of a
library.

Keywords: evolutionary algorithm, hardware description language,
VHDL, hardware realization, implementation, reuse

1. Introduction

In the last 10 years evolutionary techniques have been very successful to a large set of
problems in very different domains, like e.g. circuit design [1,2,3,4]. Typically, the
results obtained by Evolutionary Algorithms (EAs) can be characterized as being of
very high quality, but the run time needed to compute the solutions is high compared
to other optimization techniques, like hill climbing or gradient descendent. This is
mainly due to the simulation-based approach that is used in EAs. Most of the
computation time on complex problems is usually consumed by evaluation of the
fitness function. The time needed for the overall algorithm, the selection and the
application of the evolutionary operators are negligible.

To reduce the run time, in the past mainly two solutions have been proposed. The
first one is based on parallel implementations [5]. Since there is usually no close
interaction needed between the different elements of a population, the complete
problem can easily be distributed over several hardware platforms. Many promising
applications have been reported. A speed-up of close to linear (and in some cases
even super-linear) can be achieved. But still the fitness functions are evaluated in
software.

A very promising alternative is to implement the EA directly in hardware [6].
Hardware implementations are often several orders of magnitude faster than an
equivalent software realization. The main drawback of this approach is the missing
flexibility and the difficulty of the implementation, since this requires detailed
knowledge about hardware development. To meet today’s requirements to allow for
fast prototyping more robust structures are needed that allow an inexpensive
development while keeping the advantages of the underlying methods. Especially in
the field of signal processing the demands regarding execution speed can often only
be met by hardware implementations.

In this paper we present a dynamic hardware concept based on the use of
standardized Hardware Description Languages (HDLs). All EA components, like the
population (including the initialization), the selection mechanism and the fitness
evaluation, are directly implemented as hardware modules that can be synthesized on
a target technology. This can be an ASIC or an FPGA. For our implementation we
used VHDL [7,8], since it is widely used and a large set of commercial tools exist.
The VHDL code describes the different components in a structured way that allows
for an easy reuse. This becomes the key of today’s successful hardware projects, since
without a concise reuse-methodology the complexity cannot be handled [9,10]. The
overall structure of the system is closely related to the concept in [11], where GAME
(=Genetic Algorithm Managing Environment) has been developed. Since the same
modular structure can be found in the hardware counterpart, the library of modules is
denoted as GAME-HDL. As a first case study we tested the components on OneMax
problem, i.e. maximizing the number of ones in a bit-string. An experimental study
including simulation results is given to show the flow of the hardware
implementation.

2. Preliminaries

In this section we briefly review the notation and definitions used to make the
paper self-contained. First, the concept of EAs is described (see also [1]) and the
components used later are given. Then, an introduction to VHDL – the HDL used
throughout the paper – is provided.

2.1. Evolutionary Algorithms

We assume that the reader is familiar with the concepts of simulated evolution for
computer optimization problems. Since the late 70s, several concepts using simulated
evolution have been proposed. Among them are e.g. Genetic Algorithms (GAs) [12],

Evolution Strategy (ES) [13,14] and Genetic Programming (GP) [15]. The different
concepts mainly differ in the form of representation of the individuals in a population
and in the operators applied, while the overall algorithmic flow is very similar. In the
following, we do not distinguish between these “pure'” concepts and use the term
Evolutionary Algorithm as the union of all these techniques.

We do not discuss the components of EAs, i.e. representation, objective function,
selection method, initialization of population, and evolutionary operators. (For more
details see e.g. [16].) Based on these components the overall structure and information
flow of a “classical” EA works as follows:

• Initially a random population is generated.
• The evolutionary operators reproduction, crossover, and mutation are applied

to some elements. The elements are chosen according to the selection method.
• The algorithm stops if a termination criterion is fulfilled, e.g. if no

improvement is obtained for a given number of iterations.

The EA depends on several parameter settings, e.g. population size, reproduction

probability, crossover probability, and mutation probability. A sketch of a “classical”
EA is given below.

evolutionary_algorithm (problem instance):
 initialize_population ;
 calculate_fitness ;
 do
 apply_operators_with_corresponding_probabilities ;
 calculate_fitness ;
 update_population ;
 while (not terminal case) ;
 return best_element ;

2.2 Hardware Description Languages

HDLs are programming languages comparable to languages used in the software
domain, like C++ or JAVA, but the compilation process generates a chip instead of an
executable program. For this, HDLs contain – in addition to constructs to describe the
logic behavior, like if-then-else and loops – also commands to specify implementation
specific properties, like timing. The need for standardized HDLs comes from several
different aspects. Some of the most important ones are:

• The ever increasing design complexity of today’s designs can only be handled

by structured languages, since the circuits consist of up to several million
transistors and are described by several thousand lines of code.

• Components developed once can be reused several times. In ASIC projects
often more than 90% of the modules are reused.

• In design flows several tools have to interact, like the synthesis and simulation
tools. The code in the HDL is used as an exchange format.

• The circuits can be developed independent of technology or tool provider.

Typical HDLs used in practice today are VHDL and Verilog. Recently, also

languages have been proposed that are closer to software descriptions, since this often
allows to describe hardware and software components in the same environment and
enables a late decision which parts become software and which are realized by
hardware (hardware-software-co-design).

For our implementation we used VHDL, since it is the most common language on
the European market. Furthermore, several commercial tools are available. Within
this article, a complete introduction to VHDL cannot be provided. Instead, a short
example is given that explains the main components.

For each module the interface has to be declared. This is done using an ENTITY. It

declares the input and output signals of each module and their types.

ENTITY AND_OR IS
PORT (x1, x2, x3 : IN BIT;
 f : OUT BIT) ;
END AND_OR ;

The functional behaviour is described by the ARCHITECTURE, that has to be

provided for each ENTITY.

ARCHITECTURE function OF AND_OR IS
BEGIN
 f <= x1 AND (x2 OR x3) ;
END function ;

In our example, the module has three inputs and one output. The output f is

computed by Boolean operators. Of course, modern HDLs also provide more complex
operations and data types, like e.g. addition and multiplication of bit-vectors. For each
ENTITY at least one ARCHITECTURE has to exist. If there are several, e.g. some
components may be optimised for area while others are better regarding delay, an
assignment has to be done using a CONFIGURATION command. Further features are:

• To simplify reuse, corresponding to libraries in other programming languages,

frequently used data types and modules can be grouped to build a PACKAGE.
• VHDL furthermore supports different description methods, i.e. structural,

behaviour and data flow.
• Signal delays can be modelled.
• Availability of complex data types, like integer, real, or array.
• Structured algorithms can be described by procedures and functions.

For more details on VHDL see e.g. [7,8].

3. EA Implementation in VHDL

For all EA components described in Section 2.1, a VHDL module has been
developed. First, the overall structure is outlined. Due to page limitation, a complete
description of all modules cannot be given. Instead, we briefly discuss the main
features of each element and then show one module, i.e. the realization of the module
fitness, in detail. This is justified by the fact that often the fitness evaluation is the
most complex operation in EAs regarding execution time. Finally, the components of
the package that in sum build the library GAME-HDL are introduced.

The overall flow of the hardware realization of the EA is as follows:

The only external inputs are the clock signal clk and the reset signal rst. The

clock is needed, since we consider a synchronous digital design. The reset is used for
the initialization of the elements. Of course, it is easy to extend the library to also
allow external elements to be added to the population during the initialization, i.e. to
use hybrid EAs, where problem specific information can be added to the EA concept.
For simplicity, in this application we restrict ourselves to randomly generated
elements. The circuit outputs are the best fitness value (best_fitness), the fitness
values of all elements in the population (fit_sigs) and the optimized elements
(elms_out).

As originally proposed for GAs, we make use of a binary encoding, since there is a
one-to-one correspondence to the digital hardware platform. For problems originally
not defined over a binary alphabet, the standard encoding techniques known from
GAs can be applied.

For the evolutionary operators, crossover and mutation are defined in a classical
way on binary strings. A hardware implementation is very easy, since VHDL allows

data types such as arrays and control structures as e.g. for-loops. Thus, only a
traversal of the strings is needed which can be carried out in linear time.

In our implementation we make use of tournament selection. Here the underlying
principle is so simple that a transfer in a HDL is straightforward if the fitness value is
available.

In this article it is not possible to describe the full implementation of the EA.

Instead, the module for the fitness computation is shown below. (For the reader not
very familiar with VHDL this also gives an impression of the code structure.)

First, standard libraries are included:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_arith.all ;
USE ieee.std_logic_signed.all ;
LIBRARY WORK ;
USE WORK.function_pack.all ;

Then, the entity is specified:

ENTITY fitness IS

PORT(clk : IN BIT ; -- clock signal
 rst : IN BIT ; -- reset signal

elements : IN pop ; -- population
 best_fitness : OUT INT_32 ;
 fit_sigs : OUT INT_32_VECTOR ;
 elms_out : OUT pop) ;
END fitness;

This gives the input/output behaviour of the module (see previous section and the
figure above).

The architecture describes the internal realization of the component. We used the

OneMax problem, i.e. in a bit-string the number of ones is maximized, and the
procedure below shows the computation of the fitness value for a given element.

ARCHITECTURE structure OF fitness IS

PROCEDURE calc_fitness (elements : pop ;
 best : OUT INT_32) IS
 VARIABLE counter : INT_32;
 VARIABLE max : INT_32;
BEGIN -- procedure for calculation of the best fitness
 max := 0 ;
 FOR i IN 0 TO element’right LOOP
 counter := 0 ;

 FOR c IN 0 TO elements(i)’right LOOP
 IF elements(i)(c) = '1' THEN
 counter := counter + 1;
 END IF ;
 END LOOP ;
 IF (max < counter) THEN
 max := counter ;
 END IF ;
 END LOOP ;
 best := max ;
END calc_fitness ;

SIGNAL best : INT_32 := 0 ;

BEGIN
PROCESS (clk) -- count bits with value 1 in

-- elements(i) and return all fitness
-- values and best fitness

 VARIABLE var_best : INT_32 ;
 VARIABLE counter : INT_32 ;
 BEGIN
 IF rst = '0' THEN -- initialize fitness values
 best_fitness <= 0 ;
 FOR i IN 0 TO elements’right LOOP
 fit_sigs(i) <= 0 ;
 END LOOP ;
 ELSIF(clk'EVENT AND clk = '1') THEN
 calc_fitness (elements, var_best) ;
 IF (best < var_best) THEN
 best <= var_best ;
 END IF ;
 FOR i IN 0 TO elements’right LOOP
 counter := 0 ;
 FOR c IN 0 TO element(i)’right LOOP
 IF elements(i)(c) = '1' THEN
 counter := counter + 1;
 END IF ;
 END LOOP ;
 fit_sigs(i) <= counter ;
 END LOOP ;
 best_fitness <= best;
 END IF ;
 END PROCESS;
END structure ;

The architecture of entity fitness consists of two main components, i.e. a
procedure that computes the fitness and a process that describes the overall flow.

3.1. GAME-HDL: Library of Modules

In an analogous way, components for all the other modules, like selection or
evolutionary operators, have been defined. They have been bound together in a
reusable library. In VHDL these libraries are generated using the PACKAGE
command. Following the ideas in [11], where a modular GA library GAME (=Genetic
Algorithm Managing Environment) has been developed, the resulting package is
called GAME-HDL, since the package considered here has the same underlying
philosophy, i.e. a modular development of an EA environment that is motivated by
the reuse of components.

4. Case Study: OneMax

The method described above has been implemented in VHDL using the tool
MAX+plus II from Altera Corporation under Windows. This system has been chosen
since it is available as public domain. Of course, the written code can be directly
transferred to other VHDL systems, since only code was written that respects the
VHDL standard.

In the following, some screenshots are given from the development environment

and from simulation runs. For the initial experiments we considered the OneMax
problem, that has been investigated in detail in the EA community. The goal is to
maximize the number of ones in a given bit string.

The desktop is shown above. A context -sensitive editor highlighting the keywords
of the language simplifies the development. The code can be compiled and simulated
in the same environment.

After the reset, the population has to be initialized. This is done by the module

init_pop where all memory elements that are originally set to “all 0” get their
values. The corresponding simulation run is shown below.

The results of a simulation run for the fitness module described in Section 3 is

given in the next figure:

As can be seen on the time scale on the top of the window, the execution times of

the fitness evaluation can be carried out within one clock cycle (40ns). This shows the
efficiency of the approach. Even better results can easily be obtained by switching to

a more efficient technology by exchanging the technology dependent components in
the library. Notice that no changes in the VHDL code are required. The signal
best_fitness gives the best fitness obtained so far. The fitness function is
evaluated with each rising clock edge (see above). The fitness value for
best_fitness is available one clock cycle later.

5. Conclusions

In this paper we presented a hardware implementation of Evolutionary Algorithms
based on Hardware Description Languages. A tool called GAME-HDL has been
implemented in VHDL, one of the most frequently used description languages.
GAME-HDL is a library of VHDL modules that can be easily integrated and reused
to design hardware-based EAs.

A case study for the OneMax problem has been demonstrated. Simulation runs
have been provided that gave an impression of the high execution speed of the
resulting circuits.

It is focus of current work to apply GAME-HDL to more complex optimization
problems and in this context also experiment with further evolutionary operators and
selection principles.

References

1. R. Drechsler, Evolutionary Algorithms for VLSI CAD, Kluwer Academic Publisher, 1998

2. P. Mazumder and E. Rudnick, Genetic Algorithms for VLSI Design, Layout & Test

Automation, Prentice Hall, 1998

3. M. Erba, R. Rossi, V. Liberali and A. Tettamanzi, An Evolutionary Approach to Automatic

Generation of VHDL Code for Low-Power Digital Filters, EuroGP, LNCS 2038, pp. 36-50,
2001

4. R. Drechsler and N. Drechsler, Evolutionary Algorithms for Embedded System Design,

Kluwer Academic Publisher, 2002

5. E. Cantu-Paz, Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic

Publisher, 2000

6. S. Koizumi, S. Wakabayashi, T. Koide, K. Fujiwara, N. Imura, A RISC Processor for High-

Speed Execution of Genetic Algorithms, GECCO, pp. 1338-1345, 2001

7. R. Lipsett, C.F. Schaefer and C. Ussery, VHDL: Hardware Description and Design, Kluwer

Academic Publishers, 1989

8. D. Perry, VHDL, McGraw Hill, 1998

9. M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-a-Chip Designs,
Kluwer Academic Publishers, 1999

10. H. Shibata and N. Fujii, Analog Circuit Synthesis Based on Reuse of Topological Features

of Prototype Circuits, GECCO, pp. 1205-1212, 2001

11. N. Göckel, R. Drechsler and B. Becker, GAME: A Software Environment for Using

Genetic Algorithms in Circuit Design, Applications of Computer Systems, 240-247, 1997

12. J.H. Holland, Adaption in Natural and Artificial Systems, The University of Michigan

Press, Ann Arbor, MI, 1975,

13. I. Rechenberg, Evolutionsstrategie, Frommann-Holzboog, 1973

14. T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University Press, 1996

15. J. Koza, Genetic Programming - On the Programming of Computers by means of Natural

Selection, MIT Press, 1992

16. L. Davis, Handbook of Genetic Algorithms, van Nostrand Reinhold, New York, 1991

