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NXP Semiconductors GmbH
21147 Hamburg, Germany

{andreas.glowatz,friedrich.hapke,juegen.schloeffel}@nxp.com

Abstract

Due to ever increasing design sizes, more efficient
tools for Automatic Test Pattern Generation (ATPG)
are needed. Recently, SAT-based approaches for test
pattern generation have been shown to be very efficient
even on large industrial circuits. But these SAT-based
techniques are not always superior to classical ATPG
approaches. An integration of SAT-based engines into
the classical ATPG flow can improve the overall per-
formance.

In this paper we present a first approach to integrate
a SAT-based engine into the industrial ATPG environ-
ment of NXP Semiconductors. Experimental results for
large industrial benchmark circuits are presented that
show the improvements achieved by the integration.

1 Introduction

The complexity of circuits increases rapidly. Ac-
cording to Moore’s law the number of gates doubles
every 18 months and this trend is going to last for at
least another decade. As a result the size of problem
instances that have to be handled by Computer Aided
Design (CAD) tools also increases. One particular step
in the design flow is the post production test. This test
ensures the functional correctness of a chip and is there-
fore an important step in ensuring high quality prod-
ucts. In practice the post-production test is carried out
by applying input stimuli – so called “test patterns”
– to the circuit and controlling the output response
with respect to its correctness. The test patterns are
computed during Automatic Test Pattern Generation
(ATPG). Therefore ATPG tools also have to cope with
the increasing size of problem instances.

A number of sophisticated algorithms for ATPG
have been proposed in the past. Usually, a fault model
is used to model physical defects at the functional level

in a Boolean representation of the circuit. Then, the
space of input stimuli is searched to find a test pat-
tern for a particular fault. Among the fault models
the Stuck-At Fault Model (SAFM) is most frequently
used in practice. The D-algorithm [10] was the first
ATPG algorithm to carry out an efficient backtrack
search steered by structural information from the cir-
cuit. The algorithms PODEM [4] and FAN [3] im-
proved the branching heuristics to make the search
more efficient. Using structural information to apply
global implications during the search has been pro-
posed for SOCRATES [12]. The more powerful re-
cursive learning [7] and the integration with the FAN-
algorithm have been proposed by the tool HANNIBAL
[6]. All of these algorithms directly work on the circuit
structure.

In contrast there also exist approaches based on
Boolean Satisfiability (SAT) [8, 15, 16, 13]. These work
on a representation of the problem instance in Con-
junctive Normal Form (CNF). Early SAT-based ap-
proaches were not able to handle industrial instances.
But the recent advances in algorithms for SAT solv-
ing [9, 1] made the application to ATPG feasible. The
combination of these advances and structural knowl-
edge into an ATPG tool provide an efficient and ro-
bust ATPG engine which has been shown by the tool
PASSAT [13, 14].

Of course, it cannot be expected that a single SAT-
based engine is faster on all ATPG instances than the
sophisticated classical approaches. In industrial tools
the combination of different techniques like random
simulation, learning, and others is crucial to achieve ro-
bustness. To benefit from a powerful SAT-based engine
in such an environment, the combination with other
ATPG approaches has to be considered. But so far no
tight integration of a SAT-based engine into an indus-
trial framework has been proposed.

Here, we present the integration of a SAT-based en-
gine into the pre-identification phase of the industrial
ATPG environment from NXP Semiconductors. The
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industrial tool provides state of the art classical ATPG
techniques, while the SAT-based engine combines ad-
vanced SAT techniques with problem specific improve-
ments for ATPG. Which engine will be faster on a
specific fault for a given circuit cannot be predicted.
Therefore the parameters to control the overall flow
are most important. A two phase approach is used,
where the SAT-based engine specifically targets faults
that are hard for classical approaches. In the following,
the SAFM in combinatorial circuits is considered.

The paper is structured as follows: SAT-based
ATPG is reviewed in the next section. The general
flow in an industrial ATPG environment is explained in
Section 3. The integration of a SAT-based engine into
such an environment to handle hard-to-detect faults is
discussed in Section 4. Experimental results that show
the feasibility on industrial benchmark circuits are re-
ported in Section 5. Finally, conclusions and the focus
of future work are presented.

2 SAT-based ATPG

In this section the application of SAT for ATPG
is explained. The SAFM is reviewed. Then, the ba-
sic transformation of an ATPG instance into a SAT
instance is presented. Also the improvements due to
problem specific knowledge and SAT techniques are
briefly discussed.

The SAFM is a static fault model. One line in the
circuit is considered to be stuck at the constant value
0 or 1. Then, the value of this line does not depend
on the primary input anymore. A particular stuck-at
fault in a given circuit can easily be modeled. When
comparing the faulty and the non-faulty circuit, a test
pattern produces different output values at least at one
output. A particular stuck-at fault is called testable iff
such a test pattern exists. Otherwise the fault is called
untestable.

Modern SAT solvers work on the problem repre-
sented as a CNF. A CNF is a set of clauses, a clause is
a set of literals and a literal is a variable or a negated
variable. The CNF is satisfied under a given assign-
ment for the variables iff all clauses are satisfied. A
clause is satisfied iff at least one literal is satisfied. A
literal is satisfied, iff the variable is not negated and
has assigned the value 1 or the variable is negated and
has assigned the value 0. If there is a satisfying as-
signment, the CNF is called satisfiable. Otherwise the
CNF is called unsatisfiable.

The transformation of an ATPG instance into a
CNF representation has been explained in e.g. [8]. A
variable is assigned to each line in the circuit. Then,
the functionality of a single gate is described by a set
of clauses. The conjunction of the clauses for all gates
is a CNF representation for the circuit. This represen-
tation is not unique and therefore allows for improve-
ments. The number of clauses in the CNF is linear in
the number of gates in the circuit.

Based on this transformation, the creation of a CNF
for a given ATPG problem is explained in the follow-
ing. Consider the circuit in Figure 1. The fault loca-
tion is marked. First, the output cone of the fault site
is marked by a depth first traversal on the circuit. This
determines all outputs that may be influenced by the
fault. The transitive fan-in of these outputs influences
the detection of the fault and must be contained in the
SAT instance. This knowledge is used to create the
SAT instance: A faulty version and a fault free version
of the circuit are modeled. Different signal values may
only occur in the fault site’s output cone. Therefore the
transitive fan-in is shared between both versions in or-
der to reduce the size of the SAT instance. Finally, the
outputs of the fault free version and the faulty version
are compared by XOR-gates. An additional constraint
ensures, that at least one XOR-gate assumes the value
1. In summary, this SAT instance is only satisfiable,
iff a test pattern is found that yields a wrong output
value if the fault is present. The transformation of this
instance into CNF is done as explained above.

Classical approaches for ATPG are tuned for the
particular problem and can exploit structural informa-
tion that is present in the circuit. In contrast a SAT
solver is a general purpose engine for Boolean satisfia-
bility that heavily relies on efficient lerning techniques.
Structural information is lost during the problem trans-
formation. Partially, embedding this information accel-
erates the SAT search.

One improvement is the use of dedicated variable
selection strategies. The branching points have been
reduced to primary inputs in the PODEM algorithm
[4] and to fanout points in the FAN algorithm [3]. This
is also beneficial for SAT-based ATPG. Here, a com-
bination of standard SAT decision strategies together
with a restriction of the branching points is successful
[13].

Embedding structural information in the SAT in-
stance is a second improvement. Here, implications
are coded into the CNF by adding some clauses. In
particular, the observations used by the D-algorithm
have been found to be valuable [15]. For example, a
faulty value can only be propagated along a gate, if it
is propagated along at least one succeeding gate. By
adding such constraints to the CNF also structural in-
formation is available during SAT solving.

For an industrial application Boolean values are not
sufficient to model the ATPG problem. Due to uncon-
trollable inputs, unknown values must be considered
using the value U . Moreover, a Z-value is used for the
high impedance state of tri-state elements. As a result
a four-valued logic over {0, 1, U, Z} has to be consid-
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Figure 2. ATPG flow
ered. This can be efficiently handled by a SAT-based
ATPG tool [13].

3 Industrial Environment

In principle it is sufficient to iterate over all faults
with respect to the given fault model and generate a
test pattern for each of them. But in an industrial en-
vironment like that of NXP Semiconductors this is not
sufficient to retrieve a robust system. In the following
only the overall flow in the system will be briefly re-
viewed to explain the problems that occur during the
integration of a SAT-based engine. The particular im-
provements in the highly optimized testing tool AM-
SAL that was used for the experiments cannot be ex-
plained in detail. For a more detailed presentation on
ATPG systems in general we refer to e.g. [5].

The major steps of the ATPG flow are shown in Fig-
ure 2. The inputs for the system are the circuit and
the fault model to be considered. Here, the SAFM
is assumed. Two main steps are carried out: the
pre-identification phase to classify faults and the com-
paction phase to generate a small test set. The goal
during pre-identification is the classification of faults.
Here, three engines are used. First, random fault de-
tection is applied to filter out easy-to-detect faults. For
the remaining faults a fast deterministic fault detection
is done. Finally, deterministic fault detection with in-
creaded resources is applied to classify hard-to-detect
faults. As a result four classes of faults are generated:
untestable faults, easily testable faults, hard testable
faults and non-classified aborted faults. Untestable and
easy-to-detect faults are not further considered. Only
the remaining testable faults are further treated in the
compaction step. In the compaction step test patterns
that detect as many faults as possible are generated.
This is necessary because a small test set results in
shorter test times during the post-production test.
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Figure 3. Deterministic fault detection
The main step considered here is the deterministic

fault detection applied in the pre-identification phase.
In this phase it is important to classify as many faults
as possible. Only faults classified as testable are con-
sidered during the compact test pattern generation.
Aborted faults are considered during fault simulation
as well. Therefore untestable faults that were not clas-
sified, i.e. aborted, are an overhead in the compaction
step. Testable faults that were not classified may not
be detected by compact TPG.

The details of the deterministic fault detection are
shown in Figure 3(a). Usually, a highly optimized FAN-
based ATPG engine including learning techniques and
a fault simulator are applied for deterministic test pat-
tern generation. First, the FAN-based engine is used
to classify a given fault. If a test pattern is produced
by this engine, additional faults may be detected by
the pattern besides the fault targeted in the first place.
Therefore a fault simulator is used to calculate all faults
detected by the test pattern. This consumes additional
computation time, but often speeds up the overall pro-
cess because other patterns can be removed from the
fault list.

4 Integration

When integrating a SAT-based ATPG engine into
an industrial environment, the goal is to improve the
overall performance of the system. For improving the
performance, two aspects have to be considered: the
run time and the number of classified faults. The run
time should be decreased. The number of faults that
are classified by the system should be increased, i.e. the
number of aborted fault classifications due to resource
limits should be decreased. In the following we con-
centrate on integrating the SAT-based engine into the
pre-identification phase because reducing the number
of aborted faults in this step is beneficial for the suc-
ceeding compaction step as explained in the previous
section.

The underlying problem is to determine how to in-
terlace the engines. The integration of random simula-
tion and deterministic algorithms is done by applying
simulation in a fast pre-processing step. This order-
ing is also feasible when an additional SAT-based en-
gine is available. Similar to a FAN-based approach the
SAT-based engine needs time to generate the problem
instance before solving can be started. This overhead



is much smaller when random simulation is applied.
Therefore the integration into the deterministic test
pattern generation between the FAN-based engine and
fault simulation has been addressed.

A number of observations helps to set up the frame-
work for the integration:

• There are faults that are easily classified by FAN
while SAT needs a long run time and vice versa.
This behavior is not predictable from the fault it-
self.

• A large number of faults can be classified efficiently
using FAN.

• Often the SAT-based engine efficiently classifies
untestable faults and faults that are hard for FAN,
i.e. those faults where FAN needs long run times
or aborts due to pre-defined resource limits.

• A SAT solver determines values for all inputs
that are contained in the transitive fan-in of those
outputs where the fault may be observed. This
makes merging of multiple test-patterns during
compaction difficult.

• The FAN-based algorithm directly runs on the cir-
cuit structure which is available in the system al-
ready.

• The SAT-based algorithm converts the problem
into a CNF before starting the SAT solver. There-
fore a larger overhead per fault is needed compared
to FAN.

These observations lead to the conclusion that the
SAT-based engine should be used to target those faults
that cannot be classified by the FAN-algorithm within
a short timeout. This reduces the overhead for initial-
izing the SAT-based engine on faults that are easy to
classify by FAN already. Then, the SAT-based TPG
may classify additional faults which, in turn, helps to
remove other faults from the fault list as well.

This leads to the framework shown in Figure 3(b)
when a particular fault is targeted. The FAN-based
engine is started at first with the default parameter
set. If a test pattern is generated, fault simulation is
carried out as usual and may identify additional faults
as being testable by the same test pattern. Otherwise,
the SAT-based engine is applied to classify the fault in
a second step.

The experiments show that this combined approach
classifies more faults with almost no overhead for the
additional runs of the SAT-based engine.

5 Experimental Results

Experimental results are reported in this section.
The proposed integration of a SAT-based engine into
the industrial environment was applied to the NXP
Semiconductors ATPG tool AMSAL. As SAT solver
we used MiniSat [1]. AMSAL provides very compact

Table 1. Pre-identification results
FAN(de) FAN(long) SAT FAN+SAT

Circuit Targets ab. time ab. time ab. time ab. time
p44k 64105 12 7:44m 0 7:46m 0 3:44h 0 7:57m
p77k 163310 0 0:24m 0 0:24m 0 0:36m 0 0:45m
p80k 197834 218 43:04m 79 44:06m 0 1:03h 0 43:23m
p88k 147742 195 12:21m 51 13:56m 0 15:55m 0 12:44m
p99k 162019 1398 9:04m 615 16:27m 0 13:28m 0 11:56m
p177k 268176 270 21:40m 60 22:01m 808 10:43h 9 27:27m
p462k 673949 1383 1:53h 928 1:58h 136 4:49h 1 1:57h
p565k 1026851 1398 2:35h 154 2:43h 0 2:38h 0 2:40h
p1330k 1516144 aborted aborted 1 5:21h aborted

production and field test patterns to raise the quality
of large and complex digital circuits. Since 1986 AM-
SAL has been continuously developed and covers faults
like stuck-at, bridges, gate- and path-delay transitions
as well as Iddq faults. Together with the possibilities
of a root cause analysis, layout based pattern genera-
tion and test point insertion with extremely high test
compaction is performed, resulting in a minimum set
of test patterns. As in SOCRATES [11] and HAN-
NIBAL [6], the main ATPG engine of AMSAL is a
highly optimized FAN-algorithm. The SAT-based en-
gine is integrated into the system in a prototypic man-
ner as explained in Section 4. The resource limits of
the FAN-based algorithm were set to the default set-
tings of AMSAL since these parameters have been de-
termined on a large range of circuits. The time out
for the SAT-based engine was set to 20 seconds per
fault. This is a quite high run time limit, but the ex-
perimental results show that this is useful to classify
very hard faults [13]. This saves run time afterwards.
As a result, a loose coupling between the engines is
achieved. All faults that would not be classified in
the classical flow are targeted by the SAT-based en-
gine afterwards. Thereby, more faults can be classi-
fied in total. The SAT-based engine runs in two steps:
First the CNF is generated, then, the fault is classi-
fied; afterwards the CNF is completely dropped. This
approach is acceptable in the present setting, because
the SAT-based engine is only applied to aborted clas-
sifications that are “randomly” distributed. Therefore
identifying structural overlapping of CNF instances is
difficult. For all other settings in the flow, e.g. the num-
ber of random patterns to be simulated, the default
parameters of AMSAL were used. All of the following
experiments were run on an AMD Athlon XP 3500+
(2.2 GHz, 1 GByte, GNU/Linux).

A set of industrial circuits (provided by NXP) was
considered as benchmarks. These circuits have been
found to be difficult cases for ATPG. The name of the
circuit also gives information about the number of gates
contained in the circuit, e.g. p88k means that the cir-
cuits consists of about 88,000 gates. The largest circuit
p1330k contains more than 1.3 million gates. The num-
ber of faults that have to be considered for a circuit is
even larger than the number of gates as can be seen in
Table 1; Column ‘Targets’ gives the number of faults
after the fault collapsing step.

Four different approaches are compared in the fol-
lowing:

• “FAN (de)”: Using the FAN-based engine with de-
fault parameters as explained above.



• “FAN (long)”: Using the FAN-based engine with
drastically increased resources, i.e. the backtrack
limit set to 1024 and up to 5 seconds per fault.

• “SAT”: Using only the SAT-based engine, i.e. re-
placing the FAN-based engine by the SAT-based
engine in the flow.

• “FAN + SAT”: Using the combined approach as
explained in Section 4.

Table 1 shows the results of the pre-identification
phase. For each approach the number of aborted fault
classifications (column ‘ab.’) and the run time (col-
umn ‘time’) are given. Most critical are aborted faults
because these may not be targeted adequately in the
compaction step as explained in Section 3.

The number of faults aborted by the default ap-
proach FAN (de) is quite large. This number can be
reduced by using FAN (long), where the resources are
increased. However, there are still too many aborted
faults. On circuit p1330k, the classification using
FAN even aborts due to memory explosion, i.e. the
circuit representation does not fit into the available
main memory and the test pattern generation process
aborts. Using the SAT-based engine, many circuits,
where aborts occur at the FAN approach, are now fully
testable.

However, regarding the run time, the usage of the
SAT-based engine as a stand alone algorithm causes
too much overhead (a CNF formula has to be created
for each fault). Only three circuits are not fully testable
with the SAT-based approach: While in p462k the
number of aborts decreases drastically, in p177k more
aborts occur. Actually, the representation of p1330k as
SAT instance is compact enough to fit into the main
memory, i.e. the entire test pattern generation process
can be performed.

Regarding the FAN+SAT approach, the run time
is similar to that of FAN (de). However, once again,
the number of aborts decreases in this combined ap-
proach. This is possible because many easy-to-detect
fault are quickly classified by FAN while difficult faults
are classified by the SAT-based engine.

In summary, the combined approach is able to fully
classify 6 out of 9 benchmarks while the resources
needed remain similar to that of a classical approach.

6 Conclusions and Future Work

The integration of a SAT-based ATPG engine into
an industrial environment has been shown. The reason
for applying the SAT-based engine as a second deter-
ministic ATPG step to aborted faults was explained in
detail. Experimental results show the improved robust-
ness achieved by the combination of classical ATPG al-
gorithms with a SAT-based approach. Even on large
industrial circuits that are hard to test the proposed
combined approach performs better than classical en-
gines alone.

Further research is going to address the reuse of
learned information as a promising improvement [2].

Another main focus will be the integration of a SAT-
based approach into the compaction step.
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