
A simple refinement language for CASL

Till Mossakowski1, Don Sannella2, and Andrzej Tarlecki3

1 BISS, Department of Computer Science, University of Bremen
2 LFCS, School of Informatics, University of Edinburgh, Edinburgh, UK

3 Institute of Informatics, Warsaw University and Institute of Computer Science,
PAS, Warsaw, Poland

Abstract

The standard development paradigm of algebraic specification [1] postulates that
the development begins with a formal requirement specification (extracted from
a software project’s informal requirements) that fixes only expected properties
but ideally says nothing about implementation issues; this is to be followed by
a number of refinement steps that fix more and more details of the design, so
that one finally arrives at what is often termed the design specification. The
last refinement step then results in an actual implementation in a programming
language.

In this work, we extend the specification language CASL [6] with a simple
refinement language and also address the passage to implementations in func-
tional programming languages (SML and Haskell). The refinement language is
much simpler that that originally proposed in draft versions of [6].

CASL structured specifications can be seen as specifications of non-parameterized
program units, whereas CASL unit specifications also cover program units that
are parameterized by other program units. Of particular importance are monomor-
phic unit specifications, that is unit specifications whose result specification is
a monomorphic extension of the argument specifications. Up to isomorphism,
these specify just one parameterized program. Of course, in order to be able to
actually translate such a unit specification to a program in a programming lan-
guage PL, further PL-specific restrictions on monomorphic unit specifications
have to be imposed: for functional languages, we require that all sorts are given
as free types, and functions are defined recursively in a way that termination is
provable. In this case, an easy translation to a functional program is possible
[5], see [3] for a translation to OCAML. Using free extensions, it is also possible
to capture partial recursive functions, see [5, 3]. Moreover, with Haskell (and
its type class Eq) as target language, also generated types with explicitly given
equality can be used.

Refinement now basically means that unit specifications are refined into unit
specifications, until a monomorphic unit specification is reached. We provide a
simple notation for this

refine USP1 to USP2

The semantics is that each parameterized unit satisfying USP2 also satisfies
USP1.



2

CASL architectural specifications [2] allow to introduce branches into such
linear refinement sequences; they describe (via unit terms) how several (possibly
parameterized) units can be combined into a new one. A unit U : USP1 in an
architectural specification ASP can be refined with

refine U from ASP to USP2

with the same semantics as above. Finally, since CASL allows a coercion from
architectural specifications to unit specifications, we allow architectural specifi-
cations to occur directly as targets of refinements. (Note that this also allows
for simulating refinements along signature morphisms: the reduction against the
signature morphism can be just put into the result unit term of the architectural
specification).

Given a programming language PL, a complete refinement tree for PL has a
unit specification as its root, and architectural or unit specifications as its inner
nodes, such that

– each unit specification has a unique child, to which it is refined,
– each architectural specification has one child for each of its units, such that

the specification of the unit is refined to the child, and
– each leaf is a monomorphic unit specification satisfying the PL-specific re-

strictions.

Any such refinement tree can then be translated into a collection of PL-modules
jointly implementing the root specification of the tree, provided that PL has
a module system that is rich enough to capture CASL unit terms. For ML and
Haskell, this looks as follows:

CASL ML Haskell
non-parameterized unit structure module
parameterized unit functor multi-parameter type

class in a module
monomorphic unit specifi-
cation with free types and
recursive definitions

structure with free types
and recursive definitions

module with free types
and recursive definitions

unit application functor application type class instantiation
unit amalgamation combination of structures combination of modules
unit hiding restriction to subsignature hiding
unit renaming redefinition redefinition
architectural specification functor depending on

other functors
module depending on
other modules

The possibility of the following alternative design is still under discussion:
instead of letting monomorphic unit specifications be the end-point of a devel-
opment, let the end-point be architectural specifications without any declared
units. This makes sense if the language for architectural unit terms is rich enough
to express all the needed programming language-specific constructors. In order
to achieve this richness, the language has to be extend e.g. by constructors for
free extensions and institution-specific inductive schemata for the definition of



3

functions. This has the disadvantage of an institution-specific language for ar-
chitectural unit terms, but the advantage that from the beginning, constructors
are expressed directly rather than indirectly, up to isomorphism, via a specifica-
tion. On the other hand, monomorphic unit specifications satisfying the syntactic
PL-specific restrictions for a programming language PL typically will have a se-
mantics giving unique models (and not only models unique up to isomorphism)
as well. This might lead to a reconciliation of the two approaches.

References

[1] E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, Algebraic foundations of
systems specification, Springer, 1999.

[2] Michel Bidoit, Donald Sannella, and Andrzej Tarlecki, Architectural specifications
in CASL, Formal Aspects of Computing 13 (2002), 252–273.

[3] Thibaud Brunet, Génération automatique de code à partir de spécifications
formelles, Master’s thesis, Université de Poitiers, 2003.

[4] CoFI, The Common Framework Initiative for algebraic specification and develop-
ment, electronic archives, Notes and Documents accessible from http://www.cofi.

info/.
[5] Till Mossakowski, Two “functional programming” sublanguages of CASL, Note L-9,

in [4], March 1998.
[6] Peter D. Mosses (ed.), CASL reference manual, Lecture Notes in Computer Science,

vol. 2960, Springer, 2004, To appear.


