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Abstract—SAT-based ATPG has proven to be a beneficial
complement to traditional ATPG techniques. The generation of
a CNF-representation is a vital issue in SAT-based test pattern
generation. Firstly, the generation of the problem instances for
SAT-based ATPG requires a significant portion of the overall
runtime. Secondly, the performance of the SAT solver strongly
depends on the properties of the resulting CNF-representation.

The contribution of this paper is a new approach to generate
CNF-representations for SAT-based ATPG. The objective of the
proposed technique is to speed up the generation process and
to optimize the resulting CNF-representation with respect to the
SAT computation. The experimental results, obtained on large
industrial designs, show that the accomplished optimizations
result in a significant reduction of the overall runtime of the
SAT-based test pattern generation process. Finally we discuss
how this contribution enables some promising future work.

I. INTRODUCTION

The continuous growth of today’s circuit designs requires
a constant improvement of state-of-the-art computer-aided
design (CAD) and computer-aided test (CAT) tools. During
recent years SAT-based ATPG algorithms became a promising
alternative to traditional ATPG techniques such as FAN [1] and
PODEM [2]. In particular for hard-to-solve problem instances
SAT-based methods proved to be highly advantageous [3], [4],
[5], [6]. However, SAT-based ATPG algorithms suffer from a
number of disadvantages. Most modern SAT-solvers [7], [8],
[9], [10] require the modeling of the problem in Conjunctive
Normal Form (CNF). Hence the ATPG problem needs to be
converted into one or several CNF-representations. Further-
more SAT-based ATPG techniques tend to deliver overdeter-
mined test pattern which is disadvantageous with respect to
pattern compaction and runtime.

The contribution of this paper is a new approach to effi-
ciently generate CNF-representations for SAT-based ATPG.
The proposed technique employs Reduced Ordered Binary
Decision Diagrams (ROBDDs) [11] in order to generate
optimized CNF-instances during test pattern generation. The
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new approach constructs ROBDD-representations of Fanout-
Free Regions (FFRs) in the circuit graph, where every
FFR is treated as an individual sub-circuit. To derive CNF-
representations directly from these ROBDDs provides several
advantages over traditional approaches. Functional redundan-
cies contained in the FFR will not be reflected by the resulting
CNF. Furthermore the number of CNF-variables is reduced
drastically. Finally the number of CNF-clauses in the problem
instances is considerably decreased. The experimental results
show that the proposed approach is a promising alternative to
traditional circuit-to-CNF transformation techniques.

The paper is structured as follows. Previous work is dis-
cussed in Section II. The proposed approach is the objective of
Section III. Experimental results are presented in Section IV.
Section V concludes the paper and discusses future work.

II. PREVIOUS WORK

A. SAT-based ATPG

Test pattern generation with respect to some Stuck-At Fault
(SAF) is the search for an input assignment, which conducts
different values at some primary output between the faulty
circuit and the correct circuit. SAT-based ATPG was initially
proposed by Larrabee in [3]. Significant improvements were
achieved by Stephan et al. in [12] and by Silva and Sakallah
in [13]. In SAT-based ATPG the problem of finding a sufficient
input assignment is transformed into a Boolean satisfiability
problem such that if a test for a particular SAF exists,
then the corresponding problem instance is satisfiable and
the resulting test pattern can be directly derived from the
satisfying assignment. If the fault is undetectable the SAT
solver concludes unsatisfiability.

In the following the circuit-to-CNF transformation for an
SAF is reviewed. Figure 1 illustrates a combinational circuit.
The fault location denotes a connection c where an SAF is
assumed. The area denoted as output cone, contains all gates
belonging to some path P from c to some primary output in
the reflexive fanout of c, fanout∗({c}). Let us denote the set
of primary outputs reachable from c by Oc. Next the reflexive
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Fig. 1. Illustration of influenced circuit areas.

fanin, fanin∗(Oc), of all primary outputs in Oc is computed,
see Figure 1.

As introduced in [4], two Boolean variables G(v) and Gf (v)
are assigned to every gate v in the reflexive fanout of c,
v ∈ fanout∗({c}), to represent the fault free circuit and
the faulty circuit, respectively. Both circuits are generated by
building the characteristic function for every gate. Clearly all
gates belonging to the reflexive fanin of some primary output
in the set Oc and are not contained in fanout∗({c}) only need
to be modeled once, since the SAF at c does not influence their
behaviour. To express a difference of the values at G(v) and
Gf (v), additionally a Boolean variable Gd(v) is assigned to
every gate v ∈ fanout∗({c}). If Gd(v) is true, then the values
G(v) and Gf (v) differ. A test pattern to detect the SAF at c
is found if it is possible to compute an assignment such that
there exists a path P from c to some primary output, where
the variable Gd(v) for each gate v ∈ P is true. This path is
called D-chain.

B. ROBDDs

The proposed technique employs ROBDDs as a canonical
representation of Boolean functions [11]. Canonicity allows
significant performance improvements for operations such as
equivalence checking or satisfiability checking. Additionally
ROBDDs are a highly effective representation for large com-
binational sets, which is crucial for model checking tasks [14].

Given an ROBDD representing some Boolean function a
CNF of this function can be generated as follows: Let P
be a path from the root node to the zero-terminal node. A
clause can be derived by the disjunction of the complement of
each variable occurring in P . In Figure 2 an example for this
ROBDD-to-CNF conversion is given. An ROBDD consisting
of three variables is depicted in Figure 2(a). The solid lines
represent the high-edges and the dashed lines represent the
low-edges. The CNF describing the same Boolean function as
the ROBDD is given in Figure 2(b). To generate the CNF all
paths from the root node (labeled with a) to the zero-terminal
node (labeled with 0) have to be traversed. Since there exist
three such paths in the ROBDD the CNF consists of three
clauses. The first clause is derived by applying the approach
explained above to the path consisting of all high-edges. The
second clause (along ahigh – blow – clow) and the third clause
(along alow – clow) are built the same way.

(a) (b)

(a + b + c)
(a + b + c)
(a + c)c
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Fig. 2. Example for the ROBDD-to-CNF conversion: (a) ROBDD, (b) CNF.

As mentioned above the number of clauses in the CNF
is equal to the number of zero-paths in the ROBDD. Un-
fortunately in the worst case the number of zero-paths is
exponential with respect to the number of nodes (e.g., the
EXOR function). A sophisticated approach which introduces
auxiliary variables in order to reduce the number of paths
in the ROBDD is proposed in [15]. The minimization of the
number of paths in an ROBDD using different sifting strategies
is described in [16].

III. IMPROVED CIRCUIT-TO-CNF TRANSFORMATION

The traditional approach to derive a CNF-representation
from a circuit graph is described in Section II. The CNF-
representation of every single gate is generated without con-
sideration of the adjacent circuit structure. It is obvious that
this concept, although simple, does not generate a compact
CNF-representation of the problem instance.

The goal of the proposed technique is to increase the effi-
ciency of the CNF-generation process itself and to improve the
properties of the generated problem instance with respect to
the succeeding reasoning process. This is accomplished by first
generating an ROBDD-based representation of specific parts
of the circuit graph, and later on deriving the corresponding
CNFs from these ROBDDs. The circuit is decomposed along
Fanout-Free Regions (FFRs) in the circuit graph, where each
FFR is treated as an individual sub-circuit. The D-chains
(cf. Subsection II-A) are build along FFRs, i.e. variables Gd

are only assigned to FFR-output gates.

A. Observations

The proposed approach is based on the following observa-
tions:

1) Kuehlmann and Krohm showed in [17] that industrial
circuits contain a large amount of functional redundan-
cies. A CNF derived from the corresponding ROBDD
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Fig. 3. Illustrative example.

will not reflect these redundancies. This yields a reduc-
tion in the number of clauses and the amount of CNF-
variables in the resulting problem instance.

2) The presented technique works similar to the concept
of supergates, where a set of gates in a circuit graph is
merged to a larger gate [18]. Thus the number of CNF-
variables required to generate the CNF of this set of
gates is significantly smaller than the amount of CNF-
variables produced by the traditional approach.

3) We observed that numerous FFRs or their subfunc-
tions are functionally equivalent. Treating FFRs as in-
dependent sub-circuits leads to an increased sharing
of ROBDD-structures for the representation of several
functionally equivalent circuit-structures. Note that we
refer to the functional equivalence of gates with respect
to the inputs of individual FFRs.

B. Illustrative Example

The following example clarifies the observations discussed
in Subsection III-A. The circuit graph depicted in Figure 3
contains two FFRs, named FFRh and FFRk corresponding to
the names of their output gates. The set of gates belonging to
the individual FFRs is indicated by dotted lines.

Considering FFRh it is easy to see that gates d, e, and
h implement the same Boolean function, b ∧ c, with respect
to the FFR-inputs b and c. Transforming these gates in the
traditional way would require 7 CNF-variables and 13 clauses.
The proposed techniques would instead generate only 3 CNF-
variables and 3 clauses. These improvements are explicitly
obtained through redundancy removal as described in the first
observation in Subsection III-A.

Figure 4 presents two alternative CNF-representations of the
Boolean function implemented by FFRh in Figure 3. Part (a)
of Figure 4 shows the CNF-representation obtained using the
traditional approach, where a CNF is generated for every sin-
gle gate in the circuit graph. This technique introduces a CNF-
variable for every single gate contained in the FFR and ignores
possible reductions with respect to adjacent gates. Figure 4(b)
contains the result of the ROBDD-to-CNF transformation,
where the CNF-representation is derived from the BDD-based
representation of FFRh as described in Subsection II-B.

Generating the CNF-representation of the Boolean function
implemented by FFRk in the traditional way would require 6
CNF-variables. As described in the second observation, it is
possible to reduce the number of required CNF-variables to 4

(d + b + c) · (d + b) · (d + c) ·
(e + b + c) · (e + b) · (e + c) ·
(h + f + g) · (h + f) · (h + g) ·
(f + d) · (f + d )·
(g + e) · (g + e )

(a)

(h + b + c) · (h + b) · (h + c)

(b)

Fig. 4. CNFs of the example: (a) Traditionally derived CNF, (b) ROBDD-
derived CNF.

by treating the FFR as a single but more complex gate.
As mentioned above every FFR is treated as an individ-

ual Boolean function. Variables used in the corresponding
ROBDD-representations are re-used for every individual FFR.
Let us assume that the ROBDD-variables x1, x2, and x3 are
assigned to the FFR-inputs a, h, and c, respectively, of FFRk.
Furthermore we assume the order of the ROBDD-variables to
be x1, x2, x3. Then the generated ROBDD-structure can be
partially re-used to also represent the function implemented
by FFRh, assuming that the FFR-inputs b and c are assigned
to x1 and x2, respectively. In practice this feature contributes
to a dramatic reduction of the number of generated ROBDD-
nodes and hence a significant improvement with respect to the
memory consumption.

C. Implementation Details

In the following we discuss issues regarding the implemen-
tation of the proposed technique.

The construction of the ROBDD-based representations is
accomplished during a preprocessing step. This means the
circuit-to-ROBDD conversion is performed only once. As
BDD package we choose to apply the well-known CUDD
package [19] version 2.4.1. CNF-representations of individual
FFRs are generated multiple times during a complete ATPG
run. In the current implementation the initially computed
ROBDDs will be repeatedly used during the entire ATPG run.
The derivation of the CNF from the corresponding ROBDD-
representation is discussed in Section II. The number of
literals contained in the generated CNF-clauses is significantly
reduced by using the prime implicants in the ROBDDs.
The mapping of ROBDD-variables onto the corresponding
CNF-variables is accomplished during every individual CNF-
generation.

During first experiments it was observed that the number
of prime implicants and hence the number of clauses de-
rived from an ROBDD often exceed the number of clauses
generated by the traditional approach. We observed that this



situation appears frequently for ROBDD-representations of
FFRs with more than 16 inputs. Therefore it was decided to
add two limitations in order to prevent such an increase of
the CNF size. Firstly a circuit-to-ROBDD transformation is
only performed for FFRs with 16 or less inputs. Secondly the
number of clauses generated by the traditional approach is
estimated. FFRs whose ROBDD-representation exceeds this
limit are not considered during the succeeding ROBDD-to-
CNF transformation. The estimation is based on the following
two assumptions:

• the FFR does only contain two-input gates, and
• the CNF-representation of every individual gate in the

FFR would require three clauses, e.g., AND, NAND, OR,
NOR.

Based on these assumptions the following cost function can
be formulated:

nclauses = 3(ninputs − 1),

where nclauses denotes the estimated number of clauses, and
ninputs represents the number of FFR-inputs. For example
the estimated amount of resulting clauses for a 4-input FFR
and for an 11-input FFR would be 9 clauses and 30 clauses,
respectively.

Furthermore, the current implementation does only con-
struct ROBDD-representations of FFRs which do not require
an encoding for four-valued logic.

IV. EXPERIMENTAL RESULTS

This section contains an experimental evaluation of the pro-
posed technique. We will demonstrate that the new approach
reduces the number of variables and the number of clauses
in the problem instance significantly. The obtained runtime
improvements confirm that the proposed optimizations result
in a considerable speed-up of the actual pattern generation.

The new technique was integrated into a prototype version
of the NXP Semiconductors ATPG tool AMSAL and applied
to a set of benchmarks consisting of four large industrial
designs. The used SAT-solver is MiniSat version 1.14 [10].
The experiments were performed on a PC equipped with a
2.4 GHz AMD Opteron 880 CPU and 64 GByte main memory
running RedHat Enterprise 4.

Table I provides a first set of experimental results. Columns
one to four contain information about the circuits, such as
benchmark name, number of inputs, number of outputs, and
number of targets, respectively. The set of targets contains
all remaining faults after fault collapsing. The name of the
benchmark reflects the approximate number of gates contained
in the circuit. For example benchmark p141k contains roughly
141,000 gates.

Building all ROBDDs for the tested designs as proposed in
Section III requires less than two seconds of CPU time and the
additional memory consumption does not exceed 50 MByte.
Further details about the number of FFRs transformed into
ROBDDs and the CNF-size savings are given in Table II.

TABLE I
BENCHMARK STATISTICS AND RESULTS OBTAINED BY THE PRESENTED
ALGORITHM IN COMPARISON TO THE TRADITIONAL APPROACH USING A

SET OF INDUSTRIAL BENCHMARKS.

runtime runtime
Benchmarks Inputs Output Targets without ROBDDs with ROBDDs

p141k 11,290 10,502 267,946 5:23h 3:44h
p267k 17,332 16,621 366,773 16:27m 10:53m
p330k 18,010 17,468 540,756 1:48h 1:38h
p418k 30,430 29,809 674,022 3:42h 3:33h

TABLE II
FURTHER RESULTS OBTAINED BY THE PRESENTED ALGORITHM IN

COMPARISON TO THE TRADITIONAL APPROACH.

% % %
Benchmarks treated saved saved

FFRs clauses CNF-vars
p141k 10.2 35.72 38.18
p267k 14.9 31.49 33.82
p330k 8.7 29.16 33.39
p418k 10.2 29.01 33.48

Although only a subset of FFRs in the circuit graph has
been considered, see second column in Table II, runtime
reductions of 30.65% and 33.84% for the designs p141k and
p267k, respectively, have been obtained. However, the overall
runtimes, listed in the most right column of Table I, do not
reflect the achieved improvements with respect to the actual
runtime required to find a sufficient input assignment. In order
to provide this information a set of diagrams is depicted which
contains individual SAT-runtimes for every computed target.
Figure 5 comprises four diagrams, which directly compare
the runtimes required by the SAT-solver with and without the
proposed preprocessing technique. Each entry represents the
computation times consumed for a single target. The runtime
is considerably reduced for a large number of targets.

The second set of diagrams, given in Figure 6, illustrates the
achieved improvements with respect to the number of clauses
to model the Boolean function implemented by an individual
FFR. Note that these results only reflect the clause reduction
of FFRs treated by the proposed technique. The number of
clauses is considerably reduced in nearly all cases. In partic-
ular for larger FFRs the number of clauses could be reduced
significantly. One reason for that is the higher likelihood of
redundancies contained in these FFRs. The reduction of the
number of clauses and the number of CNF-variables due to
redundancy removal is discussed in Section III. Columns three
and four in Table II report the percental reduction of the
number of clauses and the number of CNF-variables with
respect to all FFRs treated by the proposed technique.

V. CONCLUSIONS AND FUTURE WORK

The contribution of this paper is a new approach to
efficiently translate a circuit-based ATPG problem into a
corresponding CNF-representation. In contrast to traditional
approaches, which construct the CNF-representation of every
single gate without considering the adjacent circuit structure,
the new technique generates the CNF-representation of a set



Fig. 5. Runtime comparison for individual targets.

Fig. 6. Number of clauses contained in the CNF-representation of individual
FFRs.

of gates. The proposed technique employs ROBDDs in order
to reduce the resulting problem instance with respect to the
number of clauses and the amount of CNF-variables. The
experimental results confirm that the overall runtime of the
ATPG computation can be significantly reduced using the new
technique.

Our future work involves the application of the proposed
concept to other fault models, e.g. the gate delay fault model
and the path delay fault model. Additionally the technique can
be extended to handle multiple-valued logic which is contained
in many industrial circuits.
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