
Towards Formal Verification on the System Level
(Invited Talk)

Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
drechsle@informatik.uni-bremen.de

Abstract

Due to increasing design complexity and intensive reuse
of components, verifying the correctness of circuits and sys-
tems becomes a more and more important factor. In the
meantime, in many projects up to 80% of the overall design
costs are caused by verification and by this, checking the
correct behavior becomes the dominating factor.

Formal verification has been proposed as a promising al-
ternative to simulation and has become a standard in many
flows. In this paper, existing approaches are reviewed and
recent trends for system level verification are outlined. To
demonstrate the techniques SystemC is used as a system
level description language.

Beside the successful applications a list of challenging
problems is provided. This gives a better understanding of
current problems in hardware verification and shows direc-
tions for future research.

1. Introduction

With increasing design complexity, verification becomes
a more and more important aspect of the design flow. Mod-
ern circuits contain up to several hundred million transis-
tors. In the meantime it has been observed that verification
becomes the major bottleneck, i.e. up to 80% of the overall
design costs are due to verification. This is one of the rea-
sons why recently several methods have been proposed as
alternatives to classical simulation, since it cannot guaran-
tee sufficient coverage of the design. E.g. in [2] it has been
reported that for the verification of the Pentium IV more
than 200 billion cycles have been simulated, but this only
corresponds to 2 CPU minutes, if the chip is run with 1
GHz.

Formal verification techniques have gained large atten-
tion, since they allow to prove the correctness of a circuit,
i.e. they ensure 100% functional correctness. Beside be-

ing more reliable, formal verification approaches have also
shown to be more cost effective in many cases, since test
bench creation - usually a very time consuming and error
prone task - becomes superfluous [36].

In this paper, first briefly some of the application do-
mains are described, where formal techniques have success-
fully been used. Some links to further literature are given
where the interested reader can get more information. Then,
aspects of system level verification are discussed, where
SystemC is used as the modelling platform. Finally, a list
of “challenging problems” is given, i.e. a list of topics that
need further investigation in the context of formal hardware
verification.

2. Formal Verification

The main idea of formal hardware verification is to prove
the functional correctness of a design instead of simulating
some vectors. For the proof process different techniques
have been proposed. Most of them work in the Boolean
domain, likeBinary Decision Diagrams(BDDs) or SAT
solvers.

The typical hardware verification scenarios where formal
proof techniques are applied are

Equivalence Checking(EC) and

Property Checking(PC), also calledModel Checking
(MC).

The goal of EC is to ensure the equivalence of two given
circuit descriptions. These circuits might be given on dif-
ferent levels of abstraction, i.e. register transfer level or gate
level. The main steps of an equivalence checker are as fol-
lows (see e.g. [13]):

1. Translate both designs to an internal format.

2. Establish the correspondence between the two designs
in a matching phase.



3. Prove equivalence or inequivalence.

4. In case of an inequivalence a counter-example is gen-
erated and the debugging phase starts.

Notice that the circuit is considered as purely combinational
by modeling the state elements as additional primary inputs
and outputs. This modeling may result in counter-examples
that are not reachable during normal circuit operation.

In contrast to EC, where two circuits are considered,
for PC a single circuit is given and properties are formu-
lated in a dedicated “verification language”. It is then for-
mally proven whether these properties hold under all cir-
cumstances. While “classical” CTL-based model check-
ing [6] can only be applied to medium sized designs, ap-
proaches based onBounded Model Checking(BMC) as dis-
cussed in [4] give very good results when used for complete
blocks with up to 100k gates.

Nevertheless, all these approaches can run into problems
caused by complexity, e.g. if the circuit becomes too large
or if the function being represented turns out to be “diffi-
cult” for formal methods. The second problem often arises
in cases of complex arithmetics, like multipliers.

Motivated by this, hybrid methods have been proposed,
like e.g.symbolic simulationandassertion checking. These
methods try to bridge the gap between simulation and cor-
rectness proofs. But these techniques also make use of for-
mal proof techniques.

For more information on basics on formal verification
techniques the reader is referred to [27].

3. System Level Verification

While classical approaches to circuit design make use
of Hardware Description Languages(HDLs), like VHDL
or Verilog, there is a strong interest in C-like description
languages [19] for system level modelling. These lan-
guages allow for higher abstraction and fast simulation in
an early stage of the design process. Furthermore, hard-
ware/software co-design can be performed in the same sys-
tem environment. One of the most popular languages of
this type is SystemC [34]1. But so far, most verification
approaches for SystemC are based on simulation only (see
e.g. [33, 15]). Of course, due to the reasons discussed in the
introduction, it would be desirable to have formal verifica-
tion techniques also at the system level.

Two approaches recently presented for verification of
SystemC are briefly reviewed:

1. Bounded Model Checking [17]

2. Generation of Checkers [18]

For details on the approaches and experimental results we
refer to the original papers.

1All techniques discussed in this section can also be transferred to other
system level languages, like e.g. SystemVerilog.

3.1. Bounded Model Checking

In this section an approach to reason about the behavior
of SystemC designs based on formally verifying properties
specified inLinear Temporal Logic(LTL) is presented. The
approach considers synchronous sequential circuits mod-
elled in SystemC at the register transfer level. First, the
output functions and transition functions of the underlying
Finite State Machine(FSM) are computed. Then a sym-
bolic reachability analysis of the FSM is carried out. Fi-
nally, proving an LTL formula is translated to a satisfiability
problem using the transition and output functions and the
set of reachable states. Unbounded LTL formulas can be
proved, since the complete set of reachable states is known.

3.2. Generation of Checkers

There are several approaches to system level verification
which are based on assertions [16]. The key idea is to de-
scribe expected or unexpected behavior directly in the de-
vice under test. These conditions are checked dynamically
during simulation. In contrast in [10] a method has been
proposed to synthesize properties for circuits into hardware
checkers. Properties which have been specified for (formal)
verification are directly mapped onto a very regular hard-
ware layout.

Following the latter idea, a method is presented which
allows checking of temporal properties for circuits and sys-
tems described in SystemC not only during simulation. A
property is translated into a synthesizable SystemC checker
and embedded into the circuit description. This enables the
evaluation of the properties during simulation and after fab-
rication of the system. Of course, with this approach a prop-
erty is not formally proven and only parts of the function-
ality are covered. But the proposed method is applicable
to large circuits and systems and supports the checking of
properties in form of an on-line test. This on-line test is
applicable, even if formal approaches failed due to limited
resources.

4. Challenges

Even though formal verification techniques are very suc-
cessfully applied and have become the state-of-the-art in
many design flows, still many problems exist. In this section
a list of these problems is given. The list is not complete in
the sense that all difficulties are covered, but many impor-
tant ones are mentioned. This gives a better understanding
of current problems in hardware verification and shows di-
rections for future research.

Complexity: According to Moore’s law the complexity of
the circuits steadily increases. For this, the underlying
data structures are very important. For EC and BMC



often dedicated data structures are used. For represen-
tation of the state space BDDs have shown to work
well, but if the size of the circuit becomes too large the
BDDs often suffer from “memory explosion”.

Proof technology: While BDDs and SAT are the most
popular techniques in hardware verification and have
also been applied to many domains, there is still a
lot of research going on. Besides the classical mono-
lithic approaches modern EC tools make use of multi-
engine approaches that combine different techniques,
like SAT, BDD, term rewriting, ATPG, and random
pattern simulation. How to successfully combine these
- often orthogonal - approaches is not fully understood
today.

Word-level approaches: Even though most proof tech-
niques today work on the bit-level, many studies have
shown that significant improvements can be achieved
if the proof engine makes use of high-level information
or even completely works on a higher level of abstrac-
tion. In this context also ILP solvers showed promise.

Matching in EC: As described above, before the proof pro-
cess starts the correspondence between the circuits has
to be established. Here, several techniques exist, like
name-based, structural or prover-based, but still for
large industrial designs these methods often fail. This
results in very time consuming user defined matching.

Reachability of counter-examples: In EC and BMC the
generated counter-example might not be reachable in
normal circuit operation. This results from the model-
ing of the circuit, i.e. instead of a FSM only the combi-
national part is considered. Thus, it has to be checked
that the counter-example is “valid” after it has been
generated, or the prover has to ensure that it is reach-
able. Techniques have to be developed how this can
be ensured without a complete reachability analysis of
the FSM, that is usually not feasible due to complexity
reasons.

Arithmetic: Industrial practice has shown that today’s
proof techniques, like BDD and SAT, have difficulties
with arithmetic circuits, like multipliers. Word-level
approaches have been proposed as an alternative, but
these methods turned out to often be difficult to in-
tegrate in fully automatic tools. For this, arithmetic
circuits - often occurring in circuit design - are still
difficult to handle.

System integration: PC works best on the module level,
i.e. for blocks with up to 100k gates. But in multi-
chip modules many of these blocks are integrated to
build a system. Due to complexity the modules cannot
be verified as one large block and for this models and
approaches are needed.

Hybrid approaches: For complex blocks or on the system
level PC might be a very complex task and for this sim-
pler alternatives have been studied, i.e. techniques that
are more powerful than classical simulation but need
less resources than PC. Techniques, like symbolic sim-
ulation or assertion-based verification, in this context
also make use of formal verification techniques.

Checker synthesis: The specified properties can also be
synthesized and added to the design. In this way, they
can also be used for on-line test after the circuit has
been fabricated.

Analog/mixed signal: Most EC and PC models assume
that the circuit is purely digital, while in modern
system-on-chip designs many analog components are
integrated. For this, also models and proof mecha-
nisms need to be developed for analog and mixed sig-
nal devices.

Retiming: For EC retimed circuits are still difficult to han-
dle, since in this case the state matching cannot be per-
formed. Thus, the problem remains sequential and by
this becomes far too complex.

Multiple clocks: Many circuits have different clocking do-
mains, while verification tools can often only work
with a single clock.

Coverage: To check the completeness of a verification pro-
cess coverage metrics have to be defined. While typi-
cal methods, like state coverage, are much too weak in
the context of formal verification, there still does not
exist a good measure that is comfortable to use for PC.

Diagnosis: After a fault has been identified by a formal
verification tool a counter-example is generated. The
next step is to identify the fault location or a reason
for the failing proof process. Here, also formal proof
techniques can be applied.

Most solutions to these problems are still in a very early
stage of development, but these fields have to be addressed
to make formal hardware verification successful in indus-
trial applications. To orient the reader, some recent refer-
ences are provided to give a starting point for further stud-
ies: [30, 22, 27, 21, 9, 31, 14, 1, 7, 28, 26, 20, 5, 24, 29, 25,
32, 12, 23, 35, 3, 16, 10, 8, 11]

5. Conclusions

In this paper formal verification with a special focus on
system level verification has been discussed. While EC
works very well on complete designs with several million
transistors, PC approaches are so far mainly applicable at
the block level.



For a solution for complete systems, still many problems
have to be solved, where some of the most important were
given in the previous section.

In future design projects verification will become more
and more important and the creation of a concise verifica-
tion methodology decides about successful tape-outs.

Acknowledgement
The list of challenging problems has been developed in

the context of the book projectAdvanced Formal Verifica-
tion [11]. I like to thank all the contributors for the interest-
ing discussions. Furthermore I like to thank Daniel Große
for his contributions to the verification approaches for Sys-
temC presented in Section 3.

References

[1] L. Bening and H. Foster.Principles of Verifiable RTL De-
sign. Kluwer Academic Publishers, 2001.

[2] B. Bentley. Validating the Intel Pentium 4 microprocessor.
In Design Automation Conf., pages 244–248, 2001.

[3] J. Bergeron.Writing Testbenches: Functional Verification
of HDL Models. Kluwer Academic Publishers, 2003.

[4] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of
BDDs. InDesign Automation Conf., pages 317–320, 1999.

[5] R. Brinkmann and R. Drechsler. RTL-datapath verification
using integer linear programming. InASP Design Automa-
tion Conf., pages 741–746, 2002.

[6] J. Burch, E. Clarke, K. McMillan, and D. Dill. Sequential
circuit verification using symbolic model checking. InDe-
sign Automation Conf., pages 46–51, 1990.

[7] H. Chockler, O. Kupferman, R. Kurshan, and M. Vardi. A
practical approach to coverage in model checking. InCom-
puter Aided Verification, volume 2102 ofLNCS, pages 66–
77. Springer Verlag, 2001.

[8] F. Copty, A. Irron, O. Weissberg, N. Kropp, and G. Kamhi.
Efficient debugging in a formal verification environment.
Software Tools for Technology Transfer, 4:335–348, 2003.

[9] R. Drechsler.Formal Verification of Circuits. Kluwer Aca-
demic Publishers, 2000.

[10] R. Drechsler. Synthesizing checkers for on-line verification
of system-on-chip designs. InIEEE International Sympo-
sium on Circuits and Systems, pages IV:748–IV:751, 2003.

[11] R. Drechsler.Advanced Formal Verification. Kluwer Aca-
demic Publishers, 2004.

[12] R. Drechsler and N. Drechsler.Evolutionary Algorithms
for Embedded System Design. Kluwer Academic Publisher,
2002.

[13] R. Drechsler and S. Ḧoreth. Gatecomp: Equivalence check-
ing of digital circuits in an industrial environment. InInt’l
Workshop on Boolean Problems, pages 195–200, 2002.

[14] R. Drechsler and D. Sieling. Binary decision diagrams in
theory and practice.Software Tools for Technology Transfer,
3:112–136, 2001.

[15] F. Ferrandi, M. Rendine, and D. Scuito. Functional veri-
fication for SystemC descriptions using constraint solving.
In Design, Automation and Test in Europe, pages 744–751,
2002.

[16] H. Foster, A. Krolnik, and D. Lacey.Assertion-Based De-
sign. Kluwer Academic Publishers, 2003.

[17] D. Große and R. Drechsler. Formal verification of LTL for-
mulas for SystemC designs. InIEEE International Sympo-
sium on Circuits and Systems, pages V:245–V:248, 2003.

[18] D. Große and R. Drechsler. Checkers for SystemC designs.
In MEMOCODE, 2004.

[19] R. Gupta. IEEE design and test roundtable on C++-based de-
sign. IEEE Design& Test of Comp., pages 115–123, 2001.
May-June.

[20] S. Hassoun and T. Sasao.Logic Synthesis and Verification.
Kluwer Academic Publishers, 2001.

[21] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano,
V. Bertacco, J. Taylor, and J. Long. Smart simulation using
collaborative formal and simulation engines. InInt’l Conf.
on CAD, pages 120–126, 2000.

[22] Y. Hoskote, T. Kam, P. Ho, and X. Zhao. Coverage estima-
tion for symbolic model checking. InDesign Automation
Conf., pages 300–305, 1999.

[23] Y.-C. Hsu, B. Tabbara, Y.-A. Chen, and F. Tsai. Advanced
techniques for RTL debugging. InDesign Automation Conf.,
pages 362–367, 2003.

[24] P. Johannsen and R. Drechsler. Formal verification on regis-
ter transfer level – utilizing high-level information for hard-
ware verification. InIFIP Int’l Conf. on VLSI, pages 127–
132, 2001.

[25] R. Jones.Symbolic Simulation Methods for Industrial For-
mal Verification. Kluwer Academic Publishers, 2002.

[26] A. Kölbl, J. Kukula, and R. Damiano. Symbolic RTL simu-
lation. InDesign Automation Conf., pages 47–52, 2001.

[27] T. Kropf. Introduction to Formal Hardware Verification.
Springer, 1999.

[28] A. Kuehlmann, M. Ganai, and V. Paruthi. Circuit-based
Boolean reasoning. InDesign Automation Conf., pages 232–
237, 2001.

[29] J. Mohnke, P. Molitor, and S. Malik. Limits of using sig-
natures for permutation independent Boolean comparison.
Formal Methods in System Design: An International Jour-
nal, 2(21):167–191, 2002.

[30] D. Moundanos, J. Abraham, and Y. Hoskote. Abstraction
techniques for validation coverage analysis and test genera-
tion. IEEE Trans. on Comp., pages 2–14, January 1998.

[31] P. Rashinkar, P. Paterson, and L. Singh.System-on-a-Chip
Verification. Kluwer Academic Publishers, 2000.

[32] S. Reda, R. Drechsler, and A. Orailoglu. On the relation
between SAT and BDDs for equivalence checking. InInt’l
Symp. on Quality Electronic Design, pages 394–399, 2002.

[33] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on multi-valued
ar-automata. InDesign, Automation and Test in Europe,
pages 742–748, 2001.

[34] Synopsys Inc., CoWare Inc., and Frontier Design Inc.,
http://www.systemc.org.Functional Specification for Sys-
temC 2.0.

[35] A. Veneris, A. Smith, and M. S. Abadir. Logic verification
based on diagnosis techniques. InASP Design Automation
Conf., 2003.

[36] K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey. A
cost-efficient block verification for a UMTS up-link chip-
rate coprocessor. InDesign, Automation and Test in Europe,
volume 1, pages 162–167, 2004.


