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Abstract

Csp-Casl is a combination of the process algebra Csp [11,22] and the algebraic
specification language Casl [7,1]. Its novel aspects include the combination of de-
notational semantics in the process part and, in particular, loose semantics for the
data types covering both concepts partiality and sub-sorting. Technically, this in-
tegration involves the development of a new co-called data-logic formulated as an
institution. This data-logic serves as a link between the institution underlying Casl
and the alphabet of communications necessary for the Csp semantics. Besides being
generic in the various denotational Csp semantics, this construction leads also to
an appropriate notion of refinement with clear relations to both data refinement in
Casl and process refinement in Csp.
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1 Introduction

Among the various frameworks for the description and modelling of reactive
systems, process algebra plays a prominent rôle. It has proven to be suitable
at the level of requirement specification, at the level of design specifications,
and also for formal refinement proofs [4]. However, process algebra does not
include development techniques for data types, although data is involved in all
of its specifications. Usually, data types are treated as given and fixed. This
can be overcome by adopting techniques from algebraic specification, which
is devoted to the formal description and development of abstract as well as of
concretely represented data types. Algebraic specification offers as commonly
used approaches initial and loose semantics [2]. The initial approach is appro-
priate only if the design process of a data type has already been completed,
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because it defines a particular realisation abstractly up to isomorphism. As
our main focus is the development of data types, we deal here with loose se-
mantics of data types, which describes a class of possible models, still to be
refined.

Combining process algebra and algebraic specification to form a new specifica-
tion technique aims at a fruitful integration of both development paradigms.
An important example of such a combination is Lotos [12]. Here, the mod-
elling of data relies on initial algebra semantics because of its intimate rela-
tion with term rewriting. Its semantical definition is of the operational style.
CCS-Casl [25] follows a similar approach, working with initial specifications
in Casl, restricting the language to conditional equational logic without sub-
sorting and partiality. A quite successful development is µCRL [10]. Here,
data types have a loose semantics and are specified in equational logic with
total functions. Again, the underlying semantics of the process algebraic part
is operational.

Specifically, we aim to enable the combination of process algebraic specification
of reactive behaviour and algebraic specification of data types at any required
level of detail. This allows the specifier to develop a system in a problem driven
approach, where data refinement and process refinement are chosen whenever
appropriate for a certain design decision.

Seen from the process algebraic side, our language combination includes the
traditional monomorphic data types like strings and different kinds of num-
bers. Furthermore, it also deals with polymorphic data types as for instance
the class of all fields. Maybe even more importantly Csp-Casl’s loose spec-
ification of data types corresponds naturally to requirement documents of
distributed systems in industrial contexts. Such documents often provide only
an overview of the data involved, while the presentation of further details for
a specific type is delayed to separate design documents. Csp-Casl is able
to match such a document structure by a library of specifications, where the
informal design steps are mirrored in terms of a formal refinement relation [8].

Technically, the semantics of Csp-Casl is defined in terms of institutions
and their representations. We motivate and design the specialised institution
FinCommSubPFOL= as data-logic of the process part. This institution can be
represented in SubPCFOL=, the institution underlying Casl. Therefore, this
whole construction allows us to use full Casl in order to specify data types,
which then are used to describe reactive systems in Csp.

This article concentrates on how to define the semantics of an abstract core
language of Csp-Casl, i.e. the translation of the concrete syntax of formulae
and processes into an abstract one, questions concerning static semantics,
customising the language by syntactical encodings are only briefly sketched.
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We first present short overviews on the languages involved: Csp and Casl as
the languages to be integrated, and a first sketch of how Core-Csp-Casl, the
core language of Csp-Casl, shall look like. We then discuss four fundamental
problems concerning the integration of data and processes. Motivated by this
study, we develop in Section 4 a data-logic for the process part which we for-
mulate as institution CommSubPFOL=. On the one side, this data-logic can
be represented in the Casl institution, on the other side it can be transformed
into an alphabet of communications in such a way, that the test on equality,
subset-relation, renaming by predicates on the alphabet can be characterized
by Casl formulae. Based on this data-logic, we define in Section 5 the seman-
tics of Core-Csp-Casl and show that the stated integration problems are
solved within this framework. Furthermore, we introduce the notion of Csp-
Casl refinement in terms of data refinement in Casl and process refinement
in Csp. Section 6 presents as concrete example the specification of a simple file
system in full Csp-Casl. This specification exercise demonstrates how to deal
with fixed points as well as data refinement and process refinement. Finally,
we relate Csp-Casl with other approaches.

2 What are Csp, Casl, and Csp-Casl?

2.1 The process algebra Csp

The process algebra Csp [11,22] is defined over a alphabet of communications
A. The syntax of basic Csp processes Proc, c.f. Figure 1, involves elements
a ∈ A as communications, subsets X ,Y ⊆ A as synchronisation sets in parallel
operators or for hiding certain communications, uses binary relations R ⊆ A×
A in order to describe renaming, and allows non-further specified formulae ϕ
in its conditional. As usual in process algebra, Csp introduces recursion in the
form of systems of process equations. Here, (parametrised) named processes
are defined in terms of basic process expressions including also process names.
In this case, the grammar of Figure 1 is extended by productions Proc ::=
ProcName | ProcName(x ), where x is a variable over A.

Csp is a language with many semantics, different in their style as well as in
their ability to distinguish between reactive behaviours [22]. There are opera-
tional, denotational and algebraic approaches, ranging from the simple finite
traces model T to such complex semantics as the infinite traces model with
failures/divergences U . Like the Csp syntax, all these semantics take the al-
phabet of communications A as a parameter.
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Proc ::= SKIP

| STOP

| a → Proc %% action prefix

| ?x : X → Proc %% prefix choice

| Proc o
9 Proc %% sequential composition

| Proc 2 Proc %% external choice

| Proc u Proc) %% internal choice

| Proc |[X ]| Proc) %% generalized parallel

| Proc |[X | Y ]| Proc %% alphabetized parallel

| Proc || Proc %% synchronous parallel

| Proc ||| Proc %% interleaving

| Proc \ X %% hiding

| Proc[[R]] %% relational renaming

| if ϕ then Proc else Proc %% conditional

Fig. 1. Syntax of basic Csp processes.

2.2 The algebraic specification language Casl

The algebraic specification language Casl [7,1] is separated into various levels,
including a level of basic specifications and a level of structured specifications.
Basic specifications essentially list signature items and axioms in an unstruc-
tured way, thus determining a category of first order models. Structured spec-
ifications serve to combine such basic specifications into larger specifications
in a hierarchical and modular fashion.

At the level of basic specifications, one can declare sorts (keyword sort), op-
erations (keyword op), and predicates (keyword pred) with given input and
result sorts. Sorts may be declared to be in a sub-sorting relation; if s is a
sub-sort of t , then terms of type s may be used wherever terms of type t are
expected. Sub-sorts may also be defined in the form s = {x : t • ϕ}, with the
effect that s consists of all elements of t that satisfy ϕ. Operations may be
declared to be partial by using a modified function arrow →?. Using the sym-
bols thus declared, one may then write axioms in first order logic. Moreover,
one can specify data types (keyword type), given in terms of alternatives con-
sisting of data constructors and, optionally, selectors, which may be declared
to be generated or free. Generatedness amounts to an implicit higher order
induction axiom and intuitively states that all elements of the data types are
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reachable by constructor terms (‘no junk’); freeness additionally requires that
all these constructor terms are distinct (‘no confusion’). Basic Casl specifi-
cations denote the class of all algebras which fulfil the declared axioms, i.e.
Casl has loose semantics.

At the level of structured specifications, one has features such as parametrised
named specifications, unions of specifications (keyword and), extensions of
specifications (keyword then), and renaming as well as hiding of symbols.
Furthermore, it is possible to choose initial semantics (keyword free) instead
of loose semantics.

2.3 The design of Core-Csp-Casl

Csp-Casl is a comprehensive language involving named and parametrised
specifications, communication channels and a wide variety of Csp operators.
For the moment, we concentrate on its semantically relevant part Core-Csp-
Casl.

Syntactically, a Core-Csp-Casl specification consists of a data part Sp,
which is a structured Casl specification and a process part P written in Csp,
but wherein Casl terms are used as communications, Casl sorts denote sets
of communications, relational renaming is described by a binary Casl predi-
cate, and Casl formulae occur in the conditional:

data Sp process P end

See the next Section for many concrete instances of this scheme.

In choosing the loose semantics of Casl, semantically, such a Core-Csp-
Casl specification is a family of process denotations for a Csp process, where
each model of the data part Sp gives rise to one process denotation.

The definition of the language Core-Csp-Casl is generic in the choice of a
specific Csp semantics. For example, all denotational Csp models 1 mentioned
in [22], or even the true concurrency semantics for TCsp of [3], based on event
structures, are possible parameters.

If a Csp-semantics can be used within our construction depends on the se-
mantics’ requirements concerning what we call here the data type of commu-
nications. This data type takes as values the alphabet of communications, but
provides additionally certain test functions. In this respect, our construction

1 Indeed, the construction seems to be possible also for the operational models. We
focus here on the denotational ones.
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provides as operations

• test on equality for arbitrary Casl terms (can two communications syn-
chronise?),

• test on membership for a Casl term concerning a Casl sort (does a com-
munication belong to a certain subset of the alphabet of communications?),

• test if a binary predicate holds between two Casl terms (are the terms in
a renaming relation?), and

• satisfiability of a Casl first order formula (is the formula of the conditional
construct true?).

As indicated in this list, we will formulate these test functions solely in Casl.
To this end, we use the institution FinCommSubPFOL= as a link between
Casl (or, more precisely, the Casl institution) and the alphabet of com-
munications A. This alphabet A is required by the various Csp denotational
semantics to describe their respective semantic domains, e.g. in case of the
trace-semantics the domain T of all prefixed closed, non-empty subsets of
AX∗. Thus, we will be able to translate the tests over the alphabet of commu-
nications, which the denotational Csp semantics need, into Casl formulae.

The above listed, seemingly small set of test operations allows for all denota-
tional semantics described in [22], namely trace-semantics, failure-divergence-
semantics and stable-failure-semantics.

3 Four Issues in integrating data and processes

The data types specified by algebraic specification consist of many-sorted al-
gebras. The data type of communications required by the process algebraic
semantics is a one-sorted algebra. Thus, in order to integrate data into pro-
cesses, we need to turn a many-sorted algebra into one set of values in such
a way, that the above described tests (equality, membership and satisfiabil-
ity) are closely connected with the original data type. We study this problem
here for many-sorted, total algebras, for sub-sorted, total algebras, for partial
algebras, and for sub-sorted, partial algebras.

3.1 Many-sorted, total algebras

There are two natural ways to define the alphabet of communications in terms
of the carrier sets of a Casl model: union and disjoint union of all carrier sets.
To illustrate the effect of both possibilities, consider the following Core-Csp-
Casl specification:
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data
sorts S, T
ops c : S; d : T

process
c→ Skip || d→ Skip

Its data part, written in Casl, provides two constants c and d of type S
and T , resp. The process part, written in Csp with Casl terms denoting
communications, combines two processes by synchronous parallel operator,
i.e. they have to agree on all actions.

The question is, shall c and d synchronise or not? In all the various Csp
semantics, c and d synchronise iff they are equal. Now consider two isomorphic
Casl models A and B of the data part:

A(S ) = {∗}, A(T ) = {+}, A(c) = ∗, A(d) = +

B(S ) = B(T ) = {]}, B(c) = B(d) = ]

Choosing the union of all carrier sets as alphabet has the effect, that c and d
do not synchronise for algebra A while they synchronise for algebra B. Thus,
isomorphic algebras give rise to different behaviour. Therefore, we define the
alphabet to be the disjoint union — with the consequence that c and d do
not synchronise.

3.2 Sub-sorted, total algebras

This decision raises a problem if we take Casl sub-sorting into account. Mod-
ifying the data part of our example such that S is a sub-sort of T , and stating
that c and d are equal in all models, we would expect these two events to
synchronise:
data

sorts S < T
ops c : S; d : T
• c = d

process
c→ Skip || d→ Skip

But in our current approach, this is not the case for any model. For instance,
the derived communication alphabet {(S , ]), (T , ])} of algebra B provides two
different elements as semantics of c and d , respectively. The solution is to
define a suitable notion of equality on the alphabet in terms of an equiva-
lence relation. In our simple example, we can choose the smallest equivalence
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relation ∼ with

a ∈ sM, b ∈ tM, emM
<s>,t(a) = b =⇒ (s , a) ∼ (t , b).

In the general case, this will become more complex. In this definition, M
is a model of the data part, s and t are arbitrary sort names, a and b are
elements of the respective carrier sets, and em<s>,t is the implicitly defined
Casl embedding function from the carrier set of s into the carrier set of t .
For the algebra B of our example, this construction yields the one element set
{[(S , ]), (T , ])]} ensuring that c and d synchronise – as they do in all models
of the data part.

3.3 Partial algebras

Up to now, we studied only defined Casl terms. But what shall be the se-
mantics of an undefined term, for instance 42/0 of sort Integer? In Casl,
terms arise as part of formulae. Here, the enclosing formula of an undefined
term is evaluated to false. In Core-Csp-Casl, however, terms are also part
of processes. Thus, we need an interpretation also in this context.

There are several ways to deal with this question: first of all, one could for-
bid partial operations (at least in the process part). But this would result
in an inconvenient language. A second possibility would be to formulate an
external well-formedness condition like ‘A Core-Csp-Casl specification is
well-formed if all terms in the process part are defined’. The trouble is, in
order to check such a condition, we need the semantics of the process part of
a Core-Csp-Casl specification, which only can be determined if all terms in
the process part are defined. Thus, in order to check this condition, we need
a semantics. Furthermore, one could work with an internal well-formedness
condition by prescribing a certain behaviour for the case that an undefined
term arises. The natural choice would be 2

t → P := Chaos , if ¬defined(t).

But as Chaos is the process which may communicate or reject any event, this
means that one has to prove first the absence of undefined terms in the process
part before it is possible to establish any property concerning the behaviour
of a specification.

2 Note that choosing Stop instead of Chaos would violate elementary algebraic
properties of Csp. Setting t → P := Stop if ¬defined(t) has e.g. as consequence
b → Skip = a → Skip ||| b → Skip 6= a → b → Skip 2 b → a → Skip = b → Stop
if ¬defined(a), defined(b).
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Our solution is to interpret undefined terms by an extra communication ⊥,
i.e. we consider the definedness of a term to be observable. This is natural,
as Casl includes a definedness predicate def t, which holds iff the term t is
defined. That is, the definedness of terms is observable anyway in Core-Csp-
Casl 3 .

But the main motivation behind this design decision is separation of concerns.
Process algebra can be seen as a mechanism which takes a data type as its
parameter and uses it in order to describe a certain reactive system. In this
view, the occurrence of an undefined term indicates either an open design
decision concerning the data type – i.e. an issue independent of the reactive
behaviour of the system, or a non adequate use of the data type within the
process algebra – i.e. an ‘interface problem’ between the world of data types
and reactive behaviours. None of those problems should have an influence on
the mechanism of process algebra itself.

The important point is that even in the presence of the above described flaws,
our solution allows the specifier to study and develop the specified system
further. This is possible thanks to the fact that the process algebra itself is
not influenced by the occurrence of undefined terms. That is, the specifier can
work with a meaningful system, where undefined terms do not directly lead
to Chaos . Take for example the following Core-Csp-Casl specification with
a totally undefined function f :
data

sorts S, T
op f : S →? T ;
• ∀x : S • ¬def f(x)

process
?x : S → f(x) → Skip |[T ]| ?y : T → if def y then P else Q

Here, the encoding with Chaos yields the equivalent process ?x : s → Chaos ,
while in our approach with the extra communication we obtain the process
?x : s → f (x ) → Q . As the process Chaos includes the possibility of deadlock,
the first process can deadlock after the first communication, which is not the
case for the second process.

In our approach, open design decisions of the data type can be postponed
until it is convenient to make them. And the ‘interface problem’ can be ad-
dressed, for instance, by refinement steps in the process part which exclude
the behaviour leading to ‘misuse’ of the data type. Thus, the overall rôle of ⊥
is to be a problem indicator. This is independent of the chosen development
paradigm in Casl concerning partiality.

3 The Casl definedness predicate can be used as a formula in the Csp conditional
choice construct of processes.
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3.4 Sub-sorted, partial algebras

In the presence of both, sub-sorting and partiality, the communications ⊥ need
a further consideration. When shall they synchronise? This can be studied with
the following example:
data

sorts S, T
ops a : S; b : T
ops f : S →? S; g : T →? T
• ∀x : S • ¬def f(x)
• ∀x : T • ¬def g(x)
free type U ::= sort S | sort T

process
f(a) → Skip || g(b) → Skip

Here, the sort U is a super-sort of S and T . Defining U as a free type has as a
consequence, that the elements of S and T embedded into u are never equal.
Thus, no defined values of sort S and sort T can synchronise. Following our
guideline ‘separation of concerns’, this would mean that also f (a) and g(b),
which denote the undefined communications ⊥ of the sorts S and T , cannot
synchronise.

Unfortunately, the definition ‘undefined elements of different sorts with com-
mon super-sort synchronise iff there exists defined elements in these sorts
which can synchronise’ makes the intended equivalence relation intransitive:
Given three sorts A,B ,C with a common super-sort S , such that in S we have
a = b1, b2 = c, where a : A, b1, b2 : B , c : C , it is not necessarily the case that
there exist elements a ′ : A and c ′ : C with a ′ = c ′ in S .

Thus, we will define that undefined elements of different sorts are equivalent
iff the sorts belong to the same connected component in the graph of sub-sort
relations.

4 The data-logic of the process part

We formalise the above proposal in terms of a data-logic of the process part.
To this end, we first introduce the institutions

• PFOL= (partial first order logic with equality) and
• SubPFOL= (sub-sorted partial first order logic with equality)

following closely [16], where we mainly summarise the central definitions.
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Based on these notions, we define a new institution with the name
CommSubPFOL= (communications described in sub-sorted partial first order
logic with equality) which we use as data-logic of the process part of a Core-
Csp-Casl specification. We show that there is an institution representation
from FinCommSubPFOL= to SubPFOL=, where FinCommSubPFOL= is the
restriction of CommSubPFOL= to signatures with only finitely many sorts.

Finally, we present a construction how to obtain an alphabet of communica-
tions out of a CommSubPFOL= model. The interesting point is that those
properties of this alphabet, which are relevant for the denotational Csp se-
mantics, can be studied already in terms of CommSubPFOL= formulae. For
this construction, it is necessary to restrict sub-sorting to relations with ‘local
top elements’.

The algebraic specification language Casl has SubPCFOL= as underlying
institution. The here described institution SubPFOL= is obtained from
SubPCFOL= by omitting sort generation constraints. Thus, we can use Casl
to represent the data-logic FinCommSubPFOL= of the process part.

For the definition, discussion, and examples of both, institutions and institu-
tion representations, we refer to [9,16].

4.1 The institution PFOL=

Signatures A many-sorted signature Σ = (S ,TF ,PF ,P) consists of

• a set S of sorts,
• two S ∗×S -sorted families TF = (TFw ,s)w∈S∗,s∈S and PF = (PFw ,s)w∈S∗,s∈S

of total function symbols and partial function symbols, respectively, such that
TFw ,s ∩ PFw ,s = ∅ for each (w , s) ∈ S ∗ × S , and

• a family P = (Pw)w∈S of predicate symbols.

Given a function f : A → B , let f ∗ : A∗ → B∗ be its component-wise extension
to finite strings.

Given two signatures Σ = (S ,TF ,PF ,P) and Σ′ = (S ′,TF ′,PF ′,P ′), a many-
sorted signature morphism σ : Σ → Σ′ consists of

• a map σS : S → S ′,
• a map σF

w ,s : TFw ,s ∪ PFw ,s → TF ′
σS∗ (w),σS (s)

∪ PF ′
σS∗ (w),σS (s)

preserving
totality, for each w ∈ S ∗, s ∈ S , and

• a map σP : Pw → PσS∗ (w).
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Models Given a many-sorted signature Σ = (S ,TF ,PF ,P), a many-sorted
Σ-model M consists of

• a non-empty carrier set Ms for each s ∈ S ,
• a partial function (fw ,s)M : Mw → Ms for each function symbol f ∈ TFw ,s ∪

PFw ,s , the function being total for f ∈ TFw ,s , and
• a predicate (pw)M for each predicate symbol p ∈ Pw .

A many-sorted Σ-homomorphism h : M → N is a family of functions h =
(hs : Ms → Ns)s∈S with the property that for all f ∈ TFw ,s ∪ PFw ,s and
(a1, . . . , an) ∈ Mw with (fw ,s)M (a1, . . . , an) defined, we have

hs((fw ,s)M (a1, . . . , an)) = (fw ,s)N (hs1(a1), . . . , hs1(an)),

and for all p ∈ Pw and (a1, . . . , an) ∈ Mw ,

(a1, . . . , an) ∈ (pw)M implies (hs1(a1), . . . , hs1(an)) ∈ (pw)N .

Let σ : Σ → Σ′ be a a many-sorted signature morphism, M ′ be a Σ′-model.
Then the reduct M ′

|σ =: M of M ′ is the Σ-model with

• Ms := M ′
σS (s) for all s ∈ S ,

• (fw ,s)M := (σF
w ,s(f ))M ′ for all f ∈ TFw ,s ∪ PFw ,s , and

• (pw)M := (σP
w (p))M ′ for all p ∈ Pw .

Given a many-sorted Σ′-homomorphism h ′ : M ′ → N ′, its reduct h ′|σ : M ′
|σ →

N ′
|σ is defined by

(h ′|σ)s := h ′σS (s) for all s ∈ S .

Sentences Given a many-sorted signature Σ = (S ,TF ,PF ,P), a variable
system over Σ is an S -sorted, pairwise disjoint family of variables X = (Xs)s∈S .
The sets TΣ(X )s of many-sorted Σ-terms of sort s , s ∈ S , with variables in
X are the least sets satisfying

• x ∈ TΣ(X )s , if x ∈ Xs , and
• fw ,s(t1, . . . , tn) ∈ TΣ(X )s ,

if ti ∈ TΣ(X )si (i = 1 . . . n), f ∈ TFw ,s ∪ PFw ,s , w = s1 . . . sn .

Given a total variable valuation ν : X → M , the term evaluation ν] : TΣ(X ) →
?M is inductively defined by

• ν]
s(x ) := ν(x ) for all x ∈ Xs and all s ∈ S .
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• ν]
s(fw ,s(t1, . . . , tn)) :=



(fw ,s)M (ν]
s1

(t1), . . . , ν
]
sn (tn)) ν]

s(ti) defined

(i = 1 . . . n),

(fw ,s)M (ν]
s1

(t1), . . . , ν
]
sn (tn)) defined

undefined otherwise

for all f ∈ TFw ,s ∪ PFw ,s , where w = s1 . . . sn , and ti ∈ TΣ(X )si , for
i = 1, . . . n.

The set AFΣ(X ) of many-sorted atomic Σ-formulae with variables in X is the
least set satisfying the following rules:

(1) pw(t1, . . . tn) ∈ AFΣ(X ), if ti ∈ TΣ(X )si , pw ∈ Pw , w = s1 . . . sn ∈ S ∗,
(2) t1

e
= t2 ∈ AFΣ(X ), if t1, t2 ∈ TΣ(X )s , s ∈ S (existential equations),

(3) t1 = t2 ∈ AFΣ(X ) if t1, t2 ∈ TΣ(X )s , s ∈ S (strong equations),
(4) def t ∈ AFΣ(X ), if t ∈ TΣ(X ) (definedness assertions),

The set FOΣ(X ) of many-sorted first-order Σ-formulae with variables in X is
the least set satisfying the following rules:

(1) AFΣ(X ) ⊆ FOΣ(X ),
(2) F ∈ FOΣ(X ) (read: false),
(3) ϕ ∧ ψ ∈ FOΣ(X ), if ϕ, ψ ∈ FOΣ(X ),
(4) ϕ⇒ ψ ∈ FOΣ(X ), if ϕ, ψ ∈ FOΣ(X ),
(5) ∀ x : s • ϕ ∈ FOΣ(X ), if ϕ ∈ FOΣ(X ∪ {x : s}), s ∈ S ,

A many-sorted Σ-sentence is a closed many-sorted first order formula over Σ.

Concerning the definition of the translation of many-sorted Σ sentences along
a many-sorted Σ-morphism we refer to [16].

Satisfaction The satisfaction of a many sorted first-order formula ϕ ∈
FOΣ(X ) relative to a valuation ν : X → M is defined inductively over the
structure of ϕ :

• ν 
 pw(t1, . . . tn) iff ν](ti) is defined for i = 1 . . . n and (ν](t1), . . . , ν
](tn)) ∈

(pw)M .
• ν 
 t1

e
= t2 iff ν](t1) and ν](t2) are both defined and equal.

• ν 
 t1=t2 iff ν](t1) and ν](t2) are both undefined, or both are defined and
equal.

• ν 
 def t iff ν](t) is defined.
• not ν 
 F .
• ν 
 ϕ ∧ ψ iff ν 
 ϕ and ν 
 ψ.
• ν 
 ϕ⇒ ψ iff ν 
 ϕ implies ν 
 ψ.
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• ν 
 ∀ x : s • ϕ iff for all valuations ζ : X ∪ {x : s} → M with ζ(y) = ν(y)
for y 6= x : s , y ∈ X , we have ζ 
 ϕ.

M |= ϕ holds for a many-sorted Σ-model and a many-sorted formula ϕ, iff
ν 
 ϕ for all variable valuations ν into M .

[16] proves the satisfaction condition of PFOL=.

4.2 The institution SubPFOL=

Signatures A sub-sorted signature Σ = (S ,TF ,PF ,P ,≤) consists of a
many-sorted signature (S ,TF ,PF ,P) together with a reflexive and transitive
sub-sort relation ≤S⊆ S ×S . The relation ≤S extends point wise to sequences
of sorts. We drop the subscript S when it is obvious from the context.

For a sub-sorted signature Σ = (S ,TF ,PF ,P ,≤) we define overloading re-
lations ∼F and ∼P for function and predicate symbols, respectively. Let
f : w1 → s1, f : w2 → s2 ∈ TF ∪ PF . Then

f : w1 → s1 ∼F f : w2 → s2

iff there exist w ∈ S ∗, s ∈ S such that w ≤ w1,w ≤ w2, s1 ≤ s , and s2 ≤ s .
Let p : w1, p : w2 ∈ P . Then

p : w1 ∼P p : w2

iff there exists w ∈ S ∗ such that w ≤ w1 and w ≤ w2.

A sub-sorted signature morphism σ : Σ → Σ′ is a many-sorted signature
morphism that preserves the sub-sort relation and the overloading relations,
i.e. for σ hold:

p1 s1 ≤ s2 implies σS (s1) ≤ σS (s2) for all s1, s2 ∈ S
(preservation of the sub-sort relation),

p2 f : w1 → s1 ∼F f : w2 → s2 implies σF
w1,s1

(f ) = σF
w2,s2

(f )
for all f ∈ TF ∪ PF
(preservation of the overloading relation for functions), and

p3 p : w1 ∼P p : w2 implies σP
w1

(p) = σP
w2

(p) for all p ∈ P
(preservation of the overloading relation for predicates).

With each sub-sorted signature Σ = (S ,TF ,PF ,P ,≤) we associate a many-
sorted signature Σ̂ = (Ŝ , T̂F , P̂F , P̂), which extends the underlying many-
sorted signature (S ,TF ,PF ,P) with

• a total injection function symbol inj : s → s ′ for each pair of sorts s ≤S s ′,
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• a partial projection function symbol pr : s ′ →?s for each pair of sorts
s ≤S s ′, and

• an unary membership predicate symbol εss′ : s ′ for for each pair of sorts
s ≤S s ′.

Given a sub-sorted signature morphism σ : Σ → Σ′, we can extend it to a
many-sorted signature morphism σ̂ : Σ̂ → Σ̂′ by just mapping the injections,
projections and memberships in Σ̂ to the corresponding injections, projections
and memberships in Σ̂′.

Models Sub-sorted Σ-models are many-sorted Σ̂-models satisfying in PFOL=

the following set of axioms Ĵ (Σ) (where all variables are universally quanti-
fied):

(1) injs,s(x )
e
= x for s ∈ S .

(2) injs,s′(x )
e
= injs,s′(y) ⇒ x

e
= y for s ≤ s ′.

(3) injs′,s′′(injs,s′(x ))
e
= injs,s′′(x ) for s ≤ s ′ ≤ s ′′.

(4) prs′,s((injs,s′(x ))
e
= x for s ≤ s ′.

(5) prs′,s(x )
e
= prs′,s(y) ⇒ x

e
= y for s ≤ s ′.

(6) εss′(x ) ⇔ def prs′,s(x ) for s ≤ s ′.
(7) injs′,s(fw ′,s′(injs1,s′1

(x1), . . . , injsn ,s′n
(xn))) =

injs′′,s(fw ′′,s′′(injs1,s′′1
(x1), . . . , injsn ,s′′n

(xn)))
for fw ′,s′ ∼F fw ′′,s′′ ,
where w ≤ w1, w ≤ w2,w = s1 . . . sn ,w

′ = s ′1 . . . s
′
n ,w

′′ = s ′′1 . . . s
′′
n .

(8) pw(injs1,s′1
(x1), . . . , injsn ,s′n

(xn)) ⇔
pw ′′(injs1,s′′1

(x1), . . . , injsn ,s′′n
(xn))

for pw ′ ∼P pw ′′ ,
where w ≤ w1, w ≤ w2,w = s1 . . . sn ,w

′ = s ′1 . . . s
′
n ,w

′′ = s ′′1 . . . s
′′
n .

Sub-sorted Σ-morphisms are many-sorted Σ̂-morphisms.

Sentences The sub-sorted formulae over Σ are many-sorted first order for-
mulae over Σ̂. A sub-sorted Σ-sentence is a many-sorted first order sentence
over Σ̂.

Satisfaction The satisfaction relations ν 
 ϕ and M |= ϕ are defined as in
PFOL=.

[16] proves the satisfaction condition of SubPFOL=.
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4.3 The institution CommSubPFOL=

The definition of the institution CommSubPFOL= provides the data-logic of
the process part of a Csp-Casl specification. It can be viewed as a speciali-
sation of the institution SubPFOL=.

Concerning the set of formulae, the main difference is that CommSubPFOL=

allows equations t
e
= t ′ and t = t ′, where t and t ′ are terms of arbitrary sorts.

To prove the satisfaction condition, this makes it necessary to strengthen the
definition of a signature morphisms. Concerning models, in CommSubPFOL=

each carrier set includes an element ⊥ to deal explicitly with undefinedness.
Thus, the distinction between total and partial functions in CommSubPFOL=

is artificial. We keep it in order to have an easy and straight forward repre-
sentation of FinCommSubPFOL= in SubPFOL=.

At certain points we indicate how our definitions simplify in the absence of
true sub-sorting, indicating how a data-logic for partiality would look like.
The here presented institution CommSubPFOL= deals with both, partiality
and sub-sorting. The definition of data-logics, which cover none or only one of
these two aspects, would result in a system of institutions with representations
relating them with each other, with the here introduced CommSubPFOL=,
as well as with different Casl sub-institutions. Here, we refrain from this
approach as our aim is to define an expressive combination of Csp and Casl.

Signatures A data-logic signature is a sub-sorted signature
Σ = (S ,TF ,PF ,P ,≤).

A data-logic signature morphism σ : Σ → Σ′ is a sub-sorted signature mor-
phism that additionally reflects the sub-sort relation and does not extend the
sub-sort relation, i.e. it is a many-sorted signature morphism which besides
the three preservation conditions p1, p2, p3 defined in section 4.2 also fulfils

refl σS (s1) ≤S ′ σS (s2) implies s1 ≤S s2 for all s1, s2 ∈ S
(reflection of the sub-sort relation) and

non-ext σS (s1) ≤S ′ u ′ ∧ σS (s2) ≤S ′ u ′ implies that there exists a sort u ∈ S
with σ(u) = u ′ for all s1, s2 ∈ S and u ′ ∈ S ′ (non-extension).

Lemma 1 Data-logic signature morphisms compose.

PROOF. Let σ1 : Σ1 → Σ2 and σ2 : Σ2 → Σ3 be data-logic signature mor-
phisms. As sub-sorted signatures and sub-sorted signature morphisms form
a category, σ := σ2 ◦ σ1 has the properties p1, p2, p3. The proof of refl
is trivial. Concerning non-ext let s1, s2 ∈ S1, u3 ∈ S3 and σ(s1) ≤ u3 as
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well as σ(s2) ≤ u3. Thanks to non-extension of σ2, there exists u2 ∈ S2 with
σ2(u2) = u3. Applying the reflection property of σ2 yields σ1(s1) ≤ u2 as well
as σ1(s2) ≤ u2. Thanks to non-extension of σ1, there exists u1 ∈ S2 with
σ1(u1) = u2. Now σ(u1) = σ2(σ1(u1)) = σ2(u2) = u3.

Remark 2 Note that in the absence of true sub-sorting, i.e. ≤S= idS , ≤S ′=
idS ′, the additional conditions refl and non-ext are equivalent to injectivity
on sorts.

PROOF. Let σ : Σ → Σ′ be a sub-sorted signature morphism, where ≤S=
idS , ≤′

S= id ′S .

“⇐” Let σS be injective. refl is a direct consequence of≤S= idS , ≤S ′= idS ′ . To
show non-ext, let s1, s2 ∈ S , u ∈ S ′ such that σS (s1) ≤S ′ u ′ and σS (s2) ≤S ′ u ′.
As ≤S ′= idS ′ , we have σS (s1) = u ′ = σS (s2), i.e. with u := s1 we obtain
σS (u) = u ′.

“⇒” Let σ have the property refl. Let σS (s1) = σS (s2). Then we have also
σS (s1) ≤S ′ σS (s2). Thanks to reflection, we obtain s1 ≤S s2, thus s1 = s2.

Models A data-logic Σ-model M is the strict extension M := ext(C ) of an
ordinary many-sorted model C over Σ̂ = (Ŝ , T̂F , P̂F , P̂) which satisfies in
PFOL= the set of axioms Ĵ (Σ) defined in section 4.2. Given such a Σ̂-model
C , its strict extension is defined by

• Ms = ext(Cs) := Cs ∪ {⊥} for all s ∈ Ŝ , where ⊥ 6∈ Cs for all s ∈ Ŝ ,
• (fw ,s)M (x1, . . . , xn) =

(fw ,s)ext(C )(x1, . . . , xn) :=


(fw ,s)C (x1, . . . , xn) if xi ∈ C (si)(i = 1 . . . n) and

(fw ,s)C (x1, . . . , xn) is defined

⊥ otherwise

for all f in T̂Fw ,s ∪ P̂Fw ,s , and

• (pw)M = (pw)ext(C ) := (pw)C for all p ∈ P̂w .

This construction leads to a one-one correspondence between ordinary many-
sorted models over Σ̂ satisfying Ĵ (Σ) in PFOL= and Σ-models in
CommSubPFOL=: Given a model C , its extension ext(C ) =: M is uniquely
determined. Forgetting the strict extension results again in C .

Concerning the properties defined in the set of axioms Ĵ (Σ), the extended
models behave in the expected way:

Lemma 3 In the extended models M holds:
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(1) (injs,s)M (x ) = x for x ∈ Ms , s ∈ S .
(2) (injs,s′)M (x ) = (injs,s′)M (y) ⇒ x = y for x ∈ Ms , y ∈ Ms′ , s ≤ s ′.
(3) (injs′,s′′)M ((injs,s′)M (x )) = (injs,s′′)M (x ) for x ∈ Ms , s ≤ s ′ ≤ s ′′.

(4) (prs′,s)M (((injs,s′)M (x ))
e
0 x for x ∈ Ms , s ≤ s ′.

(5) (prs′,s)M (x ) = (prAs ′, s)M (y) ⇒ x = y for x , y ∈ Ms′ , s ≤ s ′.
(6) (εss′)M (x ) ⇔ (prs′,s)M (x ) 6= ⊥ for x ∈ Ms , s ≤ s ′.
(7) (injs′,s)M ((fw ′,s′)M ((injs1,s′1

)M (x1), . . . , (injsn ,s′n
)M (xn))) =

(injs′′,s)M ((fw ′′,s′′)M ((injs1,s′′1
)M (x1), . . . , (injsn ,s′′n

)M (xn)))
for xi ∈ Msi , i = 1 . . . n, fw ′,s′ ∼F fw ′′,s′′ ,
where w ≤ w1, w ≤ w2,w = s1 . . . sn ,w

′ = s ′1 . . . s
′
n ,w

′′ = s ′′1 . . . s
′′
n .

(8) (pw)M ((injs1,s′1
)M (x1), . . . , (injsn ,s′n

)M (xn))) ⇔
(pw ′′)M ((injs1,s′′1

)M (x1), . . . , (injsn ,s′′n
)M (xn))

for pw ′ ∼P pw ′′ ,
where w ≤ w1, w ≤ w2,w = s1 . . . sn ,w

′ = s ′1 . . . s
′
n ,w

′′ = s ′′1 . . . s
′′
n .

PROOF. Simple case distinctions between x = ⊥ and x 6= ⊥.

Data-logic Σ-morphisms are extended many-sorted Σ̂-morphisms. Given a
many-sorted morphism ĥ : C → C ′ between two many-sorted models C ,C ′

over Σ̂, which both satisfy Ĵ (Σ) in PFOL=, then ext(ĥ) =: h : M → M ′ with

hs(x ) = ext(ĥs)(x ) :=

 ĥs(x ) if x ∈ C (s)

⊥ if x = ⊥

is a data-logic Σ-morphism between M and M ′, where M = ext(C ) and
M ′ = ext(C ′) As this extension is again uniquely determined, there is also a
one-one correspondence between the many-sorted Σ̂-morphisms and data-logic
Σ-morphisms.

Lemma 4 (Composition of data-logic Σ-morphisms) Let h : M → M ′

and h ′ : M ′ → M ′′ be Data-logic Σ-morphisms with underlying morphisms
ĥ : C → C ′ and ĥ ′ : C ′ → C ′′, respectively. Then

h ′ ◦ h = ext(ĥ ′ ◦ ĥ)

PROOF. Let x = ⊥ ∈ Ms . Then (h ′ ◦ h)s(⊥) = h ′s(hs(⊥)) = h ′s(⊥) = ⊥ =
(ext(ĥ ′ ◦ ĥ))(⊥).

Let x 6= ⊥ ∈ Ms . Then (h ′ ◦ h)s(x ) = h ′s(hs(x )) = h ′s(ĥs(x )) = ĥ ′s(ĥs(x )) =
(ĥ ′s ◦ ĥs)(x ) = (ext(ĥ ′s ◦ ĥs))(x ).
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Reducts are defined as the extended Σ̂-reducts. Let σ : Σ → Σ′ be a data-
logic signature morphism, let σ̂ : Σ̂ → Σ̂′ be the corresponding extended
signature morphism. Let M ′ be a Σ′-model with underlying Σ̂′-model C ′.
Then in SubPFOL= the reduct C = C ′

|σ̂ of C ′ is given by

• Cs = C ′
σ̂(s) for all s ∈ Ŝ ,

• (fw ,s)C = (σ̂F
w ,s(f ))C ′ for all f ∈ (T̂Fw ,s ∪ P̂Fw ,s), and

• (pw)C = (σ̂P
w (p))C ′ for all p ∈ P̂w .

As SubPFOL= is an institution and every CommSubPFOL= signature mor-
phism is also a SubPFOL= signature morphism, C is a Σ̂-model in SubPFOL=,
i.e. it satisfies the set of axioms Ĵ (Σ̂). Thus defining the reduct as M = M ′

|σ̂ :=
ext(C ) yields a Σ-model in CommSubPFOL=.

Note that with this definition the models M and M ′ relate in the expected
way. We have

• Ms = M ′
σ̂(s) for all s ∈ Ŝ ,

• (fw ,s)M = (σF
w ,s(f ))M ′ for all f ∈ (T̂Fw ,s ∪ P̂Fw ,s), and

• (pw)M = (σP
w (p))M ′ for all p ∈ P̂w .

Given a Σ′-morphism h ′ : M ′
1 → M ′

2, there exists a unique underlying Σ̂′-
morphism ĥ ′ : C ′

1 → C ′
2. Its reduct ĥ ′|σ : C ′

1|σ → C ′
2|σ is defined by

(ĥ ′|σ)s := ĥ ′σ(s) (s ∈ Ŝ )

Again, as SubPFOL= is an institution and every CommSubPFOL= signature
morphism is also a SubPFOL= signature morphism, ĥ ′|σ is a Σ̂-morphism in
SubPFOL=. Thus we know that h ′|σ : M ′

1|σ → M ′
2|σ with

h ′|σ := ext(ĥ ′|σ)

is a Σ-morphism.

Sentences The sets TΣ̂(X )s of terms of sort s ∈ S over Σ are the many

sorted sets of PCFOL= terms of sort s ∈ S over Σ̂ = (Ŝ , T̂F , P̂F , P̂). Note
that we use Σ̂ as index of the term set over Σ. This shall indicate that also
the injection and projection functions may appear in the terms. Again, each
term belongs to unique sort.

Given a variable valuation ν : X → M , the term valuation ν] : TΣ̂(X ) → M
is inductively defined by:

• ν]
s(x ) := ν(x ) for all x ∈ Xs and all s ∈ S .
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• ν]
s(fw ,s(t1, . . . , tn)) := (fw ,s)M (ν]

s1
(t1), . . . , ν

]
sn (tn)) for all f ∈ TFw ,s ∪ PFw ,s ,

where w = s1 . . . sn , and ti ∈ TΣ(X )si , for i = 1, . . . n.

Note that term evaluation in CommSubPFOL= is a total function thanks to
the encoding of partiality in terms of the ⊥ elements.

The set AFΣ̂(X ) of atomic Σ-formulae with variables in X is the least set
satisfying the following rules:

(1) pw(t1, . . . tn) ∈ AFΣ̂(X ), if ti ∈ TΣ̂(X )si , ps ∈ Pw , i = 1, . . . , n, w =
s1 . . . sn ∈ S ∗,

(2) t
e
= t ′ ∈ AFΣ̂(X ), if t , t ′ ∈ TΣ̂(X ) (existential equations),

(3) t = t ′ ∈ AFΣ̂(X ), if t , t ′ ∈ TΣ̂(X ) (strong equations),
(4) def t ∈ AFΣ̂(X ), if t ∈ TΣ̂(X ) (definedness assertions),
(5) t in s ′ ∈ AFΣ̂(X ), if t ∈ TΣ̂(X )s , s , s

′ ∈ S (element relation).

Again, we use the associated signature Σ̂ as index for AFΣ̂(X ) of the atomic
Σ-formula indicating that also the membership predicates εss′ ∈ Ps′ lead to
formulae.

CommSubPFOL= extends the set of atomic formulae available in PFOL= in
the following sense: equations can be formed by any pair of terms (instead of
pairs where both terms have the same sort).

The set FOΣ̂(X ) of first-order Σ-formulae with variables in X is the least set
satisfying the following rules:

(1) AFΣ̂(X ) ⊆ FOΣ̂(X ),
(2) F ∈ FOΣ̂(X ) (read: false),
(3) ϕ ∧ ψ ∈ FOΣ̂(X ), if ϕ, ψ ∈ FOΣ̂(X ),
(4) ϕ⇒ ψ ∈ FOΣ̂(X ), if ϕ, ψ ∈ FOΣ̂(X ),
(5) ∀ x : s • ϕ ∈ FOΣ̂(X ), if ϕ ∈ FOΣ̂(X ∪ {x : s}), s ∈ S ,

A data-logic Σ-sentence is a closed first order formula over Σ.

In order to define the translation of sentences along a data-logic signature
morphism σ : Σ → Σ′, first we introduce a translation of a variable system X
along σ:

σ(X )s′ :=
⋃

σS (s)=s′

Xs .

Then we define how to translate terms over X into terms over σ(X ) by a
function ζσ,X : TΣ̂(X ) → TΣ̂′(σ(X )):

• (ζσ,X )s(x : s) := x : σS (s) for all x ∈ Xs and all s ∈ S .
(This defines a function as the sets Xs are pairwise disjoint).

• (ζσ,X )s(fw ,s(t1, . . . , tn)) := σF
w ,s(fw ,s)((ζσ,X )s1(t1), . . . , (ζσ,X )sn (tn)) for all f ∈
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TFw ,s ∪ PFw ,s , where w = s1 . . . sn , and ti ∈ TΣ̂(X )si , for i = 1, . . . n.

Finally, this translation is extended to formulae:

• σ(t) := (ζσ,X )(t) if t is a Σ̂-term in variables X ,
• σ(pw(t1, . . . tn)) := σp

w(pw)(σ(t1), . . . , σ(tn)),
• σ(t

e
= t ′) := σ(t)

e
= σ(t ′),

• σ(t=t ′) := σ(t)=σ(t ′),
• σ(def t) := def σ(t),
• σ(t in s ′) := σ(t) in σS (s ′),
• σ(F ) := F ,
• σ(ϕ ∧ ψ) := σ(ϕ) ∧ σ(ψ),
• σ(ϕ⇒ ψ) := σ(ϕ) ⇒ σ(ψ),
• σ(∀ x : s • ϕ) := ∀ x : σS (s) • σ(ϕ).

Satisfaction relation The satisfaction of a formula ϕ ∈ FOΣ(X ) relative
to a valuation ν : X → M is defined inductively over the structure of ϕ :

• ν 
 pw(t1, . . . tn) iff (ν](t1), . . . , ν
](tn)) ∈ (pw)M .

• ν 
 t
e
= t ′ iff

· ν]
s(t) 6= ⊥, ν]

s′(t
′) 6= ⊥,

· there exists u ∈ S such that s ≤ u and s ′ ≤ u, and
· for all u ∈ S with s ≤ u and s ′ ≤ u holds:

ν]
u((inj(s,u)(t)) = ν]

u((inj(s′,u)(t
′)).

• ν 
 t=t ′ iff either
· ν]

s(t) = ⊥, ν]
s′(t

′) = ⊥ and
· there exists u ∈ S such that s ≤ u and s ′ ≤ u,
or
· ν]

s(t) 6= ⊥, ν]
s′(t

′) 6= ⊥,
· there exists u ∈ S such that s ≤ u and s ′ ≤ u, and
· for all u ∈ S with s ≤ u and s ′ ≤ u holds:

ν]
u((inj(s,u)(t)) = ν]

u((inj(s′,u)(t
′)).

• ν 
 def t iff ν](t) 6= ⊥.
• ν 
 t in s ′ iff there exists a ∈ Ms′ such that

either
· ν]

s(t) = a = ⊥, and
· there exists u ∈ S such that s ≤ u and s ′ ≤ u,
or
· ν]

s(t) 6= ⊥, a 6= ⊥,
· there exists u ∈ S such that s ≤ u and s ′ ≤ u, and
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· for all u ∈ S with s ≤ u and s ′ ≤ u holds:

ν]
u((inj(s,u)(t)) = (inj(s′,u))M (a).

• not ν 
 F .
• ν 
 ϕ ∧ ψ iff ν 
 ϕ and ν 
 ψ.
• ν 
 ϕ⇒ ψ iff ν 
 ϕ implies ν 
 ψ.
• ν 
 ∀ x : s • ϕ iff for all valuations ζ : X ∪ {x : s} → M with ζ(y) = ν(y)

for y 6= x : s , y ∈ X , and ζ(x : s) 6= ⊥ we have ζ 
 ϕ.

An existential or strong equation holds only, if it also holds in all possible
super-sorts u. This follows the Casl philosophy, where equations are only well-
formed, if their satisfaction is independent of their possible interpretation in
a sub-sort u. In all other respects, our definition reflects directly the intuition
developed in the Sections 3.1, 3.2 and 3.3.

Note that it is not possible to express t in s ′ terms of the other formulae. The
reason is that in a quantification ∀ x : s ′ the variable x runs only over those
values of Ms′ which are different from ⊥.

It is important to note that in the absence of true sub-sorting the definition of
satisfaction for existential and strong equation directly capture the intuition
we developed in Section 3.3 concerning partiality (we deliberately keep all
parts of the original definitions):

• ν 
no-sub t
e
= t ′ iff ν]

s(t) 6= ⊥, ν]
s′(t

′) 6= ⊥, sort(t) = sort(t ′), ν]
s(t) = ν]

s(t
′).

• ν 
no-sub t=t ′ iff either ν]
s(t) = ⊥, ν]

s′(t
′) = ⊥, sort(t) = sort(t ′),

or ν]
s(t) 6= ⊥, ν]

s′(t
′) 6= ⊥, sort(t) = sort(t ′), ν]

s(t) = ν]
x (t

′).

This illustrates also, why in the absence of true sub-sorting it is sufficient
for the desired satisfaction condition that data-logic signature morphisms are
injective on the set of sorts.

Lemma 5 Let σ : Σ → Σ′ be signature morphism, M ′ be a Σ′-model, X be a
variable system over Σ, and ν : σ(X ) → M ′ be a valuation. Define a valuation

ν̄ :

 X → M ′
|σ

ν̄s(x ) 7→ νσS (s)(x )

Then
ν̄] = ν] ◦ ζσ,X .

Moreover, ν and ν̄ are in a one-one correspondence.

PROOF. Induction over the term structure:
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Let t = x , x ∈ Xs , s ∈ S . Then ν̄]
s(x : s) = ν̄(x : s) = νσS (s)(x : σS (s)) =

ν]
σS (s)(x : σ(s)) = ν]

σS (s)((ζσ,X )s(x : s)) = (ν]σS (s) ◦ ζσ,X ))(x : s).

Let t = fw ,s(t1, . . . , tn). Then

ν̄]
s(fw ,s(t1, . . . , tn)) = (fw ,s)M ′

|σ
(ν̄]

s1
(t1), . . . , ν̄

]
sn (tn))

= (σF
w ,s(fw ,s))M ′((ν] ◦ ζσ,X )s1(t1), . . . , (ν

] ◦ ζσ,X )sn (tn)))

= (ν])σ(s)(σ
F
w ,s(fw ,s)((ζσ,X )s1(t1), . . . , (ζσ,X )sn (tn)))

= (ν])σ(s)((ζσ,X )s(fw ,s(t1, . . . , tn)))

= (ν] ◦ ζσ,X )s(fw ,s(t1, . . . , tn))

Theorem 6 (Generalized Satisfaction Condition) Given a signature mor-
phism σ : Σ → Σ′, a Σ′-model M ′, a variable system X over Σ, and a formula
ϕ ∈ FOΣ(X ), we have

ν 
 σ(ϕ) iff ν̄ 
 ϕ

for all evaluations ν : σ(X ) → M ′, where ν̄ is defined as in Lemma 5.

PROOF. By induction on the structure of ϕ. We demonstrate only the in-
teresting case of existential equations.

Let sort(t1) = s1 and sort(t2) = s2.

We claim that the following are equivalent:

(1) for all u ′ ∈ S ′ with σ(s1), σ(s2) ≤ u ′ holds:

ν](injσ(s1),u ′(σ(t1))) = ν](injσ(s2),u ′(σ(t2)))

(2) for all u ∈ S with s1, s2 ≤ u holds:

ν̄](injs1,u(σ(t1))) = ν̄](injs2,u(σ(t2)))

“⇒” Let u ∈ S with s1, s2 ≤ u. Thanks to p1 this implies σ(s1), σ(s2) ≤ σ(u).
Thus, the condition of (1) is true and we obtain

ν](injσ(s1),σ(u)(σ(t1))) = ν](injσ(s2),σ(u)(σ(t2))).

Applying Lemma 5 yields (2).

“⇐” Let u ′ ∈ S ′ with σ(s1), σ(s2) ≤ u ′. Thanks to non-ext there exists u ∈ S
with σS (u) = u ′. Applying refl yields s1, s2 ≤ u. Thus, the condition of (2) is
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true and we obtain

ν̄](injs1,u(σ(t1))) = ν̄](injs2,u(σ(t2)))

Applying Lemma 5 yields (1).

With this result, we can establish the equivalence:

ν 
 σ(t1
e
= t2)

iff ν 
 σ(t1)
e
= σ(t2)

iff

(1) ν]
σ(s1)(σ(t1)) 6= ⊥, ν]

σ(s2)(σ(t2)) 6= ⊥,
(2) there exists u ′ ∈ S such that σ(s1) ≤ u ′ and σ(s2) ≤ u ′, and
(3) for all u ′ ∈ S ′ with σ(s1) ≤ u ′ and σ(s2) ≤ u ′ holds:

ν]
u((inj(σ(s1),u ′)(t1)) = ν]

u((inj(σ(s2),u)(t2)).

iff

(1) ν̄]
s1

(t1) 6= ⊥, ν̄]
s2

(t2) 6= ⊥,
(2) there exists u ∈ S such that s1 ≤ u ′ and s2 ≤ u, and
(3) for all u ∈ S with s1 ≤ u and s2 ≤ u holds:

ν̄](injs1,u(σ(t1))) = ν̄](injs2,u(σ(t2)))

iff ν̄ 
 t1
e
= t2.

The satisfactions condition is a consequence of Lemma 6. Thus, CommSubPFOL=

forms an institution.

4.4 Representing FinCommSubPFOL= in SubPFOL=

FinCommSubPFOL= restricts the institution CommSubPFOL= to signatures
with only finitely many sorts. This restriction is necessary, as the translation
of existential and strong equations yields in SubPFOL= a conjunction over all
sub-sort relations within the signature.

More formally, we define the institution representation µ = (Φ, α, β) as follows:

The functor Φ is the embedding of data-logic signatures with finite sort sets
to sub-sorted signatures.

The translation α of FinCommSubPFOL= formulae into SubPFOL= is induc-
tively defined by
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• α(pw(t1, . . . tn)) := pw(t1, . . . tn),
• If there exists no u ∈ S with s1, s2 ≤ u

α(t1
e
= t2) := F ,

and if there exists an u ∈ S with s1, s2 ≤ u

α(t1
e
= t2) := def t1 ∧ def t2 ∧

∧
u≥s1,s2

injs1,u(t1) = injs2,u(t2),

where sort(t1) = s1, sort(t2) = s2.
• If there exists no u ∈ S with s1, s2 ≤ u

α(t1 = t2) := F ,

and if there exists an u ∈ S with s1, s2 ≤ u

α(t1 = t2) :=

(¬def (t1) ∧ ¬def (t2)) ∨

(def t1 ∧ def t2 ∧ (
∧

u≥s1,s2 injs1,u(t1) = injs2,u(t2))),

where sort(t1) = s1, sort(t2) = s2.
• α(def t) := def t ,
• If there exists no u ∈ S with s1, s2 ≤ u

α(t in s ′) := F

and if there exists an u ∈ S with s1, s2 ≤ u

α(t in s ′) :=

¬def (t) ∨

(def t ∧ ∃ x : s ′ • (
∧

u≥s,s′ injs,u(t) = injs′,u(x ))),

• α(F ) := F
• α(ϕ ∧ ψ) := α(ϕ) ∧ α(ψ),
• α(ϕ⇒ ψ) := α(ϕ) ⇒ α(ψ),
• α(∀ x : s • ϕ) := ∀ x : s • α(ϕ).

In the above definition, we use the common abbreviations x¬ϕ for ϕ ⇒ F ,
ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ), T for ¬F , and ∃ x : s • ϕ for ¬∀ x : s • ¬ϕ.

The translation β of SubPFOL= models into FinCommSubPFOL= models is
defined as the strict extension ext introduced in Section 4.3.

To prove the representation condition, we need to introduce partial evalu-
ations ν : X →?M in SubPFOL=. This is necessary as an evaluation in
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FinCommSubPFOL= might assign ⊥ to a variable. The evaluation ν] of terms
and the satisfaction of formulae is defined as before (see Section 4.1), with two
exceptions:

• ν]
s(x ) :=

 ν(x ) if ν(x ) is defined

undefined otherwise

• ν 
 ∀ x : s • ϕ iff for all valuations ζ : X ∪ {x : s} → M with ζ(y) = ν(y)
for y 6= x : s , y ∈ X , and are defined on x : s , we have ζ 
 ϕ.

Now, terms in SubPFOL= and FinCommSubPFOL= are related as follows:

Lemma 7 Let ρ : X →?C be a partial evaluation in SubPFOL=. Define a
total evaluation ν : X → β(C ) =: M in FinCommSubPFOL= by

νs(x ) :=

 ρs(x ) if ρ(x ) is defined

⊥ otherwise

Then holds for all t ∈ TΣ̂(X )s :

(1) If ρ]
s(t) is defined, then ρ]

s(t) = ν]
s(t) and ν]

s(t) 6= ⊥.
(2) If ν]

s(t) 6= ⊥ , then ρ]
s(t) = ν]

s(t) and ρ]
s(t) is defined.

(3) ν]
s(t) = ⊥ iff ρ]

s(t) is undefined.

PROOF. Induction on terms.

Note that there is a one-one correspondence between the partial evaluations
ρ and the total evaluations ν.

Theorem 8 (Generalized representation condition) With the notions of
Lemma 7 holds:

ρ 
 α(ϕ) ⇔ ν 
 ϕ

PROOF.

By induction on the structure of ϕ. We demonstrate here the interesting cases
of existential equations and of quantification.

t1
e
= t2:

Let t1 and t2 have no common super-sort. Then ρ 
 α(t1
e
= t2) iff ρ 
 F iff

ν 
 t1
e
= t2.
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Let t1 and t2 have common super-sorts u1, . . . , uk , sort(t1) = s1 and sort(t2) =
s2. Then
ρ 
 α(t1

e
= t2)

iff ρ 
 def t1 ∧ def t2 ∧
∧

u∈{u1,...,uk} injs1,u(t1) = injs2,u(t2)
iff

(1) ρ]
s1

(t1) defined,
(2) ρ]

s2
(t2) defined, and

(3) for all u ∈ {u1, . . . , uk} holds ρ]
u(injs1,u(t1)) = ρ]

u(injs2,u(t2))

iff

(1) ν]
s1

(t1) 6= ⊥ ,
(2) ν]

s2
(t2) 6= ⊥ , and

(3) for all u ∈ {u1, . . . , uk} holds ν]
u(injs1,u(t1)) = ν]

u(injs2,u(t2))

iff ν 
 t1 = t2.

∀ x : s • ϕ:

ρ 
 α(∀ x : s • ϕ)
iff
ρ 
 ∀ x : s • α(ϕ)
iff
for all valuations ζ : X ∪ {x : s} → M with ζ(y) = ρ(y) for y 6= x : s , y ∈ X ,
and are defined on x : s , we have ζ 
 ϕ.
iff
for all valuations η : X ∪ {x : s} → M with

η(y) =

 ζ(x ) if ζ(x ) is defined

⊥ otherwise

for y 6= x : s , y ∈ X , and η(x : s) 6= ⊥, we have η 
 ϕ.
iff
ν 
 ∀ x : s • ϕ.

Remark 9 (Representing the subset of ‘Casl’-formulae) Restricting the
set of CommSubPFOL= formulae to those, which follow the production rules
of SubPFOL=, allows us to choose the translation α of FinCommSubPFOL=

formulae into SubPFOL= formulae as identity:

• For predicates, α is already the identity.
• For existential equations, the restriction to the production rules of SubPFOL=

means that both terms t1, t2 have to be of the same sort s. Thus, we have
only to deal with the second case of the definition of α.
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Here,
∧

u≥s injs,u(t1) = injs,u(t2) is equivalent to t1 = t2, thanks to (1) of

Ĵ (Σ̂). With this result we may replace the remaining def t1 ∧ def t2 ∧ t1 = t2
by t1

e
= t2.

• For strong equations, the restriction to the production rules of SubPFOL=

means that both terms t1, t2 have to be of the same sort s. With the same
arguments as for existential equations we can define α as identity.

• For definedness, α is already the identity.
• The element relation is not part of the subset.
• If α is the identity for the atomic formulae, then it is so for FALSE , con-

junction, implication, and quantification.

Thus, we can study the satisfaction of closed formulae within this subset di-
rectly within SubPFOL=.

4.5 An alphabet of communications

Given a data-logic model M over a data-logic signature Σ = (S ,TF ,PF ,P ,≤
), what is the corresponding alphabet A of communications? Our examples
of Section 3 indicate what to do: Take the disjoint sum of all carrier sets and
model the additional equalities between terms as an equivalence relation ∼ .
Unfortunately, the notion of strong equality defined within CommSubPFOL=

fails to be transitive:

Example 10 Let S := {s , s ′, s ′′, u, u ′} be a set of sorts, and ≤ the reflexive
and transitive closure of s , s ′ ≤ u, s ′, s ′′ ≤ u ′. Let t , t ′, t ′′ be terms of sorts
s , s ′, s ′′ respectively, let M be a model. Then even with M |= t = t ′ and
M |= t ′ = t ′′ we have M 6|= t = t ′′ as s and s ′′ have no common super-sort.

Thus, we need a further restriction to CommSubPFOL=. A signatures with
local top elements is a data-logic signature Σ = x (S ,TF ,PF ,P ,≤), where for
all u, u ′, s ∈ S holds: u, u ′ ≥ s then there exists t ∈ S with t ≥ u, u ′.

Relative to a model M for a signature with top elements, we define an alphabet
of communications

A(M ) := (
⊎
s∈S

Ms)/∼

where (s , x ) ∼ (s ′, x ′) iff either

• x = x ′ = ⊥ and
• there exists u ∈ S such that s ≤ u and s ′ ≤ u,

or

• x 6= ⊥, x ′ 6= ⊥,
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Fig. 2. Sort relations for the equivalence proof.

• there exists u ∈ S such that s ≤ u and s ′ ≤ u, and
• for all u ∈ S with s ≤ u and s ′ ≤ u holds:

(inj(s,u))M (x ) = inj(s′,u)M
(x ′)

for s , s ′ ∈ S , x ∈ Ms , x
′ ∈ Ms′ .

Lemma 11 In CommSubPFOL= restricted to signatures with local top ele-
ments holds:

(1) Weak and strong equality are transitive.
(2) The relation ∼ on is an equivalence relation for any model M .

PROOF.

(1) Let t , t ′, t ′′ be terms of sorts s , s ′, s ′′, respectively. Let ν : X → M be an
evaluation in data-logic. Let ν 
 t

e
= t ′, ν 
 t ′

e
= t ′′.

Then ν]
s(t) 6= ⊥, ν]

s′(t
′) 6= ⊥, and ν]

s′′(t
′′) 6= ⊥. Furthermore, there exist

sorts u, u ′ such that s , s ′ ≤ u and s ′, s ′′ ≤ u ′x . As the signature has local
top elements and s ′ ≤ u as well as s ′ ≤ u ′, there exists a sort r with
u, u ′ ≤ r and thus s , s ′′ ≤ r .

Now let v be a sort with s , s ′′ ≤ v . As also s , s ′′ ≤ r , there exists a
sort T with v , t ≤ T . Figure 2 summarises these sort relations. Using the
equations in Ĵ (Σ) and the consequences of ν 
 t

e
= t ′, ν 
 t ′

e
= t ′′, we
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can prove the equality of t and t ′′ embedded in the super-sort v :

ν]
v(injs,v(t))

= ν]
v(prT ,v(injv ,T (injs,v(t))))

= ν]
v(prT ,v(injs,T (t)))

= ν]
v(prT ,v(injt ,T (inju,t(injs,u(t)))))

= ν]
v(prT ,v(injt ,T (inju,t(injs′,u(t ′)))))

= ν]
v(prT ,v(injt ,T (injs′,t(t

′))))

= ν]
v(prT ,v(injt ,T (inju ′,t((injs′,u ′(t ′))))

= ν]
v(prT ,v(injt ,T (inju ′,t((injs′′,u ′(t ′′))))

= ν]
v(prT ,v(injs′′,T (t ′′)))

= ν]
v(prT ,v(injv ,T (injs′′,v(t

′′)))

= ν]
v(injs′′,v(t

′′))

This shows the transitivity of existential equations.
To prove the transitivity of strong equations, it remains to consider

the situation ν 
 t=t ′, ν 
 t ′=t ′′ where ν]
s(t)x = ν]

s′(t
′) = ν]

s′′(t
′′) = ⊥.

Here, we know that there exist sorts u, u ′ with s , s ′ ≤ u and s ′, s ′′ ≤ u ′

and therefore a sort r ≥ u, u ′. As s , s ′′ ≤ r , we obtain ν 
 t=t ′′.
(2) (r) and (s) are trivial. (t) is analog to (1), as ∼ uses essentially the same

definition as strong equality.

Let M be a model in CommSubPFOL= restricted to signatures with local
top elements and alphabets of communications, let A be the corresponding
alphabet of communications. Then we define:

(1) A family of mappings (embs)s∈S by

embs :

 Ms → A

a 7→ (s , a)/∼

(2) A predicate p̄s,s′ on A × A for any predicate symbol ps,s′ ∈ P , s , s ′ ∈ S ,
by

p̄s,s′ := {(embs(a), embs′(b)) | (a, b) ∈ (ps,s′)M}

With these notion we obtain the following relations between M and tests on
A:

Theorem 12 (Relation between logic an alphabet) Let M be a model
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in CommSubPFOL= restricted to signatures with local top elements, let ν :
X → M be a variable valuation, t , t ′ terms of sorts s , s ′, respectively, and ps,s′

be a predicate symbol. Then

(1) ν 
 t = t ′ ⇔ embs(ν
]
s(t)) = embs′(ν

]
s′(t

′))
(2) ν 
 t in s ′ ⇔ embs(ν

]
s(t)) ∈ embs′(Ms′)

(3) ν 
 ps,s′(t , t
′) ⇔ (embs(ν

]
s(t)), embs′(ν

]
s(t

′))) ∈ p̄s′,s′′

PROOF.

(1) ν 
 t = t ′ iff (s , v ]
s (t)) ∼ (s ′, v ]

s′(t
′)) iff [v ]

s (t)] = [v ]
s′(t

′)] iff embs(ν
]
s(t)) =

embs′(ν
]
s′(t

′)).
(2) ν 
 t in s ′

iff there exists a ∈ Ms′ with either
• a = ⊥ = ν]

s(t) and there exists u ∈ S with s , s ′ ≤ u or
• a 6= ⊥, ν]

s(t) 6= ⊥ , there exists u ∈ S with s , s ′ ≤ u and for all v ∈ S
with s , s ′ ≤ v : (injs′,v)M (a) = ν]

v(injs,v(t)).

iff (s , ν]
s(t)) ∼ (s ′, a)

iff embs(ν
]
s(t)) = embs′(a) ∈ embs′(Ms′).

(3) Let (embs(ν
]
s(t)), embs′(ν

]
s′(t

′))) ∈ p̄s′,s′′ . Then there exist (a, b) ∈ (ps,s′)M
such that (s , a) ∼ embs(ν

]
s(t)), (s ′, b) ∼ embs′(ν

]
s(t

′)). As predicates never
hold for ⊥, this has as a consequence: ν]

s(t) 6= ⊥ and ν]
s(t

′) 6= ⊥. Choosing
s as a common super-sort of s as sort of a and s as sort of t ′, we obtain
a = ν]

s(t). In the same way we may conclude b = ν]
s′(t

′) and have finally
ν 
 ps,s′(t , t

′).

Let ν 
 ps,s′(t , t
′). Then (ν]

s(t), ν
]
s′(t

′)) ∈ (ps,s′)M and thus

(embs(ν
]
s(t)), embs′(ν

]
s′(t

′))) ∈ p̄s′,s′′ .

5 Core-Csp-Casl semantics

We use now the above described construction of a data type of communications
from a SubPFOL= model over a signature Σ to define the semantics of a Core-
Csp-Casl specification

data Sp process P end

Our construction of Section 4 involves two conditions:

(1) The signature Σ needs to be finite (necessary in the representation of
CommSubPFOL=) – this holds for any specification written in Casl.

(2) Sub-sorting is restricted to sub-sort relations which have local local top
elements (necessary for the transitivity of strong equality).
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(Sp,P) ..........................................

Core-Csp-Casl-Semantics

q

(P ′(A(β(M ))))M∈Mod(Sp)

evaluation according to Casl

? Csp semantics
- (dM )M∈Mod(Sp)

Fig. 3. Overview of the Core-Csp-Casl semantics construction.

Thus, Sp can be any structured Casl specification, provided its sub-sort re-
lation has local local top elements. This condition holds e.g. for nearly all of
the specifications in the Casl library of Basic Datatypes [21].

We first present an overview of the two-step semantics of Core-Csp-Casl.
Then we define how to evaluate in the first step the Casl elements within
processes and show how — in the second step — the various denotational
Csp semantics can be applied within our approach. In this formal setting
of Core-Csp-Casl without recursion, we study again the integration issues
raised in Section 3 and demonstrate that Core-Csp-Casl solves them in the
desired way. Then we complete our semantics of Core-Csp-Casl by adding
recursion to the process part. Finally, we define a notion of refinement and
show how to decompose it into the refinement notions of Casl and Csp,
respectively.

In the following we assume all Casl specifications to have local local top
elements.

5.1 The two-step semantics of Core-Csp-Casl

The semantics of Core-Csp-Casl is defined in a two-step approach, c.f.
Figure 3. Let (Sp,P) be a Core-Csp-Casl specification, i.e. Sp is a Casl
specification and P is a Csp process, where Casl terms are used as com-
munications, Casl sorts denote sets of communications, relational renaming
is described by a binary Casl predicate, and Casl formulae occur in the
conditional (c.f. Section 2.3).

In the first step, the evaluation according to Casl, we translate the pair
(Sp,P) into an M -indexed family of Csp processes (P ′(A(β(M ))))M∈Mod(Sp),
where M is in the model class Mod(Sp) of Sp. Here, we define for each
model M of SP a Csp process P ′(A(β(M ))) over the alphabet of communica-
tions A(β(M )) induced by M . This alphabet is obtained by first applying the
model translation β from SubPFOL= models into FinCommSubPFOL= mod-
els, c.f. Section 4.4. Then, we use the alphabet construction A of Section 4.5
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to transform the FinCommSubPFOL= model β(M ) into an alphabet of com-
munications. Besides the derivation of a suitable alphabet, it is also necessary
to evaluate the Casl terms, sorts, formulae, and relations occurring in P . To
this end, we define an evaluation function [[ ]] , which takes a Csp-Casl
process and an evaluation ν : X → β(M ) in data-logic as parameters and
yields a Csp process over A(β(M )). Here, the evaluations ν deal with Csp
binding.

In the second step, the evaluation according to Csp, we apply point-wise a
denotational Csp semantics. This translates a process P ′(A(β(M ))) into its
denotation dM in the semantic domain of the chosen Csp semantics.

5.2 Evaluation according to Casl

Let M be a model over a sub-sorted signature Σ = (S ,TF ,PF ,P ,≤), i.e. let
M be a Casl model. Let β(M ) be its translation into a CommSubPFOL=

model. Let ν : X → β(M ) be a variable valuation. Then the semantics of the
Casl elements of the process part is defined by

• [[s ]]ν := embs(β(M )s) for s ∈ S .
• [[ps1s2 ]]ν := {(embs1(x ), embs2(y)) | (x , y) ∈ (ps1s2)β(M )} for p ∈ Ps1s2 .
• [[t ]]ν := embs(ν

]
s(t)) for t ∈ TΣ̂(X )s .

• [[ϕ]]ν :=

 true ν 
 ϕ

false not ν 
 ϕ

where ϕ is a sub-sorted formulae over Σ.

Theorem 12 summarises how the evaluated sorts, terms and predicates relate
with their origins in the data-logic FinCommSubPFOL=, and therefore – after
applying the translation α of FinCommSubPFOL= formulae into SubPFOL=

formulae – also with their origins in SubPFOL=. For the sub-sorted formulae
over Σ, according to Remark 9, the translation α is not necessary and we have
thanks to Theorem 8

ρ 
 ϕ⇔ ν 
 ϕ,

where ρ : X → M is the partial evaluation corresponding to ν.

The variable valuations ν are necessary to model the Csp binding concept, see
Figure 4 for its definition. At the level of basic Core-Csp-Casl processes,
we need only to bind elements of the alphabet of communications to variable
names. Note that the valuations allow also to bind the ‘undefined’ values ⊥.

The Csp prefix choice operator ?x : S → P binds x in P . Thus, the clause
for prefix choice turns the current environment ν into a function (λ z .ν) which
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[[SKIP ]]ν := SKIP

[[STOP ]]ν := STOP

[[t → P ]]ν := [[t ]]ν → [[P ]]ν

[[?x : s → P ]]ν := ?x : [[s ]]ν → [[P ]](λ z .ν)

[[P o
9 Q ]]ν := [[P ]]ν o

9 [[Q ]]∅

[[P 2 Q ]]ν := [[P ]]ν 2 [[Q ]]ν

[[P u Q ]]ν := [[P ]]ν u [[Q ]]ν

[[P |[ s ]|Q ]]ν := [[P ]]ν |[ [[s ]]ν ]| [[Q ]]ν

[[P |[ s1 | s2 ]|Q ]] := [[P ]]ν |[ [[s1]]ν | [[s2]]ν ]| [[Q ]]ν

[[P || Q ]]ν := [[P ]]ν || [[Q ]]ν

[[P ||| Q ]]ν := [[P ]]ν ||| [[Q ]]ν

[[P \ s ]]ν := [[P ]]ν \ [[s ]]ν

[[P [[p]]]]ν := [[P ]]ν [[[[p]]ν ]]

[[if ϕ then P else Q ]]ν := if [[ϕ]]ν then [[P ]]ν else [[Q ]]ν

Fig. 4. Evaluation according to Casl

takes a substitution as its argument:

[[ ]]λ z .ν [a/x ] := [[ ]]ν[a/x ]

Here, ν[a/x ](y) := ν(y) for y 6= x and ν[a/x ](x ) := x . Substitutions are the
way how the various Csp semantics model the binding concept of the prefix
choice operator.

Example 13 (The semantics of the prefix operator in T ) In the Csp
traces model T , the semantics of the prefix operator is defined as

traces(?x : X → P) := {〈〉} ∪ {〈a〉a t | t ∈ traces(P [a/x ]), a ∈ X }

Here, 〈〉 denotes the empty trace and a is the concatenation of traces. Com-
bining this semantic clause with the the evaluation according to Casl in an
environment ν, we obtain

traces([[?x : s → P ]]ν) =

traces(?x : [[s ]]ν → [[P ]](λ z .ν)) =

{〈〉} ∪ {〈a〉a t | t ∈ traces([[P ]]ν[a/x ]), a ∈ [[s ]]ν}
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traces(SKIP) = {〈〉, 〈X〉}
traces(STOP) = {〈〉}
traces(a → P) = {〈〉} ∪ {〈a〉a s | s ∈ traces(P)}
traces(?x : X → P) = {〈〉} ∪ {〈a〉a s | s ∈ traces(P [a/x ]), a ∈ X }
traces(P o

9 Q) = (traces(P) ∩A∗)
∪ {s a t | s a 〈X〉 ∈ traces(P), t ∈ traces(Q)}

traces(P 2 Q) = traces(P) ∪ traces(Q).
traces(P u Q) = traces(P) ∪ traces(Q).
traces(P |[X ]|Q) =

⋃
{s |[X ]| t | s ∈ traces(P) ∧ t ∈ traces(Q)}

traces(P |[X |Y ]|Q) = {s ∈ (X ∪Y )∗X | s � X ∪ {X} ∈ traces(P) ∧
s � Y ∪ {X} ∈ traces(Q) }

traces(P || Q) = traces(P) ∩ traces(Q)
traces(P ||| Q) =

⋃
{s ||| t | s ∈ traces(P) ∧ t ∈ traces(Q)}

traces(P \ X ) = {s \ X | s ∈ traces(P)}
traces(P [[R]]) = {t | ∃ s ∈ traces(P) . sR∗t}

traces(if ϕ then P else Q) =

 traces(P); ϕ evaluates to true

traces(Q); ϕ evaluates to false

Fig. 5. Semantic clauses for the traces model T

All other Csp operators just preserve the environment, with the exception of
sequential composition. Here, the definition of [[ ]] lifts the Csp declarative
view on variables to Core-Csp-Casl: if the process P terminates, none of
its bindings survives, i.e. the following process Q starts within the empty
environment ∅.

Given a Core-Csp-Casl specification (Sp,P), we now define for M ∈ Mod(Sp) :

P ′(A(β(M )))) := [[P ]]∅.

5.3 Evaluation according to Csp

The process P ′(A(β(M )))), c.f. Figure 3, is an ordinary Csp process over the
alphabet of communications A(β(M ), i.e. we can apply any Csp semantics
to it which covers the set of Csp operators involved. This is the case for all
denotational Csp semantics described in [22], namely the traces model T , the
failure divergence model N , and the stable failures model F . For simplicity,
we look here only at the traces model.

Given an alphabet of communications A, the traces model T takes the set of
all non-empty, prefix-closed subsets of

A∗X := A∗ ∪ {s a 〈X〉 | s ∈ A∗}.

as semantic domain. The symbol X denotes termination and is not an element
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(1) ∀ s, t ∈ A∗ , a, b ∈ A :
〈〉 ||| s = {s}
s ||| 〈〉 = {s}

〈a〉a s ||| 〈b〉a t = {〈a〉a u | u ∈ s ||| 〈b〉a t}
∪ {〈b〉a u | u ∈ 〈a〉a s ||| t}

s ||| t a 〈X〉 = {}
s a 〈X〉 ||| t = {}
s a 〈X〉 ||| t a 〈X〉 = {u a 〈X〉 | u ∈ s ||| t}

(2) ∀ s, t ∈ A∗ , x , x ′ ∈ X , y , y ′ ∈ A \X :
s |[X ]| t a 〈X〉 = {}

s a 〈X〉 |[X ]| t = {}
s a 〈X〉 |[X ]| t a 〈X〉 = {u a 〈X〉 | u ∈ s |[X ]| t}

s |[X ]| t = t |[X ]| s
〈〉 |[X ]| 〈〉 = {〈〉}
〈〉 |[X ]| 〈x 〉 = {}
〈〉 |[X ]| 〈y〉 = {〈y〉}

〈x 〉a s |[X ]| 〈y〉a t = {〈y〉a u | u ∈ 〈x 〉a s |[X ]| t}
〈x 〉a s |[X ]| 〈x 〉a t = {〈x 〉a u | u ∈ s |[X ]| t}
〈x 〉a s |[X ]| 〈x ′〉a t = {} if x 6= x ′

〈y〉a s |[X ]| 〈y ′〉a t = {〈y〉a u | u ∈ s |[X ]| 〈y ′〉a t}
∪ {〈y ′〉a u | u ∈ 〈y〉a s |[X ]| t}

(3) s \ X is defined to be s � (A \X )for any traces

(4) If s ∈ A∗ and X ⊆ A then s � A means the sequence s restricted to X : the
sequence whose members are those of s which are in X .
〈〉 � X = 〈〉 and
(s a 〈a〉) � X = (s � X ) a 〈a〉 if a ∈ X , s � X otherwise.

(5) Definition of the Relation sR∗t . :
〈a1, . . . an〉R∗〈b1, . . . bm〉 ⇔ n = m ∧ ∀ i ≤ n . aiRbi

Fig. 6. Used notations of the traces model T .

of A.

The domain T can be seen as a complete partial order (with bottom element),
where

S v T :⇔ S ⊆ T

for S ,T ∈ T . It can also be turned into a complete metric space, where the
distance function is defined by

d(S ,T ) := inf {2−n | S ↓ n = T ↓ n, n ∈ N}

for S ,T ∈ T . Here, s ↓ n := s for length(s) ≤ n, s a t ↓ n := s for
length(s) = n for traces s , t ∈ A∗X, and S ↓ n := {s ↓ n | s ∈ S for S ∈ T .
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Both variants of T , the cpo (T ,v) and the cms (T , d), are used

• to define a semantics to recursive processes in terms of fixed points, and
also

• to prove refinement between fixed points by fixed-point induction.

Figure 5 summarises the semantic clauses for the traces model. Here, P and
Q are Csp processes over an alphabet of communications A, X ,Y ⊆ A sets
of communications, and R ⊆ A×A is a binary relation over A. The necessary
notations on traces are defined in Figure 6.

5.4 The integration issues revisited

With the above defined semantics of Core-Csp-Casl without recursion, we
are now able to study our motivating examples of Section 3 in a formal set-
ting. This also verifies that our design decisions actually result in the desired
semantics.

5.4.1 The semantics of the Core-Csp-Casl specification of Section 3.1

Here, we study how a many-sorted, total algebra behaves in our semantics.
The data part of the Csp-Casl specification of Section 3.1 defines the sub-
sorted signature Σ = ({S ,T}, {c : S , d : T}, ∅, {S ≤ S ,T ≤ T}. There are
no axioms present in the data part. Thus, let M be an arbitrary sub-sorted
model of Σ. Then, the meaning of the process part for this model M is

traces([[c → Skip || d → Skip]]∅)

= traces(embS (∅]
S (c)) → Skip || embT (∅]

T (d)) → Skip)

= traces(embS (∅]
S (c)) → Skip) ∩ traces(embT (∅]

T (d)) → Skip)

= {〈〉, 〈embS (∅]
S (c)〉, 〈embS (∅]

S (c),X〉} ∩ {〈〉, 〈embT (∅]
T (d))〉, 〈embT (∅]

T (d)),X〉}

In order to decide, if this intersection is empty, we need to know if

embS (∅]
S (c) = embT (∅]

T (d))

According to Theorem 12, this is equivalent to


 c = d in CommSubPFOL=

Thanks to the Theorem 8, this is equivalent to


 α(c = d) in SubPFOL=
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which evaluates to


 F in SubPFOL=

Thus, embS (∅]
S (c) 6= embT (∅]

T (d)) and the intersection is empty.

5.4.2 The semantics of the Core-Csp-Casl specification of Section 3.2

Section 3.2 deals with sub-sorted, total algebras. In its example, the data part
defines the sub-sorted signature Σ = ({S ,T}, {c : S , d : T}, ∅, {S ≤ S ,T ≤
T , S ≤ T}. As axiom we have injS ,T (c) = d 4 . Let M be a Σ model in which
this axiom holds.

Concerning the process part, as above we obtain for M

{〈〉, 〈embS (∅]
S (c)〉, 〈embS (∅]

S (c),X〉} ∩ {〈〉, 〈embT (∅]
T (d))〉, 〈embT (∅]

T (d)),X〉}

In order to decide, if this intersection is empty, we need to know if

embS (∅]
S (c) = embT (∅]

S (d)

iff 
 c = d in CommSubPFOL=

iff 
 α(c = d) in SubPFOL=

iff 
 injS ,T (c) = injT ,T (d) in SubPFOL=

which holds as injT ,T (d) = d is in the set of axioms Ĵ and injS ,T (c) = d is
true in M . Thus, the semantics of the process part for M is

{〈〉, 〈embS (∅]
S (c))〉, 〈embS (∅]

S (c)),X〉}.

5.4.3 The semantics of the Core-Csp-Casl specification of Section 3.3

Here, we show study the effect of partiality on synchronisation. The data part
of the Csp-Casl specification of Section 3.3 defines the sub-sorted signature
Σ = ({S ,T}, ∅, {f : S →? T}, {S ≤ S ,T ≤ T}). As axiom we have ∀ x :
S • ¬def f (x ). Let M be a Σ-model where fM is undefined for all values in
MS .

Concerning the semantics of the process part for M , we need to study

• if embT (ν]
s(f (x ))) ∈ embT (β(M )T ) and for all ν : {x : S} → β(MS ), and

• if def y holds in β(M ) for all possible ν : {y : T} → β(MT ).

4 The Casl static analysis translates the axiom c = d into this formula in
SubPFOL=.
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The first formula is needed to compute the traces of the synchronisation over
T , the second decides which of the processes P and Q is executed.

Let ν : {x : S} → β(MS ) be an evaluation into β(M ). Then

ν 
 f (x ) in T in CommSubPFOL=

is equivalent to

ρ 
 α(f (x ) in T ) in SubPFOL=

where ρ : {x : S} →?MS is the unique corresponding partial evaluation to ν.
Evaluating α yields

ρ 
 ¬ def f (x ) in SubPFOL=

For ρ(x ) defined, this is true according to the axiom. For ρ(x ) not defined,
ρ]
T (f (x )) is undefined and therefore ¬ def f (x ) is true.

Thus, we know that f (x ) synchronises over T with ?y : T , where the com-
municated value is ⊥. Therefore, the only possible ν : {y : T} → β(MT ) is
ν(y) = ⊥. With this, we obtain: ν 
 def y iff ρ 
 def y , which is false, as
ρ(y) is undefined. This results in the trace set

{〈〉, 〈embS (x )〉, 〈embS (x ),⊥〉, 〈embS (x ),⊥〉a t | x ∈ Mβ(S), t ∈ traces(P)}

5.4.4 The semantics of the Core-Csp-Casl specification of Section 3.4

The data part of the Csp-Casl specification of Section 3.1 defines the sub-
sorted signature Σ = ({S ,T ,U }, {a : S , b : T}, {f : S →? S , g : T →?
T}, {S ≤ S ,T ≤ T ,U ≤ U , S ≤ U ,T ≤ U }). As axioms we have ∀ x :
S • ¬def f (x ) and ∀ x : T • ¬def g(x ) Let M be a Σ-model where fM is
undefined for all values in MS and gM is undefined for all values in MT .

Then

embS (∅]
S (f (a)) = embT (∅]

T (g(b))

iff 
 f (a) = g(b) in CommSubPFOL=

iff 
 α(f (a) = g(b)) in SubPFOL=

iff 
 ¬def f (a) ∧ ¬def g(b) in SubPFOL=

which is true thanks to the above stated axioms. Thus, the trace set for M is

{〈〉, 〈embS (⊥)〉, 〈embS (⊥),X〉}.
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5.5 Adding recursion to the process part

Up to now we only studied the semantics of basic Core-Csp-Casl processes.
In order to add recursion, we extend the syntax of process part by

let ProcessDefinition+ in Proc

The let part consists of a nonempty list of process definitions of the form

ProcessDefinition ::= PN = Proc

| PN (x : S ) = Proc

Here, the left hand side of an equation is either a process name or a process
name with one variable x of a sort S as a parameter.

For the right-hand side of a ProcessDefinition as well as for the in part, we
extend the grammar of Proc presented in Figure 1 by two new clauses:

Proc ::= PN | PN (t) | . . .

where PN is a process name and PN (t) is process name with a Casl term t as
parameter. The in part of a recursive process definition provides the process
we would like to specify.

Figure 7 shows an example of a Core-Csp-Casl specification including a
recursive process definition. It consists of a loose specification of the natural
numbers in the data part, and specifies a process which communicates in any
model M of the data part the values of the terms 0, suc(0), suc(suc(0)), . . .

In recursive process definitions we assume that all process names occurring
on the right-hand side of a process definition or in the resulting process are
defined, that there is exactly one process definition for each process name,
that in a process definition with a variable x declared on the left-hand side
this is the only free variable on the right-hand side, etc.

Let M be a model over a sub-sorted signature Σ = (S ,TF ,PF ,P ,≤), i.e. let
M be a Casl model. Let β(M ) be its translation into a CommSubPFOL=

model. Then the let part of recursive process definition induces the following
set of variables Vβ(M ) :

(1) Any process process name PN on the left-hand side of a ProcessDefinition
yields a process variable PN ∈ Vβ(M )

(2) Any process process name with a variable declaration PN (x : S ) on the
left-hand side of a ProcessDefinition yields a set of variables {PNa | a ∈
β(M )S} ⊆ Vβ(M ).
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data
sort Nat

ops  : Nat;

suc : Nat→ Nat
process

let
P (n : Nat) = n→ P (suc(n))

in
→ P (suc(n))

Fig. 7. A Core-Csp-Casl specification with recursion in the process part.

(3) Vβ(M ) does not include any other variables.

Let D be the semantic domain of a denotational Csp model over the alpha-
bet of communications A(β(M )). For example, in the traces model D is the
set T of all non-empty, prefix-closed subsets of A(β(M ))∗X. Then a process
environment Eβ(M ) over Vβ(M ) is a total map

Eβ(M ) : Vβ(M ) → D

In order to deal deal with recursive processes, we extent now our evaluation
function [[ ]] by a process environments as a second parameter. For process
names and and process names with parameters we define

• [[PN ]]ν,Eβ(M )
:= Eβ(M )(PN )

• [[PN (t)]]ν,Eβ(M )
:= Eβ(M )(PNν(t)).

The clauses of Figure 4 only pass the process environment Eβ(M ) without
changing it, for example

[[t → P ]]ν,Eβ(M )
:= [[t ]]ν,Eβ(M )

→ [[P ]]ν,Eβ(M )
.

The evaluations of Casl elements defined in Section 5.2 just ignore the new
parameter, as e.g.

[[s ]]ν,Eβ(M )
:= embs(β(M )s).

Now, the let part of a Core-Csp-Casl specification with recursion in the
process part is turned to an (in general: infinite) system of process equations:

(1) Every ProcessDefinition of type PN = Proc yields an equation

[[PN ]]∅,Eβ(M )
= [[Proc]]∅,Eβ(M )

.

(2) Every ProcessDefinition of type PN (x : S ) = Proc yields a set of equa-
tions

[[PN (x )]]ν,Eβ(M )
= [[Proc]]ν,Eβ(M )

,
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where ν ∈ {ν ′ : {x : S} → β(M )} is an evaluation; i.e. each possible
value of the variable x in β(M )S yields an equation.

The semantics of a Core-Csp-Casl specification with recursion in the process
part is defined iff this system of equations has a unique solutions EM in the
chosen Csp model for all models M of the data part. In this case, the semantics
is the M indexed family

([[P ]]∅,EM )M∈Mod(Sp),

where P is the process of the in part.

The theory of Csp semantics offers different techniques to treat such sys-
tems of equations [22]. Starting from some complete space, product spaces
are derived in order to deal not only with recursion in one variable but also
with recursion involving infinitely many variables. Here, we summarise some
elementary properties of the different Csp models: The traces model T is
a complete lattice as well as a complete metric space. Certain Csp opera-
tors have been characterised as being constructive or non-destructive. This
classification allows to prove the existence of unique fixed points by syntac-
tical analysis of the process expressions involved. For infinite communication
alphabets, as they usually arise within in Csp-Casl specifications, the fail-
ure/divergences model N fails to be a complete partial order, but for finite
alphabets we obtain a complete partial order. The stable failures model F is
a complete lattice as well as a complete metric space, and all Csp operators
are monotonic and continuous over F .

5.6 Refinement

For a denotational Csp model with domain D, the semantic domain of Core-
Csp-Casl consists of the M -indexed families of process denotations dM ∈ D,
i.e.

(dM )M∈I

where I is a class of SubPFOL= models. As refinement we define on these
elements

(dM )M∈I vcc,D (d ′M ′)M ′∈I ′

iff

I ⊆ I ′ ∧ ∀M ∈ I : d ′M vD dM ,

where I ⊆ I ′ denotes inclusion of model classes over the same signature, and
vD is the refinement notion in the chosen Csp model D. In the traces model T
we have for instance T ′ vT T :⇔ T ⊆ T ′, where T and T ′ are prefixed closed
sets of traces. The definitions of Csp refinements for D ∈ {T ,N ,F , I,U}, c.f.
[22], which are all based on set inclusion, yield that Csp-Casl refinement is
a preorder.
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Concerning data refinement, we directly obtain the following characterisation:

data Sp process P end
vcc,D

data Sp ′ process P end
if

1. Σ(Sp) = Σ(Sp ′),
2. Mod(Sp) ⊆ Mod(Sp’)

The crucial point is that we fix both the signature of the data part and the
process P .

For process refinement, a similar characterisation is obvious:

data Sp process P end
vcc,D

data Sp process P ′ end
if

for all M ∈ Mod(Sp) holds [[[[P ]]∅:∅→β(M )]]Csp vD [[[[P ]]∅:∅→β(M )]]Csp

Here, [[ ]]Csp is the evaluation according to the Csp denotational semantics,
and ∅ : ∅ → β(M ) is the empty evaluation into the CommSubPFOL= model
β(M ). For this result, we only fix the specification Sp.

6 An Example in full Csp-Casl: Specifying a file system

With studying Core-Csp-Casl up to now, we have concentrated on the
semantically relevant part of our combination of Casl and Csp. The full lan-
guage Csp-Casl offers more features, namely it integrates Csp-Casl specifi-
cations into Casl libraries and it uses communication channels in the process
part.

We give a brief overview of these additional features and study then how to
model a file system in Csp-Casl.

6.1 Full Csp-Casl

In full Csp-Casl, a specifications with name N consists of a data part Sp,
which is a structured Casl specification, an (optional) channel part Ch to
declare channels, which are typed according to the data specification, and a
process part P:
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(Sp,Ch,P)

(Sp then SpCh ,P
′)

syntactic encoding

?

Fig. 8. Syntactic encoding.

ccspec N = data Sp channel Ch process P end

See Figure 9 for a concrete instance of this scheme.

In the channel part Ch, the statement c : s declares a channel c of sort s .
Here, s needs to be a sort defined in Sp. In the process part P , sending a value
v in sort s over the channel c is encoded as a communication c!v . Receiving
a value x from a channel c is written c?x : T → P , which semantically is
treated as the Csp prefix choice operator.

Such a specification in full Csp-Casl can be transformed by several syn-
tactic encodings into a specification in Core-Csp-Casl. In this translation,
the treatment of channels is the most prominent one. Csp handels channels
as special subsets of the communication alphabet. Consequently, the channel
part Ch of a Csp-Casl specification is modelled within Casl. The channel
part Ch gives rise to a specification fragment SpCh , which monomorphically
extends the data part Sp to a Casl specification Sp then SpCh . As all mod-
els of Sp then SpCh , which extend the same model of Sp, are identical up
to isomorphism, and all models of Sp can be extended to at least one model
of Sp then SpCh , this construction neither adds new diversity nor does it
remove a certain interpretation of the data part. The extended specification
Sp then SpCh provides new Casl sorts and operations, with which – in ac-
cordance to the original treatment of channels in Csp – the process part P is
rewritten to a form P ′ without channels. Figure 8 illustrates this step.

Besides dealing with channels, the syntactic encoding also eliminates certain
Csp operators, as for instance the ‘time-out’ P . Q , which is replaced by
its semantic equivalent (P u STOP) 2 Q . Also, convenient abbreviations for
Csp processes like Run(s), where s is a sort, or Chaos are resolved.

6.2 Specifying a file system

A file-system, c.f. Figure 9, deals with different kind of Data, namely with
Files and Attributes associated with them. Here, we organise the Files and
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library Filesystem version 1.0
from Basic/StructuredDatatypes version 1.0 get Pair

spec Data =
sorts Attribute, F ile

then
Pair[File][Attribute] with sort Pair[File][Attribute] 7→ FileAndAttribute

end

spec State =
Data

then
sort State

op setAttr : State× FileAndAttribute → State;

getAttr : State× File →? Attribute;

initial : State

end

ccspec Filesystem =
data State

channels set : FileAndAttribute;

get : File;

reply : Attribute
process

let P (s : State) = set?fa → P (setAttr(s, fa))

2 get?f → reply!getAttr(s, f) → P (s)
in P (initial)

end

Fig. 9. Specification of a simple file system.

Attributes as Pairs – a specification from the Casl standard libraries, which
is imported at the begin of the library Filesystem. A file-system has also
a State. A State is observed by an operation getAttr, which returns the At-
tribute associated to a specific File. A State might be changed, by associating
an Attribute to a File. It is convenient to have a distinguished initial state.

Note that as there are no sub-sort relations declared, the underlying signature
of State has local top elements.

Both specifications Data and State are loose, i.e. it is left open, what a File
or an Attribute might be. There are no axioms specifying properties of the
operations setAttr and getAttr. Also, there is no prescribed structure of a State.
The Csp-Casl specification FileSystem uses these two Casl specifications
to define a process, which offers to its environment the choice between setting
an Attribute to a File and asking for the Attribute of a File.
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spec State1 = State then
∀ s : State; f, f ′ : File; a : Attribute
• ¬def getAttr(initial, f)

• getAttr(setAttr(s, pair(f, a)), f ′) = a wehn f = f ′ else

getAttr(s, f ′)
end
ccspec Filesystem1 =

data State1

channels set : FileAndAttribute;

get : File;

reply : Attribute
process

let P (s : State) = set?fa → P (setAttr(s, fa))

2 get?f → reply!getAttr(s, f) → P (s)
in P (initial)

end

Fig. 10. A refinement in the data part.

ccspec Filesystem2 =
data State1

channels set : FileAndAttribute;

get : File;

reply : Attribute
process

let P (s : State) = set?fa → P (setAttr(s, fa))

2 get?f → reply!getAttr(s, f) → P (s)
in set?fa → P (setAttr(initial, fa))

end

Fig. 11. A refinement in the process part.

Although the specification FileSystem includes a recursive process definition
built on a loosely specified sort, we can easily prove that the underlying system
of equations has a unique solution in the Csp traces model T : the external
choice operator is non-destructive and consists of two processes starting with
action prefix — a constructive Csp operator.

While FileSystem only provides the signatures how to access and manipu-
late states, FileSystem1, see Figure 10, ensures that there is no information
available in the state initial and that getAttr replies the information added by
setAttr. FileSystem1 is obtained from FileSystem by a simple data refine-
ment: adding axioms to State yields a smaller model class. Thus, according
to our first result in Section 5.6, FileSystem1 is a Csp-Casl refinement of
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Fig. 12. Relationship between Csp-Casl and other reactive Casl extensions

FileSystem.

Figure 11 provides an example of a refinement in the process part. Here, we
show with the technique of Csp fixed-point induction that FileSystem2
refines FileSystem1. The significant condition is to prove

set?fa→ P (setAttr(initial, fa))

vT set?fa→ P (setAttr(initial, fa))

2 get?f → reply!getAttr(initial, f) → P (initial)

This holds as removing a nondeterministic options within the Csp traces
model T leads to a refinement. As the data is fixed and there is a refinement in
the process part, FileSystem2 is a Csp-Casl refinement of FileSystem1
according the second characterisation of refinement in Section 5.6.

7 Relation with other approaches

There are various proposals of reactive Casl extensions – see Figure 12 for a
small selection. Our definition of Csp-Casl, like CCS-Casl [23,24] or Casl-
Charts [19], combines Casl with reactive systems of a particular kind. All
these approaches result in specification frameworks able to model actual reac-
tive systems.

Casl-ltl [20] and CoCasl [17,18] take a more fundamental approach: they
extend Casl internally. In the case of Casl-ltl, the logic is extend by tem-
poral operators, while CoCasl dualizes the Casl sort generation constraints
as well as the structured free by co-algebraic constructions. In both cases the
result is more a meta-framework, which allows e.g. to model the semantics of
a process algebra.

According to [25] CCS-Casl restricts Casl to many-sorted conditional equa-
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tions without partiality and sub-sorting with initial semantics, i.e. the lan-
guage available to describe data type is a true subset of Casl. As CCS-Casl
is based on Milner’s value passing CCS, there is no need to turn a many-sorted
algebra into one set of communications: synchronisation is only possible be-
tween names (parametrised with variables) and co-names (parametrised with
terms). Thus, algebraic specification is used to give semantics to the passed
values. The available names and co-names are not treated as “data”. For a
comparison between Csp and CCS see e.g. [5].

The language Lotos [12] integrates the algebraic specification language ACT
ONE with a process algebraic based on a combination of concepts of CCS and
Csp. Concerning the relation of ACT ONE and Casl, we refer to [16], which
defines a representation of the institution underlying ACT ONE in FOL=, a
sub-language of Casl. Furthermore, Lotos uses initial semantics, while Casl
provides both, initial and loose semantics. ACT ONE does neither include
sub-sorting nor partiality. Thus, it has only to deal with the first of our four
integration issues. This is actually present in the language, as Lotos takes
the Csp approach of synchronisation. In defining synchronisation in terms of
co-called gates, which are considered to be different if they have a different
name, it provides the same solution to this issue as we use in Csp-Casl.

In its data part µCRL [10] uses equational logic with a predefined type of
booleans with a fixed interpretation. The logic is restricted to total functions,
sub-sorting is not available. There is no formulation of this logic as an in-
stitution available, but following the ideas of [16] it it should be possible to
represent it within the institution underlying Casl. µCRL uses loose seman-
tics, thus defining a model-indexed family as semantics of a specification. The
µCRL solution to our first integration issue is to use the values of data type
as parameter to actions, where different action names make the data different.

The model checker FDR extends Csp by a functional ‘programming’ lan-
guages for data type. The alphabet of communications is described in terms
of channels, which are considered to be different. Thus, FDR and Csp-Casl
take the same approach to solve the first integration problem c.f. Section 3.1:
in FDR channel names stand for types, which in Casl are denoted as sorts.
In FDR does not provide no sub-sorting. Concerning partiality, functions like
the division of two natural numbers m/n are included — but the situation of
undefined results is not properly treaded.

Thus, none of the above described combinations of data types with process
algebras addresses the problems of partiality or sub-sorting. Concerning the
different solutions offered to our first integration issue, they all follow the
paradigm ‘disjoint union’ realised in different technical means. Here, we think
that our treatment is on the right level: it does not introduce a new data
type construction outside the algebraic specification language and therefore
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allows to translate the question of synchronisation into the question if a certain
formula is valid. As our short discussion of full Csp-Casl showed, channels
can be treated as a special data construct inside Casl and are as such a
‘derived’ concept.

Conclusion and future work

In this paper, we introduce the language Csp-Casl as a new kind of integra-
tion of process algebra and algebraic specification. Against the trend set by
E-Lotos [14] in replacing the algebraic specification language for the data
part by a functional one, we claim that data refinement is a powerful specifi-
cation paradigm and it is interesting to study a language covering the specifi-
cation of functional as well as of reactive system properties at an appropriate
level of abstraction. A first case study in an industrial context has shown that
Csp-Casl is capable to deal with complex systems at different levels of detail
[8].

On the Casl side, Csp-Casl includes many-sorted first order logic with sort
generation constraints, sub-sorting and partiality as well as all structuring con-
struct. Concerning Csp, Csp-Casl is generic in the choice of the denotational
Csp semantics. The two characterisation of section 5.6 and the discussion of
our example in Section 6.2 demonstrate that our notion of refinement is intu-
itive and also of practical use.

Concerning the language Csp-Casl, it will be useful to have also parametrised
specifications available. Furthermore, processes including free variables seem
to be an interesting extension. On the tool’s side, future work will include
establishing a clear relation of Csp-Casl with the model checker FDR and
the development of tool support for theorem proving on Csp-Casl. For the
latter, we intend to integrate the theorem provers HOL-CASL [15] and HOL-
CSP [26,13]. On the theoretical side, we intend to study if Csp and the Csp-
Casl can be formulated within the framework of institutions.
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