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Abstract 
 

Many formal verification techniques make use of 
Binary Decision Diagrams (BDDs). In most applications 
the choice of the variable ordering is crucial for the 
performance of the verification algorithm. Usually BDDs 
operate on the Boolean level, i.e. BDDs are a bit-level data 
structure. 

In this paper we present a method to speed-up BDD-
based verification of scalable designs that makes use of a 
learning process for word-level information. In a pre-
processing a scalable ordering is extracted from the RTL 
that is used as a static ordering for large designs. 
Experimental results show that significant improvements 
can be achieved.  

 
Introduction 

 
As modern circuits contain up to several million 

transistors, verification has become the major bottleneck in 
the design flow, i.e. up to 80% of the overall design costs 
are due to verification. This is one of the reasons why 
recently several formal verification methods have been 
developed since classical simulation cannot guarantee 
sufficient coverage of the design. E.g. in [1] it has been 
reported that for the verification of the Pentium IV more 
than 200 billion cycles have been simulated, but this only 
corresponds to 2 CPU minutes, if the chip is run at 1 GHz. 

As alternatives, formal verification or symbolic 
simulation have been proposed and in the meantime these 
have been successfully applied in many projects [5]. In this 
context many alternative techniques have been proposed 
that are used to speed up the proof process, such as SAT or 
BDDs. A lot of work has been done to combine these 
techniques resulting in very efficient solvers (see e.g. [7]). 
Even though these techniques are very powerful they all 
operate on the Boolean level, i.e. high-level information 
that is available on the initial RTL description is not used. 
This also applies in cases where very regular structures are 
verified, such as adders, multipliers or scalable designs. 
Many difficulties in the proof process result from the fact 
that this information is not used. In contrast, the frontends 
that read in the RTL – typically given as Verilog or VHDL 
– transform the design to a flat netlist that only consists of 
AND-gates and inverters. This has shown several 
advantages for verification tools, but all structural 
information gets lost. 

The major problem when using BDDs in the 
verification process is that a good variable ordering has to 
be determined. But this is an NP-complete problem and 
thus heuristics have to be applied. The most promising 
approaches regarding quality of the BDD are based on 
dynamic reordering of variables, like sifting [10]. Even 
though the resulting BDDs are small in size, the run times 
are prohibitive large, such that sifting is usually switched 
off during BDD construction. Alternatively, static variable 
ordering methods have been proposed that compute a BDD 
from the circuit topology (see e.g. [6]). But these 
approaches often fail to determine good results. All 
techniques proposed so far do not make use of high-level 
information or consider the scalability of the design. 

In this paper we present a new technique to speed up 
BDD-based formal verification of scalable designs. In a 
first step a small instance of the Device Under Verification 
(DUV) is generated and the corresponding BDD is build. 
This BDD is optimized based on dynamic variable 
reordering. Since the instance is small, this process runs 
very fast. Then the resulting optimized variable ordering is 
analyzed using a pattern matching approach. After this 
phase the ordering is scaled based on word-level 
information extracted from the signal names. This scaled 
ordering is then used as a static ordering for larger 
instances.  

Experimental results for verification of combinational 
and sequential circuits showed significant reductions, i.e. 
instances that took several hours before could be verified 
within a few seconds. 

The paper is structured as follows: First we introduce 
basic definitions. Then we give the main idea of the 
approach. In the following section our approach is 
discussed in detail. Next the experimental results are 
presented. Finally, the work is summarized. 
 

Preliminaries 
 

As is well-known a Boolean function BBf n →: can 

be represented by a Binary Decision Diagram (BDD) which 
is a directed acyclic graph where a Shannon decomposition  
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is carried out in each node. A BDD is called ordered if each 
variable is encountered at most once on each path from the 
root to a terminal node and if the variables are encountered 



in the same order on all such paths. A BDD is called 
reduced if it does not contain isomorphic sub-graphs nor 
does it have redundant nodes. Reduced and ordered BDDs 
are a canonical representation since for each Boolean 
function the BDD is uniquely specified [2]. In the 
following, we refer to reduced and ordered BDDs for 
brevity as BDDs. It is well known that BDDs are very 
sensitive to the chosen variable ordering, i.e. the size may 
vary from linear to exponential. 

 
Basic Idea 

 
Before the algorithm is described in detail, the 

underlying main idea and the resulting four steps of our 
technique are first illustrated by a simple example: 

Consider the n-bit adder with operands a and b, where 
a0 and b0 denote the least significant bit, respectively. It is 
known for adders that an interleaved order gives an optimal 
result, if the bits are ordered from the least to the most 
significant bit, i.e.: 

 
a0, b0, a1, b1, a2, b2, …, an-1, bn-1 

 
In this case the resulting BDD has linear size. But if 

the operands are separated, like  
 
a0, a1, a2, a3, …, an-1, b0, b1, …, bn-1, 
 

the resulting BDD has exponential size. 
 
The proposed technique works in four steps: 

 
1. Build the BDD for a small number of bits only. 
2. Perform an optimization based on dynamic    

reordering. 
3. Analyze the ordering and generalize it to an n-bit 

order. 
4. Build the BDD for the large number of bits based 

on a static ordering. 
 

In the example we start with the “worst case” 
ordering, i.e. for the adder this means that the two operands 
a and b are separated. If we start with a small number of 
bits, e.g. 10 bits, then sifting determines an interleaved 
ordering that is afterwards generalized and used as a static 
ordering for building a 32-bit adder. 

The benefit of this approach is obvious: Since the time 
consuming Step 2 of BDD minimization is only carried out 
on a small design with a small number of variables, the 
algorithm runs very fast and due to the regularity of the 
design the quality is very good as will be shown by 
experiments later.  

Even though the method is simple regarding the 
general approach, it has shown to be very effective. In the 
following we first describe the analysis phase in more detail 
and then discuss case studies of scalable designs. It is 
shown that speed-ups of several orders of magnitude can be 
achieved. 

 

Scaling BDD Ordering 
 
While the processing in Steps 1, 2 and 4 in the 

previous section are rather obvious, the crucial step in the 
approach is the analysis phase. Based on the ordering for 
the small example the ordering for the n-bit version is 
extrapolated. The approach would of course benefit from 
various runs, i.e. if several orders could be considered. This 
results from the fact that sifting is also a heuristic approach 
and by several runs robustness can be obtained. In the 
following only a single variable ordering is studied, since 
our experiments have shown that this is sufficient. But, it 
should be noticed that this might become necessary for 
more complex and more irregular designs.  

The resulting ordering is considered as a string of 
characters, where in each position the name of the 
corresponding input is given. In the example above this 
would correspond to e.g. a0 or b5. The text string is 
evaluated by determining the relative order of each entry. 
This is then matched against existing patterns. From our 
studies and assuming regularity in a scalable design, it 
turned out that it is sufficient to consider only four patterns: 

 
1. Increasing 
2. Decreasing 
3. Interleaved increasing 
4. Interleaved decreasing 
 
In the case of the adder above, this corresponds to: 
 
1. a0, a1, …, an-1, b0, b1, …, bn-1  
2. an-1, …, a1, a0, bn-1, …, b1, b0  
3. a0, b0, a1, b1, …, an-1, bn-1  
4. an-1, bn-1, …, a1, b1, a0, b0  

 
If blocks are more complex, i.e. they do not consider a 

single bit as in the case of the adder, the method has also to 
take this hierarchy into account. Notice that the approach 
not only works for combinational but also for sequential 
circuits. In this case also variables for the present states and 
next states are part of the BDDs but they can be treated in 
the same way. The next state variables are necessary for 
computing the transition relation of the sequential circuit. 

In the following the analysis phase is described in 
more detail.  

 
Analysis of Ordering 

Given a scalable design consisting of n blocks. Then 
the corresponding BDD ordering string is of the form “ai bi 
ci di …” where i is the number of a block and each character 
string corresponds to an input, a current state or a next state 
variable of a block. The current state and next state 
variables are used for representing the transition relation. 
The ordering analysis algorithm is split into two parts. The 
first part is used to identify increasing or decreasing 
patterns. The second part is applied to identify the 
interleaved increasing or decreasing patterns. 

A sketch of the analysis algorithm is given in Figure 1. 
The first part of the algorithm works as follows (for the 



integrated examples assume that the given ordering string 
os is “a0 a1 a2 a3 c0 c1 c2 b3 c3 b0 b1 b2”): 

 
1. First the number nv of different variable names 

and the different variable names are determined. 
(Example: nv is 3 and the variable names are a, c 
and b). 

2. Now the variables with the same names are 
collected and consecutive variables in the ordering 
string are enclosed by brackets. This results in     
nv strings. (Example: “[a0 a1 a2 a3]”, “[c0 c1 c2] c3” 
and “b3 [b0 b1 b2]”).  

3. For each string of Step 2 the longest consecutive 
string is considered and increasing or decreasing 
of indices is measured. This is realized by 
comparing the index i of a variable with the index 
j of each successor. If i < j then an increasing pair 
is found, if i > j the pair is decreasing. In order to 
obtain an overall score for increasing/decreasing 
of all longest consecutive strings, the number of 
all increasing/decreasing pairs is counted. 
(Example: increasing is 6+3+3=12 and  
decreasing is 0+0+0=0). 

4. Now by starting from the left side of the ordering 
string the run lengths of consecutive variable 
names are counted. From this result the maximum 
run length of each variable name is accumulated 
to maxf and a list relativeOrderList with the 
corresponding variable names is generated. 
(Example: 4·a, 3·c, 1·b, 1·c, 3·b,  maxf is 10 and 
relativeOrderList = a c b).  

5. Then the ratio maxf / (number of variables) is 
computed. This ratio indicates the probability of 
an increasing or decreasing pattern. (Example: 
ratio is 10/12 = 0.83).  

6. If (ratio ≥ 0.75) then the ordering string is an 
increasing or decreasing pattern. In this case the 
overall result of the first part of the analysis 
algorithm is increasing or decreasing depending 
on a comparison of increasing and decreasing 
from Step 3 and the relativeOrderList from Step 
4. (Example: increasing, because 12 > 0 and “a c 
b”, i.e. scaled ordering for n will be “a0 … an-1 c0 
… cn-1  b0 … bn-1”). 

 
Notice that the described first part of the analysis 

algorithm does not find a solution for interleaved 
increasing/decreasing orderings. So to identify this type of 
orderings the following pattern matching technique is 
applied (assuming ordering string os to be “a0 b0 c0 a1 c1 b1 
a2 b2 c2 a3 b3 c3”): 

 
1. First it is determined whether the total ordering is 

mostly increasing or mostly decreasing. This 
works by comparing the index of a variable with 
all the indices of its successor variables 
analogously to the third step of the first part of the 
analysis algorithm. (Example: mostly_increasing is 
9·3+6·3+3·3=54 and mostly_decreasing is 0).  

2. In the second step the ordering string is scanned 
from the beginning and for each block all variables 
are collected. During this scanning also all 
consecutive variables of the same block are 
enclosed by brackets. This results in n relative 
ordering strings roi each containing all variables of 
the corresponding block i. The goal of this step is 
to determine the relative order within each block. 
(Example: ro0=“[a0 b0 c0]”, ro1=“[a1 c1 b1]”, 
ro2=“[a2 b2 c2]”, ro3=“[a3 b3 c3]”). 

3. Then starting with the longest consecutive string of 
block 0, this string is matched against all other 
strings of the same length of the following blocks. 
This matching works only considering the names 
of variables, i.e. for example the string [a0 b0 c0] of 
length 3 from block 0 matches the string [a2 b2 c2] 
of block 2. The number of matches for every string 
is counted. This method is iterated for all 
consecutive strings down to length 2. As a result, 
every consecutive string obtains a score 
determined by string_length · matches. (Example: 
highest score is 6=3·2 of ro0). 

4. If the ordering string is not as regular as in the 
example the string sh with the highest score does 
not contain all variables of a block, i.e. sh is only a 
sub-string of some roi. So all roi which contain sh 
(only variable names are matched) are compared 
with all following roj analogously to Step 3. The 
most frequently matched roi represents the local 
ordering of a block and will be used as a result 
together with increasing or decreasing based on 
decision of Step 1. (Example: increasing and “a0 b0 
c0”, i.e. scaled ordering for n will be “a0 b0 c0 a1 b1 
c1 … an-1 bn-1 cn-1”). 

 
With the described analysis algorithm the ordering of 

a small instance can be analyzed and a generalization for 
larger designs can be computed.  

In the following experimental results show the 
efficiency of the approach. 
 

Experimental Results 
 
In this section experimental results are given. The 

proposed technique has been implemented in C++. All run 
times are given in CPU seconds on an Intel Pentium IV 
with 1,7 GHz and 512 MByte of main memory. As the 
BDD package we used CUDD [11]. The run times given for 
our approach always contain the times for the complete 
flow, i.e. including analysis and construction for small 
instances. For the experiments three scaleable designs have 
been considered: 
 

1. Adders  
2. Multipliers  
3. Arbiters 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 1. Sketch of ordering analysis algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
While the first two are combinational instances, the 

third class describes a sequential problem, i.e. the 
computation of reachable states. 

 The first two instances are very different in nature, 
since adders are known to be very easy to verify by BDDs, 
if a good variable ordering is chosen. But BDDs always 
blow up for multipliers. Our experiments will demonstrate 

that the approach has significant advantages in both cases: 
For adders the construction is sped up significantly for 
larger instances, while the method also has benefits for 
difficult instances, like multipliers. In this case the method 
gives up very fast, while classical approaches, like sifting, 
spend a lot of time on useless optimization runs. 

 

scale_ordering(ordering_string os) { 
// first part: identify increasing/decreasing 
nv = get number of different variable names (os); varNames = get variable names (os); 
equalVarNamesList = collect equal variable names and enclose consecutive variables (varNames, nv); 
increasing = decreasing = 0; 
for (each s in equalVarNamesList) { 
 ls = get longest enclosed string(s); 
 for (each variable vi in ls) { 
   for (each variable vj after vi in ls) { 
    if (i < j) increasing++;  
    if (i > j) decreasing++; 
       } 

} 
} 
runLengthList = count run lengths of consecutive variable names (os); 
maxf = accumulate maximum run length of each variable name (runLengthList); 
relativeOrderList = maximum frequently variables (runLengthList); 
ratio = maxf / (number of variables); 
if (ratio ≥ 0.75) { 
 if (increasing > decreasing) return (increasing, relativeOrderList); 
 else return (decreasing, relativeOrderList);  
} 
// second part: identify interleaved increasing/decreasing 
mostly_increasing = mostly_decreasing = 0; 
for (each variable vi in os) { 
 for (each variable wj after vi in os) { 
    if (i < j) mostly_increasing++;  
    if (i > j) mostly_decreasing++; 

     } 
} 
roList = collect variables belonging to the same block and enclose consecutive variables (os); 
roLengthList = get different lengths of consecutive variable strings (roList);  
for (decreasing length l in roLengthList) { 
 roSameLengthList = get all consecutive variable strings with length l (roList); 

for (each s in roSameLengthList) { 
  for (each t in roSameLengthList after s in roSameLengthList) { 
   if (s matches t) matches++; 
  } 
  score[s] = l · matches; 
 } 
} 
sh = get string with highest score (score); 
if (sh does not contain all variables of a block) { 
 roContainShList = get all roi where sh matches (roList); 

compare each s in roContainShList with all t in roContainShList after s; 
sh = most frequently matched string of comparison; 

} 
if (mostly_increasing > mostly_decreasing) return (interleaved increasing, sh); 
else return (interleaved decreasing, sh); 

} 



Adders 
The results for the adder circuits are given in Table 1. 

In the first column the number of bits to be added are given. 
Then for both approaches Memory and Time denote the 
memory in MByte used by the BDD manager and the run 
time in CPU seconds, respectively. A time limit for BDD 
construction of 2 CPU hours has been set. As can be seen, 
already for 20 variables, the new approach outperforms 
sifting. For 500 variables, the scaling technique is nearly a 
factor of 10 faster. 

 
Table 1. Results for adders 

Bits Sifting Scaling 
 Memory Time Memory Time 

10    4.62 0.01    4.64    0.09 
20    4.64 0.05    4.64    0.09 
30    4.66 0.08    4.64    0.10 
40    4.68 0.15    4.64    0.12 
50    4.71 0.26    4.64    0.13 
60    4.73 0.34    4.64    0.16 
70     4.75 0.48    4.67    0.19 
80    4.77 0.62    4.69    0.22 
90     4.79 0.90    4.71    0.25 

100     4.81 1.12    4.73    0.30 
200     5.02 7.64    4.97    1.54 
300     5.22 23.94    5.19    5.05 
400     5.43 55.99    5.43    10.05 
500     5.69 114.13    5.65    15.83 
600 - -    5.89    22.96 
700 - -    6.12    31.49 
800 - -    6.36    40.85 
900 - -    6.59    51.67 

1000 - -    6.82    64.46 
1100 - -    11.06    77.40 
1200 - -    11.28    92.41 
1300 - -    11.52    108.64 
1400 - -    11.74    126.10 
1500 - -    11.98    144.39 

 
Multipliers 

In a next series of experiments we consider multiplier 
circuits. It is well known that BDDs always become 
exponential in the number of variables independent of the 
chosen variable ordering [3]. For this, it is interesting to 
study the run time of the algorithms until they give up. We 
started with a live node limit of 2,000,000 BDD nodes. For 
up to 12-bit multipliers the BDDs can be constructed. For 
larger instances the construction failed (shown in italic). 
We report the memory consumption and the run time for 
sifting and our approach until 12-bit. Beyond 12-bit the 
memory and run time used until the construction failed is 
given. In case of sifting the values are not monotonically 
increasing because sifting is called dynamically by the 
BDD package. Since, in the final phase of our approach a 
static variable ordering is applied, the limit is reached very 
fast, as can be seen in Table 2. Compared to sifting a speed-
up of more than a factor of 20 can be observed for a 12-bit 
multiplier.  

Table 2. Results for multipliers 
Bits Sifting Scaling 

 Memory Time Memory Time 
5   4.55   0.04 5.44 0.87 
6   4.66   0.10 5.44 0.92 
7   4.78   0.26 5.44 1.03 
8   5.44   0.81   5.90 1.29 
9   6.33   6.47   8.82 1.96 

10   13.52   18.26   29.89 3.89 
11   30.26   101.69   57.48 11.08 
12   53.03   721.77   59.65 35.00 
13   68.17    1047.09  58.21 23.45 
14   76.59    1452.54  61.70 37.87 
15   73.31    1329.90  63.14 46.91 
16   65.25    808.06  62.89 46.44 
17   74.51    1362.95  60.03 54.56 
18   55.31    538.30  65.52 63.07 
19   70.77    1018.71  60.06 66.78 
20   55.81    604.59  60.40 73.02 

 
Arbiters 

As a sequential benchmark for our experiments we 
considered a scalable bus arbiter. This circuit is often used 
for experiments in formal verification (see e.g. [8,9]). In the 
upper part of Figure 2 a single arbiter cell is shown, 
whereas the composition to an n-cell arbiter is given in the 
lower part. 
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Figure 2. A scalable bus arbiter 

 
For the resulting circuit a computation of the 

reachable states is carried out. For the new approach the 
analysis phase was run on an example with 20 cells. The 
run times are negligible, since also sifting for these 



instances needs nearly no time. In the following we give the 
results for a complete reachability analysis using sifting and 
the scaling approach. The results are given in Table 3. In 
the first column the number of arbiter cells is given. The 
second column shows the overall number of BDD 
variables. Then as above for both approaches memory and 
time is given. 

As has been shown in [4] the reachability analysis can 
be performed up to n=11 bits with 512MB of memory, if 
the original variable ordering as it occurs in the benchmark 
description is used and sifting is disabled. With sifting this 
can be improved. But already for 300 cells more than 7200 
CPU seconds (corresponding to 2 CPU hours) are needed. 
The arbiter with 200 cells already takes more than 3000 
CPU seconds, while the scaling approach can handle this 
instance - including the pre-processing - within 5 seconds, 
i.e. a speed-up of more than a factor of 600. Using the new 

technique the complete reachability can be computed for up 
to 1500 arbiter cells in about 1000 CPU seconds.  

 
Conclusions 

 
A new approach for finding BDD orderings has been 

proposed. This technique works for scalable designs and 
makes use of high-level information. Experimental results 
have demonstrated the quality of the approach. In contrast 
to dynamic reordering improvements of several orders of 
magnitude have been observed.   

It is focus of current work to integrate the approach in 
an existing verification flow [5]. Here it is important that 
the ordering can be given to the tool without changing any 
of the internal structures, but in the form of a pre-
processing. 

 
Table 3. Results for scalable arbiter 
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Cells BDD Sifting Scaling 
 Variables Memory Time Memory Time 

100 500   13.37   195.93   8.05 1.18 
200 1000   39.91   3126.84   31.93 4.55 
300 1500 - -   37.75 12.79 
400 2000 - -   48.73 28.25 
500 2500 - -   47.29 49.45 
600 3000 - -   54.27 81.65 
700 3500 - -   57.32 122.31 
800 4000 - -   57.74 176.23 
900 4500 - -   61.63 238.55 

1000 5000 - -   66.10 320.48 
1100 5500 - -   67.02 412.10 
1200 6000 - -   72.92 540.57 
1300 6500 - -   79.79 670.39 
1400 7000 - -   87.47 822.19 
1500 7500 - -   100.23 1006.89 


