
RoboCup 2004

Thomas R̈ofer
Tim Laue

Center for Computing Technology,
FB 3 Informatik,

Universiẗat Bremen,
Postfach 330440,

28334 Bremen, Germany

Hans-Dieter Burkhard
Jan Hoffmann

Matthias J̈ungel
Daniel G̈ohring
Martin Lötzsch
Uwe Düffert

Michael Spranger
Benjamin Altmeyer

Viviana Goetzke

Institut für Informatik,
LFG Künstliche Intelligenz,

Humboldt-Universiẗat zu Berlin,
Rudower Chaussee 25,
12489 Berlin, Germany

Oskar von Stryk
Ronnie Brunn
Marc Dassler
Michael Kunz

Max Risler
Maximilian Stelzer

Dirk Thomas
Stefan Uhrig

Fachgebiet Simulation und Systemoptimierung,
FB 20 Informatik,

Technische Universität Darmstadt,
Hochschulstr. 10,

64289 Darmstadt, Germany

Uwe Schwiegelshohn
Ingo Dahm

Matthias Hebbel
Walter Nistićo

Carsten Schumann
Michael Wachter

Computer Engineering Institute,
Fakulẗat Elektrotechnik,
University of Dortmund,

Otto-Hahn-Strasse 4,
44221 Dortmund, Germany

Abstract

The GermanTeam is a joint project of four German universities in the Sony Legged Robot
League. This report describes the software developed for the RoboCup 2004 in Lisbon. It presents
the software architecture of the system as well as the methods that were developed to tackle the
problems of motion, image processing, object recognition, self-localization, and robot behavior.
The approaches for both playing robot soccer and mastering the challenges are presented. In ad-
dition to the software actually running on the robots, this document will also give an overview of
the tools the GermanTeam used to support the development process.

The report serves as detailed documentation of the work that has been done and aims at
enabling other researchers to make use of it. In an extensive appendix, several topics are de-
scribed in detail, namely the installation of the software, how it is used, the implementation
of inter-process communication, streams, and debugging mechanisms, and the approach of the
GermanTeam to model the behavior of the robots.

Contents

1 Introduction 1
1.1 History . 1
1.2 Scientific Goals. 1

1.2.1 Humboldt-Universiẗat zu Berlin . 2
1.2.2 Technische Universität Darmstadt . 2
1.2.3 Universiẗat Bremen. 3
1.2.4 Universiẗat Dortmund . 4

1.3 Contributing Team Members. 4
1.3.1 Aibo Team Humboldt (Humboldt-Universität zu Berlin) 4
1.3.2 Darmstadt Dribbling Dackels (Technische Universität Darmstadt) 5
1.3.3 Bremen Byters (Universität Bremen) 5
1.3.4 Microsoft Hellhounds (Universität Dortmund). 5

1.4 Structure of this Document. 5
1.5 Innovations in 2004. 6

2 Architecture 9
2.1 Platform-Independence. 9

2.1.1 Motivation . 9
2.1.2 Realization. .10
2.1.3 Supported Platforms. .11
2.1.4 Math Library .11

2.1.4.1 Provided Data Types. 11
2.2 Multiple Team Support. .12

2.2.1 Tasks .12
2.2.2 Debugging Support. .14
2.2.3 Process-Layouts. .14

2.2.3.1 Communication between Processes. 14
2.2.3.2 Team Communication. 15
2.2.3.3 Different Layouts. 17

2.2.4 Make Engine. .18
2.2.4.1 Dependencies. 18
2.2.4.2 Realization. .18
2.2.4.3 Debugging and Optimization. 19

i

ii CONTENTS

2.2.4.4 Automation and Integration. 19

3 Modules in GT2004 21
3.1 Body Sensor Processing. .21
3.2 Vision .22

3.2.1 Using a Horizon-Aligned Grid. 23
3.2.2 Color Table Generalization. 25
3.2.3 Camera Calibration. .27
3.2.4 Detecting Points on Edges. 33
3.2.5 Detecting the Ball .33
3.2.6 Detecting Beacons. .35
3.2.7 Detecting Goals. .36
3.2.8 Detecting Robots. .36
3.2.9 Detecting Obstacles. .37
3.2.10 Motion Compensation. 38

3.3 Self-Localization .39
3.3.1 Motion Model .39
3.3.2 Observation Model. .40

3.3.2.1 Flags. .40
3.3.2.2 Goals. .40
3.3.2.3 Edge Points. 41
3.3.2.4 Probabilities for Flags and Goals. 43
3.3.2.5 Probabilities for Edge Points. 43
3.3.2.6 Overall Probability . 44

3.3.3 Resampling. .44
3.3.3.1 Importance Resampling. 44
3.3.3.2 Drawing from Observations. 44
3.3.3.3 Probabilistic Search. 46

3.3.4 Estimating the Pose of the Robot. 46
3.3.4.1 Finding the Largest Cluster. 46
3.3.4.2 Calculating the Average. 46
3.3.4.3 Certainty. .46

3.3.5 Results .47
3.4 Ball Modeling. .48

3.4.1 Ball Position and Ball Speed. 48
3.4.2 Kalman Filtering of Ball Percepts. 48
3.4.3 Communicated Information about the Ball. 50

3.5 Obstacle Model. .51
3.5.1 Updating the Model with new Sensor Data. 52
3.5.2 Updating the Model Using Odometry. 52

3.6 Collision Detector. .53
3.7 Player Modeling. .55
3.8 Behavior Control .56

CONTENTS iii

3.8.1 Ball Handling. .58
3.8.1.1 Approaching. 58
3.8.1.2 Dribbling. .61
3.8.1.3 Grabbing and Pushing Backward. 62
3.8.1.4 Kicking .63
3.8.1.5 Zones for Ball Handling. 67
3.8.1.6 Transitions Between Ball Handling Behaviors. 68

3.8.2 Navigation and Obstacle Avoidance. 69
3.8.2.1 Walking to a Position. 69
3.8.2.2 Walking to a Far Away Ball. 70
3.8.2.3 Positioning. .70

3.8.3 Player Roles .72
3.8.3.1 Striker .72
3.8.3.2 Supporters. .72
3.8.3.3 Goalie .75
3.8.3.4 Dynamic Role Assignments. 78

3.8.4 Game Control. .79
3.8.5 Cheering and Artistry. .82

3.9 Motion. .83
3.9.1 Walking. .84

3.9.1.1 Approach .85
3.9.1.2 Parameters. .85
3.9.1.3 Combining several optimized parameter sets. 87
3.9.1.4 Odometry correction. 87
3.9.1.5 Inverse kinematics. 88
3.9.1.6 Gait Evolution. 92

3.9.2 Special Actions. .93
3.9.3 Head Motion Control. .94

3.9.3.1 Geometric Considerations. 95
3.9.3.2 Head Path Planner. 97
3.9.3.3 Landmark State. 98
3.9.3.4 State Machine. 98
3.9.3.5 Basic Behaviors. .100

4 Open Challenge 103
4.1 Classification .104
4.2 Matching .104
4.3 Estimation. .104
4.4 Arbitration. .104
4.5 Conclusion .105

iv CONTENTS

5 Tools 107
5.1 Simulator .107

5.1.1 Simulation Kernel .108
5.1.2 User Interface. .110
5.1.3 Controller. .110

5.2 RobotControl .112
5.3 MakeStick. .113

5.3.1 Installation .113
5.3.2 Usage. .114

5.3.2.1 Actions. .115
5.3.2.2 Copy Options. .115
5.3.2.3 Player Role .115
5.3.2.4 Team. .116
5.3.2.5 WLAN .116

5.4 Universal Resource Compiler. .117
5.4.1 Motion Description Language. .117

5.5 Depend .118
5.6 Emon Log Parser. .118

6 Conclusions and Outlook 121
6.1 The Competitions in Lisbon. .121
6.2 Future Work. .122

6.2.1 Humboldt-Universiẗat zu Berlin .122
6.2.2 Technische Universität Darmstadt .123
6.2.3 Universiẗat Bremen. .124
6.2.4 Universiẗat Dortmund .124

7 Acknowledgments 125

A Installation 127
A.1 Required Software .127
A.2 Source Code. .127

A.2.1 Robot Code. .128
A.2.2 Tools Code .129

A.3 The Developer Studio Workspace GT2004.dsw/.sln.129

B Getting Started 131
B.1 Configuration Files. .131

B.1.1 location.cfg. .131
B.1.2 coltable.cfg. .131
B.1.3 camera.cfg .132
B.1.4 player.cfg. .132
B.1.5 robot.cfg .133

CONTENTS v

B.1.6 wlanconf.txt .133
B.1.7 coeff.c{u,v,y} .133

C Simulator Usage 135
C.1 Introduction. .135
C.2 Getting Started. .136
C.3 Scene View .136
C.4 Information Views .137

C.4.1 Image Views .138
C.4.2 Field Views. .138
C.4.3 Xabsl Views .139
C.4.4 Sensor Data View. .140
C.4.5 Timing View .141

C.5 Scene Description Files. .141
C.6 Console Commands. .141

C.6.1 Initialization Commands. .142
C.6.2 Global Commands. .142
C.6.3 Robot Commands. .143

C.7 Examples .147
C.7.1 Recording a Log File. .147
C.7.2 Replaying a Log File. .148
C.7.3 Remote Control. .149

D RobotControl Usage 151
D.1 Starting RobotControl. .151
D.2 Application Framework. .151

D.2.1 The Debug Keys Toolbar. .151
D.2.2 The Settings Dialog .153
D.2.3 The Log Player Toolbar. .153
D.2.4 WLan Toolbar .154
D.2.5 Game Toolbar. .155

D.3 Vision Related Tools .155
D.3.1 Image Viewer and Large Image Viewer.155
D.3.2 Field View and Radar Viewer. .156
D.3.3 Radar Viewer 3D. .156
D.3.4 Color Space Dialog. .156
D.3.5 The Color Table Dialog .157
D.3.6 HSI Tool Dialog .158
D.3.7 The TSL Color Segmentation Dialog.161
D.3.8 Camera Toolbar. .161

D.4 Behavior Related Tools. .162
D.4.1 Xabsl2 Behavior Tester. .162

D.5 Motion Related Tools. .164

vi CONTENTS

D.5.1 Motion Tester Dialog. .164
D.5.2 Head Motion Tester Dialog. .164
D.5.3 Mof Tester Dialog .165
D.5.4 Joystick Motion Tester Dialog. .166

D.6 Sensing and Debugging. .167
D.6.1 Value History Dialog. .167
D.6.2 Time Diagram Dialog .168
D.6.3 Debug Message Generator Dialog. .168

D.7 The Simulator. .169

E Extensible Agent Behavior Specification Language 171
E.1 Hierarchies of Finite State Machines. .171

E.1.1 The Option Graph. .171
E.1.2 State Machines. .173
E.1.3 Interaction with the Environment. .176
E.1.4 The Execution of the Option Hierarchy.176

E.2 Behavior Specification in XML. .177
E.3 The XABSL Language. .180

E.3.1 Symbols, Basic Behaviors, and Option Definitions.180
E.3.2 Options and States. .181
E.3.3 Boolean and Decimal Expressions. .183
E.3.4 Agents .184

E.4 Mechanisms and Tools. .187
E.4.1 File Types and Inclusions. .187
E.4.2 Document Processing. .188

E.5 The XabslEngine Class Library. .189
E.5.1 Running the Xabsl2Engine on a Specific Target Platform. 190
E.5.2 Registering Symbols and Basic Behaviors.190
E.5.3 Creating the Option Graph and Executing the Engine.191
E.5.4 Debugging Interfaces. .192

E.6 Discussion. .194

F Processes, Senders, and Receivers 197
F.1 Motivation. .197
F.2 Creating a Process. .197
F.3 Communication. .199

F.3.1 Packages. .199
F.3.2 Senders. .200
F.3.3 Receivers. .201

CONTENTS vii

G Streams 203
G.1 Motivation. .203
G.2 The Classes Provided. .203
G.3 Streaming Data. .205
G.4 Making Classes Streamable. .206

G.4.1 Streaming Operators. .206
G.4.2 Streaming usingread()andwrite() .208

G.5 Implementing New Streams. .209

H Debugging Mechanisms 213
H.1 Exchanging Messages Between Robots and PC.213

H.1.1 Message Queues. .213
H.1.2 Distribution of Debug Messages. .215
H.1.3 Requesting Messages With Debug Keys.216
H.1.4 Debug Macros .217

H.2 Message Queues and Processes. .218
H.2.1 Message Handling. .218
H.2.2 The Process Debug. .219

H.3 Common Debug Mechanisms. .220
H.3.1 Debug Drawings. .220
H.3.2 Stopwatch. .222

I Mechanisms for Modules and Solutions 225
I.1 Division of Information Processing into Tasks.225
I.2 Defining Modules and Solutions. .227

I.2.1 Class Module. .227
I.2.2 Interface Classes. .228
I.2.3 Base Classes For Modules. .229
I.2.4 Selecting Solutions. .230
I.2.5 Administration of Modules. .232

I.3 Modules and Processes. .233
I.3.1 Embedding Modules into Processes.233
I.3.2 Representations in Processes. .234

J Programming RobotControl 235
J.1 General Structure. .235
J.2 Message Queues and Message Distribution.235

J.2.1 Sending Messages to Robots. .236
J.2.2 Log-Player .238
J.2.3 Distribution of Incoming Messages.238
J.2.4 Example .241

J.3 Physical Robots. .242
J.4 Simulated Robots. .243

viii CONTENTS

J.4.1 Replication of The Robot Operating System.243
J.4.2 Integration of SimRobot. .244
J.4.3 Interface to RobotControl. .245
J.4.4 Processing Data from Physical Robots.246

J.5 Graphical User Interface. .247
J.5.1 The Main Window. .247
J.5.2 Dialog Bars. .249
J.5.3 Tool Bars. .249

J.6 Additional Mechanisms. .249
J.6.1 Central Debug Key Tables. .249
J.6.2 Configuration Manager. .250

J.7 Main Program. .251
J.7.1 Start of RobotControl. .251
J.7.2 Synchronisation. .252

K Adding a Dialog Bar to RobotControl 255
K.1 Creation of a new Dialog Bar. .255

K.1.1 Creation of a dialog resource. .255
K.1.2 Changes in Resource.h. .256
K.1.3 Creating a Class for the Dialog Bar.258
K.1.4 Embedding a Dialog Bar into the Main Window.258

K.2 Programming a Dialog Bar. .260
K.2.1 Member Variables for Control. .260
K.2.2 Dynamic Resizing .261
K.2.3 Activating and Deactivating Controls.263
K.2.4 Handling Window Messages. .264
K.2.5 Handling External Window Messages.265

K.3 Integration into the Overall Application. .266
K.3.1 Using Message Queues. .266
K.3.2 Storing Settings in the Registry. .267

K.4 Creating Dialog Bars With Visual C++ 6.0. .268

L Adding a Tool Bar to RobotControl 271
L.1 Creating a Tool Bar. .271

L.1.1 Creating images for the buttons. .271
L.1.2 Creating IDs for Controls. .272
L.1.3 Labels and Help Texts. .273
L.1.4 Creating a Class for the Tool Bar. .273
L.1.5 Arranging Controls on a Tool Bar. .273
L.1.6 Embedding a Tool Bar into the Main Window.275

L.2 Programming Tool Bars. .275
L.2.1 Adding Drop-Down-Lists, Edit Controls and Sliders.276
L.2.2 Changing the State of Controls. .277

CONTENTS ix

L.2.3 Handling Window Messages. .278
L.3 Integration into the Overall Application. .279

x CONTENTS

Chapter 1

Introduction

1.1 History

The GermanTeam is the successor of the Humboldt Heroes who participated in the Sony Legged
League competitions in 1999 and 2000. Because of the strong interest of other German univer-
sities, in March 2001, the GermanTeam was founded. It consists of students and researchers of
four universities: Humboldt-Universität zu Berlin, Universiẗat Bremen, Technische Universität
Darmstadt, and Universität Dortmund. For the RoboCup 2001, the Humboldt Heroes were only
actively joined by Bremen and Darmstadt in the last two to three months before the world cham-
pionship in Seattle.

In 2002 the Universiẗat Dortmund also joined in. The system presented in this document is
the result of the work of the team members of all four universities. Each of these four groups par-
ticipated individually in the German Open 2002, 2003, and 2004 in Paderborn. In 2004, the Mi-
crosoft Hellhounds (from Dortmund) also participated in the American Open, Australian Open,
and Japan Open. The national team, the “GermanTeam”, is formed each year after the German
Open and participated in the RoboCup World Championships in Fukuoka (2002), Padova (2003),
and Lisbon (2004).

The four teams are theAibo Team Humboldt(Berlin, winner of the GermanOpen 2001 and
2004), theBremen Byters, theDarmstadt Dribbling Dackels(winner of the GermanOpen 2002
and 2003), and theMicrosoft Hellhounds(Dortmund).

The GermanTeam won the RoboCup World Championship 2004. It made it to the quarter
finals in 2002 and 2003 and won the 2003 Technical Challenge.

1.2 Scientific Goals

All the universities participating have special research interests, which they try to carry out in the
GermanTeam’s software.

1

2 CHAPTER 1. INTRODUCTION

1.2.1 Humboldt-Universität zu Berlin

A main interest of the researchers at Humboldt-Universität zu Berlin (Aibo Team Humboldt)
are robotic architectures for autonomous robots based on mental models and the development of
complex behavior control architectures. At the moment there coexist two different architectures
for behavior control that were developed in Berlin. These architectures proofed to be very suc-
cessful during the RoboCup competitions in the Sony and in the Simulation League. The benefits
of both architectures are to be integrated into an unified architecture. It will be investigated, how
the capability to learn long term behaviors can be added to this architecture. The implemented
behaviors are just as important as the behavior architecture. The team in Berlin wants to analyze
existing behaviors and their impact on the team play to find out which models and which kinds of
communication are essential for effective cooperation. Furthermore methods of machine learning
are to be applied for optimizing ball handling behaviors.

A second focus of the research activities in Berlin is perception. We want to develop an
architecture for robot vision that enables robots to recognize their environment independent of the
present lighting conditions and that integrates knowledge about the environment that is collected
during the robot operates. This architecture will contain image processing methods, modeling
techniques, and ways to control the camera that are inter-coordinated.

1.2.2 Technische Universiẗat Darmstadt

The RoboCup scenario of soccer playing, cooperating, autonomous robots represents an extraor-
dinary challenge for the design, control and stability ofleggedrobots. In a game, fast, goal-
oriented motions must be planned autonomously and implemented online which not only pre-
serve the robot’s stability but can also be adapted in real-time to the quickly changing enviroment.
Existing design and control strategies for quadrupedal and especially humanoid robots with many
degrees of freedom and many actuated joints can only meet these challenges to a small extent. A
long-term research goal of the team at TU Darmstadt is to consider the highly nonlinear physi-
cal dynamical effects of legged robots on all levels of a reactive-deliberative control architecture
realizing autonomous robot behaviour. Many subproblems in autonomous locomotion and be-
havior control which can be decoupled for wheeld robots cannot be considered independently
for legged robots. E.g., in autonomous navigation localization with an actively movable camera
cannot be considered indepently from motion control of legs and arms which moves the robot
towards a goal position while maintaining stability of the gait. The problem of generating and
maintaining a wide variety of fast, statically or dynamically stable legged locomotions is pre-
dominant for all types of motions during a soccer game and even more important for humanoid
robots than for four-legged robots. Since its origin in 2001 the Darmstadt Dribbling Dackels par-
ticipated in and contributed to the GermanTeam in the 4-Legged-League. In 2004 the Darmstadt
Dribblers participated in the Humanoid-League for the first time.

The group in Darmstadt is developing tools for an efficient kinetical modeling and simulation
of four-legged and humanoid robot dynamics in three dimensions taking into account masses and
inertias of each robot link as well as motor, gear and controller models of each controlled joint.
Based on these nonlinear dynamic models computational methods for simulation, dynamic off-

1.2. SCIENTIFIC GOALS 3

line optimization and on-line stabilization and control of dynamic walking and running gaits are
developed and applied. These methods haven been applied to investigate and implement new,
fast, and stable locomotion in upright position for the ERS-210 model where the kinematical
and kinetical data had been provided by Sony (see CLAWAR 2003), as well as for a 80 cm high
humanoid robot prototype (see IEEE ICRA 2003, IEEE/RAS Humanoids 2003). Starting from
the experience in the Four-Legged-League the group in Darmstadt is investigating a software
architecture as well as navigation and behavior control methods for soccer-playing, autonomous
humanoid robots but also for solving complex tasks quite different from a soccer scenario by
teams of different types of autonomous robots (e.g. wheeled and humanoid).

Contributions of the Darmstadt Dribbling Dackels to the GermanTeam code include the in-
vestigation of a fast self-localization algorithm combining Monte-Carlo and single landmark ap-
proaches, low-level behavior algorithms using potential fields and an improved walking engine.
For the competitions in 2004 a Kalman Filter has been implemented to enable the goal keeper
as well as the field players to anticipate the velocity and direction of a ball moving in the robot’s
direction. Using this method the ball holding capabilities of the players, especially of the goal
keeper, could be improved significantly.

1.2.3 Universiẗat Bremen

The main research interest of the group in Bremen is the automatic recognition of the plans of
other agents, in particular, of the opposing team in RoboCup. A new challenge in the development
of autonomous physical agents is to model the environment in an adequate way. In this context,
modeling of other active entities is of crucial importance. It has to be examined, how actions of
other mobile agents can be identified and classified. Their behavior patterns and tactics should be
detected from generic actions and action sequences. From these patterns, future actions should
be predicted, and thus it is possible to select adequate reactions to the activities of the opponents.
Within this scenario, the other physical agents should not to be regarded individually. Rather it
should be assumed that they form a self-organizing group with a common goal, which contradicts
the agent’s own target. In consequence, an action of the group of other agents is also a threat
against the own plans, goals, and preferred actions, and must be considered accordingly. Acting
under the consideration of the actions of others presupposes a high degree of adaptability and the
capability to learn from previous situations. Thus these research areas will also be emphasized
in the project.

The research project focuses on plan recognition detection of agents in general. However, the
RoboCup is an ideal test-bed for the methods to be developed. This project is also part of the
priority program “Cooperating teams of mobile robots in dynamic environments” funded by the
Deutsche Forschungsgemeinschaft (German Research Foundation).

In the Sony Legged Robot League, it is the goal of the group from Bremen to establish a
robust and stable world model that will allow techniques for opponent modeling developed in
the simulation league to be applied to a league with real robots.

4 CHAPTER 1. INTRODUCTION

1.2.4 Universiẗat Dortmund

The team of the Universität Dortmund focuses its research interests in 2005 on the wide fields of
learning algorithms, modeling, and behavior control with applications in robot soccer.

To improve our existing solutions and approaches, we will realize a measuring environment:
An external camera, which is mounted at the ceiling directly over the robots playing field. Using
this camera, we will analyze the exact difference and variance between estimated object positions
and real-world data. Based on this, we will investigate, how error models can be further improved.
If we know more about estimation errors, we assume to increase the reliability and accuracy of
our world model (esp. ball model, players model, and robot self-localization).

The external robot observation shall also be used to learn walking parameters for omnidirec-
tional walking and odometry calibration of the walk. Our target is to implement an even smoother
and faster walk than before. Thereto, we use the ceiling camera as an external sensory device of
the robot itself and fuse it with the onboard acceleration sensors. From our point of view, here
we can profit from the developed virtual-robot framework.

Due to the change of rules, the border of the playing field will be removed in the next season.
Thus, kicking the ball exactly becomes more crucial than ever before. For this reason, we plan to
investigate, how kicking the novel ball can be learned automatically.

As handling the ball becomes more difficult, we assume, that we have to focus the ball more
often than we did in the past. Consequently, this effects localization, as we cannot afford to search
for landmarks that frequently. Hence, we try to extract and use more features of the field (e.g.
intersecting lines and the center circle). This should help to localize with a high reliability.

Finally, we have to use all extracted information to establish a collective behavior which
addresses the problem of controlling a team of multiple soccer robots coherently. We will in-
vestigate further, how our developed virtual-robot approach can be improved by an automatic
situation analysis.

1.3 Contributing Team Members

At the four universities providing active team members, many people contributed to the German-
Team:

1.3.1 Aibo Team Humboldt (Humboldt-Universität zu Berlin)

“Diplom” Students. Benjamin Altmeyer, Uwe D̈uffert, Daniel G̈ohring, Viviana Goetzke,
Martin Lötzsch, Michael Spranger.

PhD Students. Jan Hoffmann (Aibo Team Humboldt team leader), Matthias Jüngel.

Professor. Hans-Dieter Burkhard.

1.4. STRUCTURE OF THIS DOCUMENT 5

1.3.2 Darmstadt Dribbling Dackels (Technische Universiẗat Darmstadt)

“Diplom” Students. Ronnie Brunn, Marc Dassler, Michael Kunz, Sebastian Petters, Max
Risler, Michael Schmitt, Marcus Schobbe, Patrick Stamm , Dirk Thomas, Holger Tronnier, Ste-
fan Uhrig.

PhD Student. Max Stelzer.

Professor. Oskar von Stryk (Darmstadt Dribbling Dackels team leader).

1.3.3 Bremen Byters (Universiẗat Bremen)

“Diplom” Students. Holger Dick, Martin Fritsche, Jessica Marrufo.

PhD Student. Tim Laue.

Assistant Professor. Thomas R̈ofer (GermanTeam speaker, Bremen Byters team leader).

1.3.4 Microsoft Hellhounds (Universiẗat Dortmund)

“Diplom” Students. Arthur Cesarz, Damien Deom, Jörn Hamerla, Mathias Ḧulsbusch, Jochen
Kerdels, Thomas Kindler, Hyung-Won Koh, Tim Lohmann, Manuel Neubach, Claudius Rink,
Andreas Rossbacher, Frank Roßdeutscher, Bernd Schmidt, Carsten Schumann, Pascal Serwe,
Michael Wachter.

PhD Students. Ingo Dahm, Matthias Hebbel, Walter Nisticò.

Professor. Uwe Schwiegelshohn.

1.4 Structure of this Document

This document gives a complete survey over the software of the GermanTeam. It does not only
describe last year’s innovations but the entire system. This is due to the fact that this report also
serves as documentation for new members of the GermanTeam.

Chapter2 describes the software architecture implemented by the GermanTeam. It is moti-
vated by the special needs of a national team, i.e. a “team of teams” from different universities
in one country that compete against each other in national contests, but that will jointly line up
at the international RoboCup championship. In this architecture, the problem of a robot playing
soccer is divided into several tasks. Each task is solved by amodule. The implementations of
these modules for the soccer competition are described in chapter3. Chapter4 describes the
solution used in the “Open Challenge”.

6 CHAPTER 1. INTRODUCTION

Only 60% of the approximately 330,000 lines of code that were written by the GermanTeam
for the RoboCup 2004 are actually running on the robots. The other 40% were invested in pow-
erful tools that provide sophisticated debugging possibilities including a 3-D simulator for the
Sony Legged Robot League. These tools are presented in chapter5.

The main part of this report is finished by concluding the results achieved in 2004 and giving
an outlook on the future perspectives of the GermanTeam in 2005 in chapter6.

In the appendix, several issues are described in more detail. It starts with an installation guide
in AppendixA. AppendixB is a quick guide how to setup the robots of the GermanTeam to play
soccer and how to use the tools. Then, the appendicesC andD describe the usage of the simu-
lator and RobotControl, the two main tools of the GermanTeam. AppendixE contains a detailed
documentation of the behavior engine used by the GermanTeam in Lisbon. Afterwards, the Ger-
manTeam’s abstraction ofprocesses, senders, andreceiversis presented in AppendixF, followed
by AppendixG on streams, AppendixH on the debugging support, and AppendixI on the way
how the GermanTeam supports different implementations for a single task in parallel. The three
final appendices describe how the main debugging toolRobotControlworks (AppendixJ) and
how it can be extended with new dialogs (AppendixK) and toolbars (AppendixL).

1.5 Innovations in 2004

For those who already read our team report from 2003 [46], pointers to the main innovations
achieved in 2004 are given here.

Image Processingwas revised. It compensates for the blue shade produced by the camera of the
ERS-7 near the image border, as well as for geometric distortions (cf. Section3.2.3), as well as
for angular errors resulting from taking images while the head is moving fast (cf. Section3.2.10).
The ball specialist used in 2002 was re-established and improved (cf. Section3.2.5). The search
for flags (cf. Section3.2.1) and the specialist for recognizing them was also improved (cf. Sec-
tion 3.2.6). Points on lines are now augmented with the orientation of the corresponding line in
field coordinates (cf. Section3.2.4).

World Modeling. The self-locator uses the directedness of points on field lines to distinguish
between horizontal and vertical lines on the field (cf. Section3.3.2.3), which resulted in a very
good localization of the goalie. The ball’s position and speed are modeled using a Kalman filter
(cf. Section3.4).

Behavior Control. The behaviors are now described using XABSL version 2 (cf. Section3.8).
XABSL is also used to describe the different motions of the head of the robot (cf. Section3.9.3).
Developing behaviors using XABSL is supported by theXABSL profiler(cf. SectionE.5.4), a
tool that does statistics on activation paths and state changes in the XABSL graph.

Several new and improved basic behaviors such as turning with the ball, turning behind the
ball, and approaching the ball were implemented (cf. Section3.8.1). In general, it was tried to

1.5. INNOVATIONS IN 2004 7

be able to play soccer without kicks, and kicks are only used in selected situations (cf. Sec-
tion 3.8.1.2). The decision on which kick to use in a certain situation is now solved by theKick
Selection Table(cf. Section3.8.1.4), i. e. a table that maps current ball position and desired kick-
ing direction to an adequate kick. Several basic behaviors are now based on a more flexible and
XML-based implementation of potential fields (cf. Section3.8.2.3).

Motion Control. All the walks used by the GermanTeam were optimized using Evolutionary
Algorithms (cf. Section3.9.1.6). The walking engine is now able to interpolate between different
walks for different directions (cf. Section3.9.1). Some of the kicking motions were developed
using inverse kinematics (cf. Section3.9.2). The head control now supports active vision, i. e. it
tries to point the head in directions relevant for both ball recognition and self-localization (cf.
Section3.9.3).

Infrastructure. The communication between the robots of a team is now based on UDP. The
robots of a team automatically detect each other with the help of theDog Discovery Protocol(cf.
Section2.2.3.2). The communication between a robot and the debug tools of the GermanTeam
now uses direct TCP without the TCP-gateway. The simulator is based on OpenGL now and
produces more realistic images (cf. Section5.1). In addition to the ERS-210, it also simulates the
ERS-7.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Architecture

The GermanTeam is an example of a national team. The members participated as separate teams
in the German Open 2002, 2003, and 2004, but formed a single team at the RoboCup in Fukuoka,
Padova and Lisbon. Obviously, the results of the team would not have been very good if the
members developed separately until the middle of April, and then tried to integrate their code
to a single team in only two months. Therefore, an architecture was developed that allows im-
plementing different solutions for the tasks involved in playing robot soccer. The solutions are
exchangeable, compatible to each other, and they can even be distributed over a variable number
of concurrent processes. The approach will be described in section2.2. Before that, section2.1
will motivate why the robot control programs are implemented in a platform-independent way,
and how this is achieved.

2.1 Platform-Independence

One of the basic goals of the architecture of the GermanTeam wasplatform-independence, i. e.
the code shall be able to run in different environments, e. g. on real robots, in a simulation, or—
parts of it—in different RoboCup leagues.

2.1.1 Motivation

There are several reasons to enforce this approach:

Using a Simulation. A Simulation can speed up the development of a robot team significantly.
On the one hand, it allows writing and testing code without using a real robot—at least for a
while. When developing on real robots, a lot of time is wasted with transferring updated pro-
grams to the robot via a memory stick, booting the robot, charging and replacing batteries, etc.
In addition, simulations allow a program to be tested systematically, because the robots can auto-
matically be placed at certain locations, and information that is available in the simulation, e. g.
the robot poses, can be compared to the data estimated by the robot control programs.

9

10 CHAPTER 2. ARCHITECTURE

Sharing Code between the Leagues.Some of the universities in the GermanTeam are also
involved in other RoboCup leagues. Therefore, it is desirable to share code between the leagues,
e. g. the behavior control architecture between the Sony Legged Robot League and the Simulation
League.

Non Disclosure Agreement. Until RoboCup 2002, only the participants in the Sony Legged
Robot League got access to internal information about the software running on the Sony AIBO
robot. Therefore, the universities of all members of the league signed a non disclosure agreement
to protect this secret information. As a result and in contrast to other leagues, the code used to
control the robots during the championship was only made available to the other teams in the
league, but not to the public. This has changed in June 2002, when Open-R became publicly
available, but already before, the GermanTeam wanted to be able to publish a version of the
system without violating the NDA between the universities and Sony by encapsulating the NDA-
relevant code and by the means of the simulator (cf. Sect.5.1). Although the Open-R SDK is now
publicly available, there is no reason for the GermanTeam to remove the platform-independent
encapsulation from their code.

2.1.2 Realization

It turned out that platform-dependent parts are only required in the following cases:

Initialization of the Robot. Most robots require a certain kind of setup, e. g., the sensors and
the motors have to be initialized. Most parameters set during this phase are not changed again
later. Therefore, these initializations can be put together in one or two functions. In a simulation,
the setup is most often performed by the simulator itself; therefore, such initialization functions
can be left empty.

Communication between Processes.As most robot control programs will employ the advan-
tages of concurrent execution, an abstract interface for concurrent processes and the communica-
tion between them has to be provided on each platform. The communication scheme introduced
by the GermanTeam 2002 is illustrated in section2.2.3.1and in AppendixF.

Reading Sensor Data and Sending Motor Commands.During runtime, the data to be ex-
changed with the robot and the robot’s operating system is limited to sensor readings and actua-
tor commands. In case of the software developed by the GermanTeam in 2002, it was possible to
encapsulate this part as a communication between processes, i. e. there is no difference between
exchanging data between individual processes of the robot control program and between parts of
the control program and the operating system of the robot.

File System Access. Typically, the robot control program will load some configuration files
during the initialization of the system. In case of the system of the GermanTeam, information as
the color of robot’s team (red or blue), the robot’s initial role (e. g. the goalie), and several tables

2.1. PLATFORM-INDEPENDENCE 11

(e. g. the mapping from camera image colors to the so-called color classes) are loaded during
startup.

2.1.3 Supported Platforms

Currently, the architecture has been implemented on three different platforms:

Sony AIBO Robots. The specialty of the Sony Legged Robot League is that all teams use
the same robots, and it is not allowed changing them. This allows teams to run the code of other
teams, similar to the simulation league. However, this only works if one uses the complete source
code of another team. It is normally not possible to combine the code of different teams, at least
not without changing it. Therefore, to be able to share the source code in the GermanTeam, the
architecture described above was implemented on the Sony AIBO robots. The implementation
is based on the techniques provided by Open-R that form the operation system that natively runs
on the robots.

Microsoft Windows. The platform independent environment was also implemented on Mi-
crosoft Windows as a part of a special controller inSimRobot(cf. Sect.5.1) and, sharing the
same code, in the general development support toolRobotControl(cf. Sect.5.2). Under Win-
dows, the processes are modeled as threads, i. e. all processes share the same address space. This
caused some problems with global variables, because they are not shared on the real robots,
but they are under Windows. As there is only a small amount of global variables in the code,
the problem was solved “manually” by converting them into arrays, and by maintaining unique
indices to address these arrays for all threads.

Open-R Emulator under Cygwin. The environment was also implemented on the so-called
Open-R emulator that allows parts of the robot software to be compiled and run under Linux and
Cygwin.

2.1.4 Math Library

To have common access to frequently used mathematical data types, a math library was im-
plemented that encapsulates these data types. It provides data types for vectors (two and three
dimensional spezialisations andn-dimensional), matrices (three dimensional spezialiation and
n-dimensional), rotation matrices, and translation matrices (two and three dimensional). The
math library also provides Datatypes for dealing with histograms, geometric objects and PID
smoothing.

2.1.4.1 Provided Data Types

Vector2<T> and Vector3<T> are template classes for vectors with two or three elements,
respectively. They provide operators for the inner product and the cross product (ˆ opera-
tor) of two vectors (cross product only forVector3<T>), and functions for the Euclidean

12 CHAPTER 2. ARCHITECTURE

length, transposition, normalization, and the angle between the vector and the x-axis (only
Vector2<T>).

Matrix3x3 <T> is a template class for3×3-matrices. It provides operators to add and multiply
two matrices and operators to multiply a matrix and a vector.

RotationMatrix is a matrix especially for rotations.RotationMatrixhas various functions: func-
tions to rotate the matrix around all axes, functions returning the actual rotation around all
axes, and a function to invert the rotation matrix.

Pose2D and Pose3Dare transformation matrices in two and three dimensions. They can be mul-
tiplied with vectors andPose2Dor Pose3D, respectively. In addition they can be rotated by
angles and translated by vectors.

Vector n<T, N> is a template class forN-dimensional vectors of typeT. It provides functions
for addition, scalar multiplication and Euclidian length. This class can be used with func-
tions of theMatrix nxnclass.

Matrix nxn<T, N> is a template class forN×N-matrices of typeT. It provides functions to
add, multiply and invert matrices, to multiply matrices with vectors and to solve linear
equations.

2.2 Multiple Team Support

The major goal of the architecture presented in this chapter is the ability to support the collab-
oration between the university-teams in the German national team. Some tasks may be solved
only once for the whole team, so any team can use them. Others will be implemented differently
by each team, e. g. the behavior control. A specific solution for a certain task is called amodule.
To be able to share modules, interfaces were defined for all tasks required for playing robot soc-
cer in the Sony Legged League. These tasks will be summarized in the next section. To be able
to easily compare the performance of different solutions for same task, it is possible to switch
between them at runtime. The mechanisms that support this kind of development are described
in section2.2.2and in AppendixH. However, a common software interface cannot hide the fact
that some implementations will need more processing time than others. To compensate for these
differences, each team can use its ownprocess layout, i. e. it can group together modules to
processes which are running concurrently (cf. Sect.2.2.3).

2.2.1 Tasks

Figure2.1 depicts the tasks that were identified by the GermanTeam for playing soccer in the
Sony Legged Robot League. They can be structured into four levels:

2.2. MULTIPLE TEAM SUPPORT 13

Object
Modeling

RobotStateDetector ObstaclesLocator SelfLocator BallLocator PlayersLocator

Perception

Behavior
Control

BehaviorControl

Motion
Control

ImageSensorDataBuffer

CollisionDetector SensorDataProcessor ImageProcessorCameraMatrix

CollisionPercept BodyPercept BallPerceptLandmarksPereptLinesPerceptObstaclesPerceptPSDPercept PlayersPercept

JointDataBufferSoundData LEDValue

SoundControl LEDControl HeadControl MotionControlHeadMotionRequest

SoundRequest MotionRequestHeadControlModeLEDRequest

RobotState ObstaclesModel PlayerPoseCollectionBallPositionRobotPose

Figure 2.1: The tasks identified by the GermanTeam 2004 for playing soccer.

Perception. On this level, the current states of the joints are analyzed to determine the point
the camera is looking at. The camera image is searched for objects that are known to exist on the
field, i. e. landmarks (goals and flags), field lines, other players, the ball, and general obstacles
such as the referees. The sensor readings that were associated to objects are calledpercepts. In
addition, further sensors can be employed to determine whether the robot has been picked up, or
whether it fell down.

Object Modeling. Percepts immediately result from the current sensor readings. However,
most objects are not continuously visible, and noise in the sensor readings may even result in
a misrecognition of an object. Therefore, the positions of the dynamic objects on the field have
to be modeled, i. e. the location of the robot itself, the poses of the other robots, the positions of
further obstacles, and the position of the ball. The result of this level is the estimatedworld state.

Behavior Control. Based on the world state, the role of the robot, and the current score, the
third level generates the behavior of the robot. This can either be performed very reactively, or
deliberative components may be involved. The behavior level sends requests to the fourth level
to perform the selected motions.

14 CHAPTER 2. ARCHITECTURE

Motion Control. The final level performs the motions requested by the behavior level. It
distinguishes between motions of the head and of the body (i. e. walking). When walking or
standing, the head is controlled autonomously, e. g., to find the ball or to look for landmarks, but
when a kick is performed, the movement of the head is part of the whole motion. The motion
module also performs dead reckoning and provides this information to other modules.

This grouping is not strict; it is still possible to implement modules that handle more than
a single task, such as theSensorBehaviorControlthat includes the first three layers in a single
module. However, it was not used in the competitions; instead it is mostly used for teaching.

2.2.2 Debugging Support

One of the basic ideas of the architecture is that multiple solutions exist for a single task, and that
developers can switch between them at runtime. In addition, it is possible to include additional
switches into the code that can also be triggered at runtime. The realization is an extension of the
debugging techniques already implemented in the code of the GermanTeam 2001 [9]: debug re-
questsandsolution requests. The system manages two sets of information, the current state of all
debug keys, and the currently active solutions. Debug keys work similar to C++ preprocessor de-
fines, but they can be toggled at runtime (cf. Sect.H.1.3). A special infrastructure calledmessage
queues(cf. Sect.H.1.1) is employed to transmit requests to all processes on a robot to change
this information at runtime, i. e. to activate and to deactivate debug keys and to switch between
different solutions. The message queues are also used to transmit other kinds of data between the
robot(s) and the debugging tool on the PC (cf. Sect.5.2). For example, motion requests can di-
rectly be sent to the robot, images, text messages, and even drawings (cf. Sect.H.3.1) can be sent
to the PC. This allows visualizing the state of a certain module, textually and even graphically.
These techniques work both on the real robots and on the simulated ones (cf. Sect.5.1).

2.2.3 Process-Layouts

As already mentioned, each team can group its modules together to processes of their own choice.
Such an arrangement is called aprocess layout. The GermanTeam 2002 has developed its own
model for processes and the communication between them:

2.2.3.1 Communication between Processes

In the robot control program developed by the GermanTeam 2001 for the championship in Seat-
tle, the different processes exchanged their data through a shared memory [9], i. e., a blackboard
architecture [28] was employed. This approach lacked of a simple concept how to exchange data
in a safe and coordinated way. The locking mechanism employed wasted a lot of computing
power and it only guaranteed consistence during a single access, but the entries in the shared
memory could still change from one access to another. Therefore, an additional scheme had to
be implemented, as, e. g., making copies of all entries in the shared memory at the beginning
of a certain calculation step to keep them consistent. In addition, the use of a shared memory is

2.2. MULTIPLE TEAM SUPPORT 15

not compatible to the ability of the Sony AIBO robots to exchange data between processes via a
wireless network.

The communication scheme introduced in 2002 addresses these issues. It uses standard op-
erating system mechanisms to communicate between processes, and therefore it also works via
the wireless network. In the approach, no difference exists between inter-process communica-
tion and exchanging data with the operating system. Only three lines of code are sufficient to
establish a communication link. A predefined scheme separates the processing time into two
communication phases and a calculation phase.

The inter-object communication is performed bysendersandreceiversexchangingpackages.
A sender contains a single instance of a package. After it was instructed to send the package, it
will automatically transfer it to all receivers as soon as they have requested the package. Each
receiver also contains an instance of a package. The communication scheme is performed by
continuously repeating three phases for each process:

1. All receivers of a process receive all packages that are currently available.

2. The process performs its normal calculations, e. g. image processing, planning, etc. During
this, packages can already be sent.

3. All senders that were directed to transmit their package and have not done it yet will send
it to the corresponding receivers if they are ready to accept it.

Note that the communication does not involve any queuing. A process can miss to receive
a certain package if it is too slow, i. e., its computation in phase 2 takes too much time. In this
aspect, the communication scheme resembles the shared memory approach. Whenever a process
enters phase 2, it is equipped with the most current data available.

Both senders and receivers can either be blocking or non-blocking objects. Blocking objects
prevent a process from entering phase 2 until they were able to send or receive their package, re-
spectively. For instance, a process performing image segmentation will have a blocking receiver
for images to avoid that it segments the same image several times. On the other hand, a process
generating actuator commands will have a blocking sender for these commands, because it is
necessary to compute new ones only if they were requested for. In that case, the ability to im-
mediately send packages in phase 2 becomes useful: the process can pre-calculate the next set of
actuator commands, and it can send them instantly after they have been asked for, and afterwards
it pre-calculates the next ones.

The whole communication is performed automatically; only the connections between senders
and receivers have to be specified. In fact, the command to send a package is the only one that
has to be called explicitly. This significantly eases the implementation of new processes.

2.2.3.2 Team Communication

In the last years the communication between the robots had to be done via theTCPGateway
provided by Sony. Because of the bad latency of theTCPGatewaythe league committee decided
to allow direct communication between the robots.

16 CHAPTER 2. ARCHITECTURE

R
o

b
o

t

Cognition

Motion

D
e

b
u

g

Figure 2.2: The process layout of Humboldt 2002, since RoboCup 2002 used by the whole GermanTeam.

So we implemented an UDP based protocol for the team communication and a TCP based
protocol for the debug-communication to RobotControl.

For both of these protocols the process-framework had to be extended to handle this commu-
nication.

Putting IP-communication into the process-framework. The functionality for IP based com-
munication in OPEN-R is provided by theANT-library [15]. The basic concept of this library is
the “endpoint” which provides functionality for sending and receiving data over the network in-
terface. There are different endpoints for TCP-Streams and UDP-Packages and also for higher
level protocols like HTTP.

The ANT-library is used by sending some messages for connecting, disconnecting, sending
and receiving to the endpoint. This can be done either blocking or non-blocking, which means
that they return after doing their work or they return at once and raise an event by calling an
entry-point of the process object.

All this functionality is encapsulated in the process-framework by theIPEndpoint, TCPEnd-
point andUDPEndpointclasses.

Debug-communication to RobotControl. For debug-communication to RobotControl a TCP-
based protocol is used. The data sent is the same we sent last year by using theTCPGatewayand
therouter [46], but now these two programs are not used any more.

To minimize the necessary changes on the code,NetSendersandNetReceiversare introduced.
They have the same interface as the normalsendersand receiversused for inter-process com-
munication (cf. App.F.3), but send the data over the network by use of a protocol handler. So
nothing had to be changed in debug messages generation on the robot or the handling of the
debug messages inRobotControl. Actually, with the use of some macros the communication
between RobotControl and its internal simulator is still the same.

In the cognition process the debug messages are collected in aMessageQueue(cf. App.
H.1.1) which is sent by normal inter-process communication to the debug process where it is
merged with theMessageQueuefrom the motion-process. Now, as the outgoing message queue
is also derived from NetSender, the content of the MessageQueue is streamed into a memory
buffer by the NetSender. The NetSender then calls theTCPHandler. This class is derived from
TCPEndpointand handles the actual protocol for sending the memory buffer over the network
by first sending the size of the memory buffer and after that the memory buffer itself.

2.2. MULTIPLE TEAM SUPPORT 17

When there is incoming data on the connection, Aperios calls the entry-point for receiving
data in the process-framework. This entry-point indirectly callsonReceive()in theTCPHandler
where first the size is read and after that the incoming-data is collected into a memory buffer.
If all data is received, the NetReceiver is called which is using a streaming operator to read this
data back into the incoming message queue.

Team communication between the robots. In our approach for team communication every
robot sends information about its world model and its behavior related data to every other robot
of its team. There are two ways to spread this information among the team. The first way is an
UDP-broadcast which sends the data to all other robots and computers on the same network, but
in this case also the opponent could use this data. The second and chosen way is to send single-
cast packets. In this solution every robot sends out a separate packet to every other robot in the
team.

Therefore the data to send is also streamed to a memory buffer by the use ofNetSenders and
NetReceiveras it is done for debug-communication. But this time it is sent via an UDP-based
protocol by first sending the size of the buffer and then the data itself. Due to the limitations of
the UDP-protocol a maximum of 1400 bytes is sent.

Since every robot needs the IP-address of each other robot in his team, the “Dog-Discovery-
Protocol” (DDP) was developed. Every 2 seconds each robot sends an UDP-broadcast packet to
every other robot on the network. This packet contains a team-identifier and the actual team color
(red or blue) of the robot. Every time a teammate receives a DDP packet, it checks for the right
team-identifier and team color. If these parameters match its own parameters, the robot puts the
IP-address of the teammate in a list of teammates and starts sending team communication data
to the robot. If for some reason the teammate did not receive any packet from the robot for 10
seconds, it stops sending to it and removes it from the list.

This communication scheme has proved to be very robust in testing during development and
for real robot-soccer games on several events. Each robot is able to quickly find teammates and to
communicate with them. When the robot runs out of battery or crashes because of a programing
bug, the other robots still communicate among each other. After rebooting the robot reintegrates
himself into the team communication within seconds.

On big RoboCup events like the German-Open or the world championship there usually
are many wireless LAN networks in a very small area which interfere with each other. In this
environment the packet-loss is very high and some of the data the robot sends is lost. Therefore
data is sent every 100 ms so that the data received from other robots is as current as possible.

2.2.3.3 Different Layouts

Since RoboCup 2002, the GermanTeam uses a simple process layout (cf. Figure2.2) that was
originally introduced by Humboldt 2002, consisting of only three modules. More complex lay-
outs developed by the Bremen Byters and the Darmstadt Dribbling Dackels turned out to have
more disadvantages than advantages in timing measurements. The first three levels of the archi-
tecture are all integrated into the processCognition, because all of them only work with up-to-
date sensor data. The processMotion is separate, because sending motor commands always has

18 CHAPTER 2. ARCHITECTURE

to work with full frame rate, even if image processing takes too much time. The processDebug
collects and distributes messages sent through message queues from and to the other processes
and the PC. It is only used during the development, and it is inactive in actual RoboCup games.

2.2.4 Make Engine

Using different process layouts requires a sophisticated engine to compile the source code. As it
is desirable that each process only contains the code that it needs, complex dependencies exist
between compilation targets and the source files. For the code that is compiled for Microsoft Win-
dows, process layouts can be represented easily by different project configurations. In addition, it
is not required to determine the source code relevant for each process, because under Windows,
processes are implemented as threads, and these threads are all part of the same program.

However, on the AIBO, each process is a different binary file, and because memory con-
sumption is crucial, processes should be as small as possible, i. e. only the object files required
by a process should be linked together.

2.2.4.1 Dependencies

The directory structure of the source code of the GermanTeam does not reflect which source file
belongs to which binary. But the source files have to be grouped based on the selected process
layout for compilation and linking tasks, because in one layout, e. g., several files may share the
same process while they are distributed over multiple processes in another layout.

Generating dependencies, creating object files, and linking them together is quite time con-
suming, especially in huge projects that require ongoing modifications, expansions, testing, and
fine-tuning. Therefore, one major goal of implementing amake enginewas to execute only those
steps absolutely necessary to get a complete build without missing any modifications in source
code.

Therefore, a fast and flexible way to generate dependencies between source files and binaries
was required. In 2002, the compiler (e. g. thegcc) was used to generate object dependencies. This
turned out to be very time consuming and required an additional mechanism (not working in all
cases) to find out which object dependencies had to be rebuild when certain source files changed.
For the competitions in 2003 and 2004, a simple speed optimized pre-processor calledDepend
(GT2004/Src/Depend) (cf. Sect.5.5)written in C was developed to speed up the generation of
dependencies and to make them more reliable.

2.2.4.2 Realization

For each combination of the chosen process layout, build variant and compiler used, the make
engine uses a separate build directory ($PDIR, located inGT2004/Build) to avoid conflicts be-
tween different builds as well as the compulsion for a complete rebuild after changing the process
layout, build variant, or compiler. Each such$PDIR contains the object files in the same subdi-
rectory structure as the source code as well as a subdirectory calledbin containing the resulting

2.2. MULTIPLE TEAM SUPPORT 19

binaries. All these directories will be (re)generated with each start of the build process to be sure
not to miss any structural changes.

ThenDepend(cf. Sect.5.5) is used to completely generate all dependencies for the chosen
build target inGT2004/Build/*/*/depends.incleach time compilation or linking takes place. Even
with several hundreds of source files, this takes only a few seconds.

After that, all object files required for a certain binary can easily be determined byDepend.
This results in a list of all object files needed to be linked together for every binary / process of
the chosen process layout. So a compiler will never have to touch a source file that is not needed
to be linked with one of the binaries, because there is no dependency to it.

2.2.4.3 Debugging and Optimization

Compilers and linkers can be forced to output as many useful warnings as possible, to optimize
the code for speed and a certain target architecture such as MIPS R4300 or to simplify debugging
e. g. by adding debugging symbols. The make engine uses all those options according to the
chosen build variant to maximize speed or debuggability or minimize compile time as much as
possible.

2.2.4.4 Automation and Integration

In 2002, the project files of Visual Studio had to be updated manually each time the structure
of the source code tree changed or files were added or removed. The capability to generate all
dependencies and therefore a list of all files used withDependin a short time allows it to gen-
erate Visual Studio(6) project files easily from these dependencies since 2003. This simplifies
maintaining the consistency between the source code tree and the project files. All scripts neces-
sary for that can be found inGT2004/Make/Dspgeneration/. Since 2004 project files for Visual
Studio 2003.Net can be generated too.

It is possible to update or completely rebuild a certain process layout (e. g. CMD) in a special
build variant (e. g. Debug) with a single command, either from the command line, e. g. with
./GT.bash CMD Debug, or from the Microsoft Visual Studio, e. g. by selectingRebuildor Rebuild
All. All important messages produced by commands in the build process, e. g. error messages of
the compiler are converted immediately to a format that is understood by Visual Studio. Thus,
the list of errors and warnings can be browsed by the usual commands, presenting the source
files the messages refer to. This is done with several kinds of source files: not only with source
code (*.cpp and*.h), but also with motion descriptions (*.mof).

20 CHAPTER 2. ARCHITECTURE

Chapter 3

Modules in GT2004

The GermanTeam has split the robot’s information processing intomodules(cf. Sect.2.1). Each
module has a specific task and well-defined interfaces. Different exchangeablesolutionsexist for
many of the modules. This allows the four universities in the team to test different approaches
for each task. In addition, existing and working module solutions can remain in the source code
while new solutions can be developed in parallel. Only if the new version is better than the
existing ones (which can be tested at runtime), it becomes thedefault solution. Mechanisms for
declaring modules and for switching solutions at runtime are described in sectionI.2.4.

This chapter describes most of the modules that were implemented. For some solutions only
the chosen approach for the competition in Lisbon is figured out in detail.

3.1 Body Sensor Processing

The task of theSensorDataProcessoris to take the data provided by all sensors except the cam-
era, and to store them, marked with a time stamp, in a buffer. This buffer is used to calculate
average sensor values over the lastn ticks, or to pick up the sensor values for a given point in
time (usually the arrival of a new camera image).

For the calculation of the tilt and roll of the robot’s body, there are two possibilities. They
can be calculated by the measurements of the acceleration sensors or by the actual angles of the
leg joints. By comparing long term averages and short term averages of the tilt and roll angle, it
is possible to determine whether the robot has been lifted up or whether is has fallen down.

For every incoming image, theSensorDataProcessorcalculates a matrix that represents the
pose of the camera relative to the robot’s body origin. This allows the coordinates of objects
detected in camera images to be transformed into the robot’s system of coordinates.

For the ERS-7 this transformation is composed of the following sub-transformations:

1. translation along the positive z-axis by the height of the robots neck

2. counterclockwise rotation about the x-axis by the roll angle of the body

3. counterclockwise rotation about the y-axis by the sum of the tilt angle of body and the
lower head tilt angle

21

22 CHAPTER 3. MODULES IN GT2004

4. translation along the positive z-axis by the distance between the neck and the center of pan
rotation

5. counterclockwise rotation about the z-axis by the pan angle of the head

6. counterclockwise rotation about the y-axis by the upper tilt angle

7. translation along the positive x-axis by the distance along the x-axis between the center of
pan rotation and the camera

8. translation along the positive z-axis by the distance along the z-axis between the center of
upper tilt rotation and the camera

The camera matrix is calculated by multiplying the matrices describing these sub-
transformations. It is calculated for each 8 ms frame. It is also used to determine thePSD percept,
a transformation of the PSD distance measurement into robot-centric three-dimensional world
coordinates.

3.2 Vision

The vision module works on the images provided by the robot’s camera. The output of the vision
module fills the data structurePerceptCollection. A percept collection contains information about
the relative position of the ball, the field lines, the goals, the flags, the other players, and the
obstacles. Positions and angles in the percept collection are stored relative to the robot.

Goals and flags are each represented by four angles. These describe the bounding rectangle
of the landmark (top, bottom, left, and right edge) with respect to the robot. When calculating
these angles, the robot’s pose (i.e. the position of the camera relative to the body) is taken into
account. If a pixel used for the bounding box was on the border of the image, this information is
also stored.

Field lines are represented by a set of points (2-D coordinates) on a line. The ball position
and also the other players’ positions are represented in 2-D coordinates. The orientations of other
robots are not calculated.

The free space around the robot is represented in theobstacles percept. It consists of a set
of lines described by anear pointand afar point on the ground, relative to the robot. The lines
describe green segments in the projection of the camera’s image to the ground. In addition, for
each far point a marking describes whether the corresponding point in the image lies on the
border of the image or not.

The images are processed using the resolution of208× 160 pixels, but looking only at a grid
of less pixels. The idea is that for feature extraction, a high resolution is only needed for small or
far away objects. In addition to being smaller, such objects are also closer to the horizon. Thus
only regions near the horizon need to be scanned at a relative high resolution, while the rest of
the image can be scanning using a wider spaced grid.

3.2. VISION 23

C

P

H

h

h

l

r

Figure 3.1: Construction of the horizon

When calculating the percepts, the robot’s pose, i. e. its body tilt and head rotation at the time
the image was acquired, is taken into account as well as the current speed and direction of the
motion of the camera.

3.2.1 Using a Horizon-Aligned Grid

Calculation of the Horizon. For each image, the position of the horizon in the image is calcu-
lated. The robot’s lens projects the object from the real world onto the CCD chip. This process
can be described as a projection onto a virtual projection plane arranged perpendicular to the op-
tical axis with the center of projectionC at the focal point of the lens. As all objects at eye level
lie at the horizon, the horizon line in the image is the line of intersection between the projection
planeP and a planeH parallel to the ground at height of the camera (cf. Fig.3.1). The position
of the horizon in the image only depends on the rotation of the camera and not on the position of
the camera on the field or the camera’s height.

For each image the rotation of the robot’s camera relative to its body is stored in a rotation
matrix. Such a matrix describes how to convert a given vector from the robot’s system of coor-
dinates to the one of the camera. Both systems of coordinates share their origin at the center of
projectionC. The system of coordinates of the robot is described by thex-axis pointing parallel
to the ground forward, they-axis pointing parallel to the ground to the left, and thez-axis point-
ing perpendicular to the ground upward. The system of coordinates of the camera is described
by thex-axis pointing along the optical axis of the lens outward, they-axis pointing parallel to
the horizontal scan lines of the image, and thez-axis pointing parallel to the vertical edges of the
image.

To calculate the position of the horizon in the image, it is sufficient to calculate the coordi-
nates of the intersection pointshl andhr of the horizon and the left and the right edges of the
image in the system of coordinates of the camera. Lets be the half of the horizontal resolution

24 CHAPTER 3. MODULES IN GT2004

of the image,α be the half of the horizontal opening angle of the camera. Then

hl =

 s
tan α

s
zl

 , hr =

 s
tan α

−s
zr

 (3.1)

with only zl andzr unknown. Let

i =

x
y
0

 (3.2)

be the coordinates ofhl in the system of coordinates of the robot. Solving the equation that
describes the transformation between the two systems of coordinates

R · i = hl (3.3)

with the rotation matrix

R =

r11r12r13

r21r22r23

r31r32r33

 (3.4)

leads to
zl = −r32s + r31s · cot α

r33

. (3.5)

In the same way follows

zr = −−r32s + r31s · cot α

r33

. (3.6)

Grid Construction and Scanning. The grid is constructed based on the horizon line, to which
grid lines are perpendicular and in parallel. The area near the horizon has a high density of grid
lines, whereas the grid lines are coarser in the rest of the image.

Each grid line is scanned pixel by pixel from top to bottom and from left to right respektively.
During the scan each pixel is classified by color. A characteristic series of colors or a pattern of
colors is an indication of an object of interest, e. g., a sequence of some orange pixels is an
indication of a ball, a sequence of some pink pixels is an indication of a beacon, an (interrupted)
sequence of sky-blue or yellow pixels followed by a green pixel is an indication of a goal, a
sequence of white to green or green to white is an indication of an edge between the field and
the border or a field line, and a sequence of red or blue pixels is an indication of a player. All
this scanning is done using a kind of state machine; mostly counting the number of pixels of a
certain color class and the number of pixels since a certain color class was detected last. That
way, beginning and end of certain object types can still be determined although some pixels of
the wrong class are detected in between.

To speed up the object detection and to decrease the number of false positives, essentially
three different grids are used. The main grid covers the area around and below the horizon. It is
used to search for all objects which are situated on the field, i. e. the ball, obstacles, other robots,
field borders, field lines, and the lower borders of the goals (cf. Fig.3.2a). A set of grid lines

3.2. VISION 25

a) b) c)

Figure 3.2: Different scanlines and grids. a) The main grid which is used to detect objects on the field. b)
The grid lines for beacon detection. c) The grid lines for goal detection.

parallel to and in most parts over the horizon is used to detect the pink elements of the beacons
(cf. Fig. 3.2b). The goal detection is also based on horizontal grid lines (cf. Fig.3.2c)

Through these separated grids, the context knowledge about places of objects is implemented.

3.2.2 Color Table Generalization

One of the key problems in the RoboCup domain is to reach a high degree of robustness of the
vision system to lighting variations, both as a long term goal to mimic the adaptive capabilities
of organic systems, as well as a short term need to be able to deal with unforeseen situations
which can arise at the competitions, such as additional shadows on the field as a result of the
participation of a packed audience. While several remarkable attempts have been made in order
to achieve an image processor that doesn’t require manual calibration (see for example [29],
[53]), at the moment traditional systems are more efficient for competitions such as the RoboCup.
Our goal here was to improve a manually created color table, to extend its validity to lighting
situations which weren’t present in the samples used during the calibration process, or to resolve
ambiguities along the boundaries among close color regions, while leaving a high degree of
control over the process in the hands of the user. To achieve this, we have developed a color
table generalization technique which uses an exponential influence model similar to the approach
described in [35], but in contrast to it, this technique here is not used to perform a semi-automated
calibration from a set of samples, but to extend the validity of a manually generated one. Thus, a
color table is processed in the following way:

• Each point, which is assigned to a color class, irradiates it’s influence to the whole color
space, with an influence factor which decreases exponentially with the distance:

Ii(p1, p2) =

{
λ|p1−p2| i = c(p2)

0 ∀i 6= c(p2)
(3.7)

wherep1, p2 are two arbitrary points in the color map,λ < 1 is the exponential base,
Ii(p1, p2) is the influence ofp2 on the (new) color classi ∈ {red, orange, yellow, · · · } of
p1, andc(p2) is the color class ofp2,

26 CHAPTER 3. MODULES IN GT2004

• Since the cost of the influence calculation isO(n2), wheren is the number of elements of
the color table (218 in our case), instead of the euclidean distance, a manhattan distance is
used:

|p1 − p2|manhattan = |p1y − p2y|+ |p1u − p2u|+ |p1v − p2v| (3.8)

• For each point in the new color table, the total influence for each color class is computed:

Ii(p0) = Bi ·
∑
p6=p0

Ii(p0, p) (3.9)

whereBi ∈ (0..1] is a bias factor which can be used to favor the expansion of one color
class over its neighbors

• Then the color class that has the highest influence for a point is chosen, if:

max(Ii)

Ibk +
∑

i Ii

> τ (3.10)

whereτ is a confidence threshold,Ibk is a constant value assigned to the influence of the
background (noColor) which prevents an unbounded growth of the colored regions to the
empty areas, andi ∈ {red, orange, yellow, · · · } again represents the color class.

a) b)

Figure 3.3: Appearance of the color table after the exponential generalization: (a) original, (b) optimized.

The parametersλ, τ , Bi, Ibk control the effects of the generalization process, and we have imple-
mented 3 different settings: one for conservative generalization, one for aggressive expansion,
one for increasing the minimum distance among neighbouring regions. The time required to ap-
ply this algorithm, on a218 elements table, is≈ 4−7 minutes on a 2.66GHz Pentium4 processor,
while for a table of216 elements, this figure goes down to only 20-30 seconds.

3.2. VISION 27

a) b) c)

d) e) f)

Figure 3.4: Effects of the exponential generalization. (a) and (d) represents images taken from the same
field, but the lighting conditions differ due to an increased amount of sunlight in image (d): this can be
seen by the blueish cast on white objects such as the walls. (b) and (e) are classified using the original color
table, calibrated for the conditions found in (a); it can be noticed that (e) is not satisfactory, as the ball
is hard to detect and the goal appears largely incomplete. (c) and (f) are classified using the generalized
table, and it shows that it can gracefully accomodate to the new lighting conditions (f).

3.2.3 Camera Calibration

With the introduction of the ERS7 among the available platforms for the 4-Legged League, an
analysis of the camera of the new robot was required to adapt to the new specifications. While
the resolution of the new camera is≈ 31% higher compared to the previous one, preliminary
tests revealed some specific issues which weren’t present in the old model:

• lower light sensitivity, which can be countered by using the highest gain setting, at the
expense of amplifying the noise as well;

• vignetting effect (radiometric distortion), which makes the image appear dyed in blue at
the corners (cf. Fig.3.5).

Geometric camera model. In the previous years, the horizontal and vertical opening angles of
the cameras were used as the basis for all the measurements calculations, following the classical
”pinhole” model; however this year we decided to use a more complete model which would also
take into account the geometrical distortions of the images due to lens effects, called theDLT
model(see [4].) This model takes into account the lack of orthogonality between the image axes

28 CHAPTER 3. MODULES IN GT2004

Figure 3.5: Comparison of the image of a white wall, captured by the ERS210 and ERS7 cameras. Y
represents the brightness, U and V are the color bands of the image, which is provided by the camera in
the YUV color space. The ERS7 images have a chromatic distortion at the corners; they also appear darker
even if in this example, the camera gain was set tohigh, while in case of the ERS210A the setting was
low. See [47] for details.

sθ, the difference in their scale(sx, sy), and the shift of the projection of the real optical center
(principal point) from the center of the image(u0, v0):

• world coordinates, homogeneous:

p =
[

xw yw zw 1
]

(3.11)

• image coordinates:
q =

[
f · xi f · yi f

]
(3.12)

• intrinsic parameters:

K =

 σx σθ u0

0 σy v0

0 0 1

 (3.13)

• extrinsic parameters:

M =

. ..

... ...
...

· · · R · · · T

...
...

...
...

0 0 0 1

 (3.14)

3.2. VISION 29

• then the result is:

q = K ·

 1 0 0 0
0 1 0 0
0 0 1 0

 ·M · p (3.15)

In addition to this, we have also decided to evaluate augmented models which include radial and
tangential non-linear distortions. Letρ1, ρ2, ρ3 be the coefficients of a 6th order radial distortion
model,τ1 and τ2 the coefficients of a tangential distortion model,x = x − u0, y = y − v0,
r2 = x2 + y2, (x′, y′) the distortion corrected coordinates, according to [25] and [42]:

x′ = x + ρ1x̄r2 + ρ2x̄r4 + ρ3x̄r6 + τ1(2x̄
2 + r2) + 2τ2x̄ȳ

y′ = y + ρ1ȳr2 + ρ2ȳr4 + ρ3ȳr6 + τ2(2ȳ
2 + r2) + 2τ1x̄ȳ

(3.16)

In order to estimate the parameters of the aforementioned models for our cameras, we used
a Matlab toolbox from Jean-Yves Bouguet (see [6]). The results showed that the coefficients
(sx, sy, sθ), are not needed, as the difference in the axis scales is below the measurement error,
and so is the axis skew coefficient; the shift between the principal point(u0, v0) and the center of
the image is moderate and dependent from robot to robot, so we have used an average computed
from images taken from 5 different robots, as an individual calibration for all the robots in the
German Team at this time wasn’t feasible. As far as the non-linear distortion is concerned, the

a) b)

Figure 3.6: Complete camera distortion model. The blue arrows show the direction of the pixel displace-
ment, while the magnitude is illustrated by the black iso-lines. a) ERS210: while most of the image exhibits
negligible distortion, in the corners the error arrives up to 7 pixels of displacement b) ERS7: the distortion
is distributed more uniformly accross the image, but the highest magnitude is significantly lower than on
the old model (< 3 pixel).

results calculated with Bouguet’s toolbox and illustrated in Figure3.6showed that on the ERS7
this kind of error has a moderate entity, and since in our preliminary tests, look-up table based
correction had an impact of≈ 3ms on the running time of the image processor, we decided not
to correct it.

30 CHAPTER 3. MODULES IN GT2004

Radiometric camera model. As the object recognition is still mostly based on color classi-
fication, the blue cast on the corners of the images captured by the ERS7’s camera is a serious
hinderance in these areas. To be able to observe the characteristics of this vignetting effect, we
wanted to capture from the robot’s camera images of uniformly colored objects, lit by a diffuse
light source (in order to minimize the effects of shadows and reflections). The blue and yellow
goals from the RoboCup official field seemed to be very good candidates, as these 2 colors are
opposite in the UV plane, and they are close to the high and low extremes values which can be
reached in the U color channel, the one which turned out to be affected by the highest distortion.
As can be seen in Figure3.7, the radiometric distortiondi for a given spectrumi of a reference

a) b) c)

Figure 3.7: Histograms of the U color band for uniformly colored images: yellow (a), white (b) and skyblue
(c). In case of little or no vignetting effect, each histogram should exhibit a narrow distribution around the
mode.

color I is dependent on it’s actual value (brightness component):

di(I) ∝ λi(Ii) (3.17)

Moreover, the chromatic distortion that applies on a certain pixel(x, y) appears to be also depen-
dent on its distance from a certain point, center of distortion(ud, vd), which lies approximately
close to the optical center of the image, the principal point; so, letr =

√
(x− ud)2 + (y − vd)2,

then (radial component, cf. Fig.3.8):

di(I(x, y)) ∝ ρi(r(x, y)) (3.18)

Putting it all together:
di(I(x, y)) ∝ ρi (r(x, y)) · λi (Ii(x, y)) (3.19)

Now, we want to deriveρi, λi,∀i ∈ {Y, U, V } from a set of sample pictures; since both sets of
functions are non-linear, we decided to use a polynomial approximation, whose coefficients can
be estimated using least-square optimization techniques:

ρi (r) =
n∑

j=0

%i,j · rj

λi (Ii) =
m∑

j=0

li,j · Ij
i

(3.20)

3.2. VISION 31

Figure 3.8: Brightness distribution of the U color band for a uniformly yellow colored image.

In order to do so, we have to create a log file containing reference pictures which should rep-
resent different points belonging to the functions that we want to estimate, hence we chose to
use uniform yellow, blue, white and green image taken under different lighting conditions and
intensities. Then, the log file is processed in the following steps:

• For each image, a reference value is estimated for the 3 spectra Y, U, V, as the modal value
of the corresponding histogram, hence the value with the highest number of occurences

• The reference values are clustered into classes, such that series of images representing
the same object under the same lighting condition have a single reference value; this is
achieved using a first order linear Kalman filter to track the current reference values for the
3 image spectra, and a new class is generated when:

∃j ∈ {Y, U, V } :
〈∣∣rm

j,k − rp
j,k−1

∣∣ > ϑ
〉

(3.21)

whererm
j,k is the reference (for spectrumj) measured at framek, rp

j,k−1 is the reference
predicted by the Kalman filter at framek − 1, andϑ = 40 is a confidence threshold.

• Simulated annealing ([52]) is used to derive the coefficients%i,j, li,j in a separate process
for each color band∀i ∈ {Y, U, V }

• In each step, the coefficients%i,j, li,j are mutated by the addition of zero mean gaussian
noise, the variance is dependent on the order of the coefficients, such that high order coef-
ficients have increasingly smaller variances than low order ones

• The mutated coefficients are used to correct the image, as:

I ′
i(x, y) = Ii(x, y)− ρi (r(x, y)) · λi (Ii(x, y)) (3.22)

32 CHAPTER 3. MODULES IN GT2004

• For each imageIi,k in the log file (i is the color band,k the frame number), given its refer-
ence value previously estimatedrk(i), the current ”energy”E for the annealing process is
calculated as:

Ei =
∑
(x,y)

(
I ′
i,k(x, y)− ri,k

)2
(3.23)

• The ”temperature”T of the annealing is lowered using a linear law, in a number of steps
which is given as a parameter to the algorithm to control the amount of time spent in the
optimization process; the starting temperature is normalized relative to the initial energy

• The correction function learned off-line is stored in a look-up table for a fast execution on
the robot.

a) b)

c) d)

Figure 3.9: Color correction in practice: histograms of the U color band of a uniformly yellow colored
image before correction(a), and after (b); actual image taken from a game situation, before correction (c)
and after (d)

Figure3.9 shows some examples of corrections obtained after running the algorithm on a log
file composed of 8 image classes (representing different colors at different lighting conditions)
of 29 images each, decreasing the temperature to 0 in 100 steps, for a total optimization time of
7 minutes (Java application, non speed optimized, Pentium4 2.66GHz).

3.2. VISION 33

3.2.4 Detecting Points on Edges

As a first step towards a more color table independent classification, points on edges are only
searched at pixels with a big difference of the y-channel of the adjacent pixels. An increase in
the y-channel followed by a decrease is an indication of an edge. If the color above the decrease
in the y-channel is sky-blue or yellow, the pixel lies on an edge between a goal and the field. The
detection of points on field lines and borders is still based on the change of the segmented color
from green to white or the other way round.

The differentiation between a field line and the border is a bit more complicated. In most
cases, the border has a bigger size in the image than a field line. But a far distant border might
be smaller than a very close field line. Therefore the pixel, where the segmented color changes
back from white to green after a green-to-white change before, is assumed to lie on the ground.
With the known height and rotation of the camera, the distance to that point is calculated. The
distance leads to expected sizes of the field line in the image. For the classification, these sizes
are compared to the distance between the green-to-white and the white-to-green change in the
image to determine if the point belongs to a field line or a border. The projection of the pixels on
the field plane is also used to determine their relative position to the robot.

If less than three points of a certain edge type are detected in the image, these points are
ignored to reduce noise. With the introduction of the ERS7 in the league another problem ap-
peared. The white body and the legs of a robot could lead to the detection of points classified as
field lines or border. Therefore another operation for filtering those points was necessary.

For every point classified as field line or border, the gradient of the y-channel is computed
(cf. Fig. 3.10b,c). This gradient is based on the values of the y-channel of the edge point and
three neighbouring pixels, using a Roberts operator ([51]):

s = I
[

x + 1 y + 1
]
− I

[
x y

]
t = I

[
x + 1 y

]
− I

[
x y + 1

]
|∇I| =

√
s2 + t2

6 ∇I = arctan
(

s
t

)
− π

4

(3.24)

where|∇I| is the magnitude and6 ∇I is the direction of the edge, that will be used by the self
locator.

In the next step, all points of a certain type are compared pairwise, if they could belong to the
same line based on the position and the gradient. The segment with the most points is accepted
to be a valid line segment. The rest of the points are again grouped and the next segment is
determined. This continues until the resulting segments consist of less than three points. With
this operation, single incorrectly detected points are skipped and not used in any further step.

3.2.5 Detecting the Ball

While scanning along the grid, the longest run of orange pixels is detected. Starting at the middle
of this run, theball specialistscans the image in horizontal, vertical and both diagonal directions
for the edge of the ball (cf. Fig.3.10a). Each of these eight scanlines stops, if one of the following
conditions is fulfilled:

34 CHAPTER 3. MODULES IN GT2004

a) b) c)

Figure 3.10: Percepts: a) The ball percept along with the scanlines of the ball specialist. b) Points on the
edges of a line. c) Points on the edge of a border. The images b) and c) also show the computed gradients
of the edges.

• The last eight pixels belong to one of the color classes green, yellow, skyblue, red, blue.

• The color of the last eight pixels is too far away from ideal orange in colorspace. Thus
the scanlines do not end at shadows or reflections whose colors are not covered by the
colortable. These colors are not in the orange color class, because they can occur on other
objects on the field.

• The scanline hits the image border. In this case two new scanlines parallel to the image
border are started at this point.

The ending positions of all these scanlines are stored in a list of candidate edge points of the
ball. If most of the scanned pixels belong to the orange color class and most of the scanlines do
not end at yellow pixels (to prevent false ball recognitions in the yellow goal), it is tried to cal-
culate center and radius of the ball from this list. For this calculations the Levenberg Marquardt
method (cf. [11]) is used. At first only edge-points with high contrast which are bordering green
pixels are taken into account. If there are not at least three of such points or the resulting circle
does not cover all candidate edge points, other points of the list are added. In the first step of this
fallback procedure all points with high contrast that are not at the border of the image are added.
If this still does not lead to a satisfying result, all points of the list that are not on the image border
are used. The last attempt is to use all points of the list.

Compared to the ball detection used in 2003, the new method improved the recognition of
balls in various situations. The ball is still detected at greater distances to the robot, balls with
highlights and shadows can be detected in most cases and the centerpoint and radius of balls
partially hidden behind other objects (e. g. robots) is computed correctly instead of detecting
a small ball only covering the visible part of the real ball. The distance to the ball can now be
calculated using the radius of the circle recognised in the image. This proves much more accurate
than the projection of the line of sight to the ground, which depends on the error-prone sensor
data measuring the positions of the head-joints.

3.2. VISION 35

a) b) c)

Figure 3.11: Three steps in beacon detection: a) Scanlines searching for pink runs. The pink segments are
the detected pink runs, the red segment is the result of clustering. b) The specialist detects the edges of the
beacon. c) The generated percept.

3.2.6 Detecting Beacons

To scan and detect the beacons, abeacon specialistis used. This module generates its own
scanlines (which are looking only for pink) parallel to the horizon, with a density that decreases
as the distance to the horizon increases; the pink runs found this way are clustered depending
on their horizontal and vertical proximity, resulting in a projected scanline which passes close to
the middle of the pink part of the flag (cf. Fig.3.11a). From this line, 3 or 4 additional scanlines
perpendicular to it are generated, looking for color of the other half of the flag and the top and
bottom edges, using a modified SUSAN Edge Detector1 (see [55]); depending on the number
of edge points found and the sanity checks which are met, like the ratio between the horizontal
and vertical length of each part of a beacon or the consistency of the flag type hypotheses of
all the scanlines, a reliabilty value is computed and compared with a confidence threshold to
decide whether the object in question is a beacon or not. In case such a check is successfull,
the center of the pink part is calculated, and it’s passed, along with the flag type (PinkYellow,
YellowPink, PinkSkyBlue, SkyBluePink) to theflag specialist, which will use this information
as a starting point. From the initialization pixel the image is scanned for the border of the flag to
the top, right, down, and left where top/down means perpendicular to the horizon and left/right
means parallel to the horizon. This leads to a first approximation of the size of the flag. Two more
horizontal lines are scanned in the pink part and if the flag has a yellow or a sky-blue part, two
more horizontal lines are also scanned there. To determine the height of the flag, three additional
vertical lines are scanned (cf. Fig.3.11b). The leftmost, rightmost, topmost, and lowest points
found by these scans determine the size of the flag (cf. Fig.3.11c). The angles to the four edges
of the flag are written into thePerceptCollection.

1This trimmed down version doesn’t perform the non-maxima suppression and binary thinning.

36 CHAPTER 3. MODULES IN GT2004

a) b)

Figure 3.12: Recognition of other robots. a) Several foot points for a single robot are clustered (shown in
red and blue). b) Close robots are recognized based on the upper border of their tricot (shown in pink).

To find the border of a flag, the flag specialist searches the last pixel having one of the colors
of the current flag. Smaller gaps with no color are accepted. This requires the color table to be
very accurate for pink, yellow, and sky-blue.

3.2.7 Detecting Goals

A goal specialistmeasures the height and the width of a goal. The image is scanned for the
borders of the goal from the left to the right (cf. Fig.3.2c) and, if any indications for a goal
have been found, from the top to the bottom, where again top/down means perpendicular to the
horizon and left/right parallel to the horizon.

To find the border of the goal the specialist searches the last pixel having the color of the goal.
Smaller gaps with unclassified color are accepted. The maximal size in each direction determines
the size of the goal. The angles to the four edges of the goal and the information whether the end
of the goal is outside the image are written to thePerceptCollection.

3.2.8 Detecting Robots

To determine the indications for other robots, the scan lines are searched for the colors of the
tricots of the robots. If a reasonably number of pixels with such a color is found on a scan line, it
is distinguished between two cases:

• If the number of pixels in tricot color found on a scan line is above a certain threshold, it
is assumed that the other robot is close. In that case, the upper border of its tricot (ignoring
the head) is used to determine the distance to that robot (cf. Fig.3.12b). As with many
other percepts, this is achieved by intersecting the view ray through this pixel with a plane
that is parallel to the field, but on the “typical” height of a robot tricot. As the other robot

3.2. VISION 37

a) b)

Figure 3.13: Obstacles Percept. a) An image with an obstacle. Green lines: projection of the obstacles
percept to the image. b) The projection of the image to the ground. Green lines: obstacles percept.

is close, a misjudgment of the “typical” tricot height does not change the result of the
distance calculation very much. As a result, the distance to close robots can be determined.

• If the number of pixels in tricot color found is smaller, it is assumed that the other robot is
further away. In that case, the scan lines are followed until the green of the field appears
(cf. Fig. 3.12a). Thus thefoot pointsof the robot are detected. From these foot points, the
distance to the robot can be determined by intersecting the view ray with the field plane.
As not all foot points will actually be below the robot’s feet (some will be below the body),
they are clustered and the smallest distance is used.

During RoboCup 2004, the GermanTeam did not use the detection of other robots. This was
achieved through leaving the color classesred andbluevoid. The behavior was solely based on
detected obstacles.

3.2.9 Detecting Obstacles

While scanning the image from top to bottom, a state machine determines the last begin of a green
section. If this green section meets the bottom of the image, the begin and the end points of the
section are transformed to coordinates relative to the robot and written to the obstacles percept;
else or if there is no green on that scan line, the point at the bottom of the line is transformed
and the near and the far point of the percept are identical. Inside a green segment, an interruption
of the green that has the size of4 · widthfieldline is accepted (cf. Fig.3.13a) to assure that field
lines are not misinterpreted as obstacles (widthfieldline is the expected width of a field line in the
image depending on the camera rotation and the position in the image).

The lines which indicate the free space usually start at the image bottom and end where the
green of the ground ends or where the image ends (cf. Fig.3.13b). If the part of the projection of

38 CHAPTER 3. MODULES IN GT2004

a) b)

Figure 3.14: Images taken while the head is quickly turning. a) Left. b) Right.

the image that is close to the robot is not green, both points are identical and lie on the rim of the
projection. The meaning of the lines is:

• Behind the far point there is an obstacle (if the far point is not marked ason border).

• Between the near and the far point there is no obstacle.

• It is unknown whether there is an obstacle before the near point.

3.2.10 Motion Compensation

The camera images are read sequentially from a CCD chip. This has an impact on the images if
the camera is moved while an image is taken. For instance in Figure3.14it can be seen, that the
flag is slanted in different directions depending on whether the head is turning left or right. In
experiments it was recognized that the timestamp attached to the images by the operating system
of the Aibo corresponds to the time when the lowest row of the image was taken. Therefore,
features in the upper part of the image were recorded significantly earlier. It is assumed that the
first image row is recorded shortly after taking the previous image was finished, i. e. 10% of the
interval between two images, so 90% of the overall time are spent to take the images. For the
ERS-7, this means that the first row of an image is recorded 30 ms earlier than the last row. If
the head, e. g., is rotating with a speed of 180◦/s, this results in an error of 5.4◦ for bearings
on objects close to the upper image border. Therefore, the bearings have to be corrected. Since
this is a quite time-consuming operation, it is not performed as a preprocessing step for image
processing. Instead, the compensation is performed on the level of percepts, i. e. recognized flags,
goals, edge points, and the ball. The compensation is done by interpolating between the current
and the previous camera positions (the so-called camera matrices) depending on they image
coordinate of the percept.

However, this compensation is not inverted when percepts are projected back to the image for
the means of visualization. As a result, percepts sometimes appear next to the pixel information
that generated them instead of covering it, but nevertheless their recognition worked fine.

3.3. SELF-LOCALIZATION 39

3.3 Self-Localization

The GT2004 Self-Locatorimplements a Markov-localization method employing the so-called
Monte-Carlo approach [23]. It is a probabilistic approach, in which the current location of the
robot is modeled as the density of a set of particles (cf. Fig.3.17a). Each particle can be seen
as the hypothesis of the robot being located at this posture. Therefore, such particles mainly
consist of a robot pose, i. e. a vector representing the robot’sx/y-coordinates in millimeters and
its rotationθ in radians:

pose =

 x
y
θ

 (3.25)

A Markov-localization method requires both an observation model and a motion model. The
observation model describes the probability for taking certain measurements at certain locations.
The motion model expresses the probability for certain actions to move the robot to certain
relative postures.

The localization approach works as follows: first, all particles are moved according to the
motion model of the previous action of the robot. Then, the probabilities for all particles are
determined on the basis of the observation model for the current sensor readings, i. e. bearings on
landmarks calculated from the actual camera image. Based on these probabilities, the so-called
resamplingis performed, i. e. moving more particles to the locations of samples with a high
probability. Afterwards, the average of the probability distribution is determined, representing
the best estimation of the current robot pose. Finally, the process repeats from the beginning.

3.3.1 Motion Model

The motion model determines the odometry offset∆odometry since the last localization from the
odometry value delivered by the motion module (cf. Sect.3.9) to represent the effects of the
actions on the robot’s pose. In addition, a random error∆error is assumed, according to the
following definition:

∆error =

 0.1d× random(−1 . . . 1)
0.02d× random(−1 . . . 1)

(0.002d + 0.2α)× random(−1 . . . 1)

 (3.26)

In equation (3.26), d is the length of the odometry offset, i. e. the distance the robot walked,α is
the angle the robot turned.

For each sample, the new pose is determined as

posenew = poseold + ∆odometry + ∆error (3.27)

Note that the operation+ involves coordinate transformations based on the rotational compo-
nents of the poses.

40 CHAPTER 3. MODULES IN GT2004

bearingflag

bearingleft
rflag

distanceflag

Figure 3.15: Calculating the angle to an edge of a flag.

3.3.2 Observation Model

The observation model relates real sensor measurements to measurements as they would be taken
if the robot were at a certain location. Instead of using the distances and directions to the land-
marks in the environment, i. e. the flags and the goals, this localization approach only uses the
directions to the vertical edges of the landmarks. However, although the points on edges deter-
mined by the image processor are represented in a metric fashion, they are also converted back
to angular bearings. The advantage of using landmark edges for orientation is that one can still
use the visible edge of a landmark that is partially hidden by the image border. Therefore, more
points of reference can be used per image, which can potentially improve the self-localization.

The utilized percepts are bearings on the edges of flags and goals delivered by the flag/goal
specialist (cf. Sect.3.2.6and3.2.7), and points on edges between the field and the field lines,
the field wall, and the goals. These have to be related to the assumed bearings from hypothetical
postures. To determine the expected bearings for flag and goal edges, the camera position has
to be determined for each particle first, because the real measurements are not taken from the
robot’s body posture, but from the location of the camera. Note that this is only required for the
translational components of the camera pose, because the rotational components were already
normalized during earlier processing steps. From these hypothetical camera locations, the bear-
ings on the edges are calculated. It must be distinguished between edges of flags, edges of goals,
and edge points:

3.3.2.1 Flags

The calculation of the bearing on the center of a flag is straightforward. However, to determine
the angle to the left or right edge, the bearing on the centerbearingflag, the distance between the
assumed camera pose and the center of the flagdistanceflag, and the radius of the flagrflag are
required (cf. Fig.3.15):

bearingleft/right = bearingflag ± arcsin(rflag/distanceflag) (3.28)

3.3.2.2 Goals

The front posts of the goals are used as points of reference. As the goals are colored on the inside,
but white on the outside, the left and right edges of a color blob representing a goal even correlate
to the posts if the goal is seen from the outside.

3.3. SELF-LOCALIZATION 41

3.3.2.3 Edge Points

The localization also uses the points on edges determined by the image-processing system (cf.
Sect.3.2). Each pixel has an edge type (field, field wall, yellow goal, or blue goal), and by
projecting it on the field, a relative offset from the body center of the robot is determined. Note
that the calculation of the offsets is prone to errors because the pose of the camera cannot be
determined precisely. In fact, the farther away a point is, the less precise the distance can be
determined. However, the precision of the direction to a certain point is not dependent on the
distance of that point.

Lines only provide localization information perpendicular to their orientation. Therefore, the
four edge types provide very different information:The field linesare mostly oriented across
the field, but the side lines of the penalty area also provide important information. The field
lines are seen less often than the field wall.The field wallis surrounding the field. Therefore it
provides information in both Cartesian directions, but it is often quite far away from the robot.
Therefore, the distance information is less precise than the one provided by the field lines. The
field wall is seen from nearly any location on the field.Goalsare the only means to determine
the orientation on the field, because the field lines and the field wall are mirror symmetric. The
goals are seen only rarely. It turned out that the vision system is reliably able to determine the
orientation of field lines, while the orientation of the edge between field wall and field is not as
stable. Therefore, it is distinguished between field lines along the field and field lines across the
field. This especially improves the localization of the goalie, because it sees both types of lines
surrounding the penalty area.

If the probability distribution for the pose of the robot had been modeled by a large set
of particles, the fact that different edges provide different information and that they are seen in
different frequency would not be a problem. However, to reach real-time performance on an Aibo
robot, only a small set of samples can be employed to approximate the probability distribution.
In such a small set, the samples sometimes behave more like individuals than as a part of joint
distribution. To clarify this issue, let us assume the following situation: as the field is mirror
symmetric, only the recognition of the goals can determine the correct orientation on the field.
Many samples will be located at the actual location of the robot, but several others are placed at
the mirror symmetric variant, because only the recognition of the goals can discriminate between
the two possibilities. For a longer period of time, no goal is detected, but the field wall and the
field lines are seen. Under these conditions, it is possible that the samples on the wrong side of
the field better match the measurements of the field wall and the field lines than the correctly
located ones, resulting in a higher probability for the wrong position. So the estimated pose of
the robot will flip from one orientation alternative to the other without ever seeing a goal. This is
not the desired behavior, and it would be quite risky in actual soccer games. A similar situation
problem could occur if the goalie continuously sees the front line of the penalty area, but only
rarely its side lines. In such a case, the position of the goalie could drift sideways along because
the front line of the penalty area does not provide any positional information across the field.

To avoid this problem, separate probabilities for beacons and goal, horizontal field lines,
vertical field lines, field walls, and goal edges are maintained for each particle.

42 CHAPTER 3. MODULES IN GT2004

a) b)

c) d)

Figure 3.16: Mapping of positions to closest edges. a) Field lines along the field. b) Field lines across the
field. c) Field wall. c) A goal.

Closest Model Points. The projections of the pixels are used to determine the three probabili-
ties of each sample in the Monte-Carlo distribution. As the positions of the samples on the field
are known, it can be determined for each measurement and each sample, where the measured
points would be located on the field if the position of the sample was correct. For each of these
measured points in field coordinates, it can be calculated, where the closest point on a real field
line of the corresponding type is located. Then, the horizontal and vertical angles from the camera
to this model point are determined. These two angles of the model point are compared to the two
angles of the measured point. The smaller the deviations between the model point and the mea-
sured point from a hypothetic position are, the more probable the robot is really located at that
position. Deviations in the vertical angle (i. e. distance) are judged less rigidly than deviations in
the horizontal angle (i. e. direction).

Calculating the closest point on an edge in the field model for a small number of measured
points is still an expensive operation if it has to be performed for, e. g., 100 samples. Therefore,

3.3. SELF-LOCALIZATION 43

the model points are pre-calculated for each edge type and stored in two-dimensional lookup
tables with a resolution of 2.5 cm. That way, the closest point on an edge of the corresponding
type can be determined by a simple table lookup. Figure3.16visualizes the distances of measured
points to the closest model point for the four different edge types.

3.3.2.4 Probabilities for Flags and Goals

The observation model only takes into account the bearings on the edges that are actually seen,
i. e., it is ignored if the robot hasnot seen a certain edge that it should have seen according to its
hypothetical posture and the camera pose. Therefore, the probabilities of the particles are only
calculated from the similarities of the measured angles to the expected angles. Each similaritys
is determined from the measured angleωmeasured and the expected angleωexpected for a certain
pose by applying a sigmoid function to the difference of both angles:

s(ωmeasured, ωexpected) =

{
e−50d2

if d < 1

e−50(2−d)2 otherwise

whered =
|ωmeasured−ωexpected|

π

(3.29)

The probabilityqlandmarks of a certain particle is the product of these similarities:

qlandmarks =
∏

ωmeasured

s(ωmeasured, ωexpected) (3.30)

3.3.2.5 Probabilities for Edge Points

The observation model only takes the bearings on the features into account that are actually
seen, i. e., it is ignored whether the robot hasnot seen a certain feature that it should have seen
according to its hypothetical position and the camera pose. Therefore, the probabilities of the
particles are only calculated from the similarities of the measured angles to the expected angles.
Each similaritys is determined from the measured angleωseen and the expected angleωexp for
a certain pose by applying a sigmoid function to the difference of both angles weighted by a
constantσ:

s(ωseen, ωexp, σ) = e−σ(ωseen−ωexp)2 (3.31)

If αseen andαexp are vertical angles andβseen andβexp are horizontal angles, the overall similarity
of a sample for a certain edge type is calculated as:

qedge type = s(αseen, βseen, αexp, βexp) = s(αseen, αexp, 10− 9
|v|
200

) · s(βseen, βexp, 100) (3.32)

For the similarity of the vertical angles, the probability depends on the robot’s speedv (in mm/s),
because the faster the robot walks, the more its head shakes, and the less precise the measured
angles are.

Calculating the probability for all points on edges found and for all samples in the Monte-
Carlo distribution would be a costly operation. Therefore, only three points of each edge type

44 CHAPTER 3. MODULES IN GT2004

(if detected) is selected per image by random. To achieve stability against misreadings, resulting
either from image processing problems or from the bad synchronization between receiving an
image and the corresponding joint angles of the head, the change of the probability of each sam-
ple for each edge type is limited to a certain maximum. Thus misreadings will not immediately
affect the probability distribution. Instead, several readings are required to lower the probabil-
ity, resulting in a higher stability of the distribution. However, if the position of the robot was
changed externally, the measurements will constantly be inconsistent with the current distribu-
tion of the samples, and therefore the probabilities will fall rapidly, and resampling will take
place.

The filtered probabilityq′ for a certain type is updated (q′old → q′new) for each measurement
of that type:

q′new =

q′old + ∆up if q > q′old + ∆up

q′old −∆down if q < q′old −∆down

q otherwise.
(3.33)

For landmarks,(∆up, ∆down) is (0.1, 0.05), for edge points, it is(0.01, 0.005)

3.3.2.6 Overall Probability

The probabilityp of a certain particle is the product of the three separate probabilities for bearings
on landmarks and edges of field lines, the field wall, and goals:

p = q′landmarks · q′field lines · q′field walls · q′goals (3.34)

3.3.3 Resampling

In the resampling step, the samples are moved according to their probabilities. Resampling is
done in three steps:

3.3.3.1 Importance Resampling

First, the samples are copied from the old distribution to a new distribution. Their frequency in
the new distribution depends on the probabilityp′

i of each sample, so more probable samples are
copied more often than less probable ones, and improbable samples are removed.

3.3.3.2 Drawing from Observations

In a second step, some samples are replaced by so-called candidate postures. This approach
follows thesensor resettingidea of Lenser and Veloso [34], and it can be seen as the small-scale
version of the Mixture MCL by Thrunet al. [56]: on the RoboCup field, it is often possible
to directly determine the posture of the robot from sensor measurements, i. e. the percepts. The
only problem is that these postures are not always correct, because of misreadings and noise.
However, if a calculated posture is inserted into the distribution and it is correct, it will get
high probabilities during the next observation steps and the distribution will cluster around that

3.3. SELF-LOCALIZATION 45

posture. In contrast, if it is wrong, it will get low probabilities and will be removed very soon.
Therefore, calculated postures are only hypotheses, but they have the potential to speed up the
localization of the robot.

Three methods were implemented to calculate possible robot postures. They are used to fill a
buffer ofposition templates:

1. The first one uses a short term memory for the bearings on the last three flags seen. Esti-
mated distances to these landmarks and odometry are used to update the bearings on these
memorized flags when the robot moves. Bearings on goal posts are not inserted into the
buffer, because their distance information is not reliable enough to be used to compensate
for the motion of the robot. However, the calculation of the current posture also integrates
the goal posts, but only the ones actually seen. So from the buffer and the bearings on goal
posts, all combinations of three bearings are used to determine robot postures by triangu-
lation.

2. The second method only employs the current percepts. It uses all combinations of a land-
mark with reliable distance information, i. e. a flag, and a bearing on a goal post or a flag
to determine the current posture. For each combination, one or two possible postures can
be calculated.

3. As a single observation of an edge point cannot uniquely determine the location of the
robot, candidate positions are drawn from all locations from which a certain measurement
could have been made. To realize this, the robot is equipped with a table for each edge
type that contains a large number of poses on the field indexed by the distance to the edge
of the corresponding type that would be measured from that location in forward direction.
Thus for each measurement, a candidate position can be drawn in constant time from a
set of locations that would all provide similar measurements. As all entries in the table
only assume measurements in forward direction, the resulting poses have to be rotated to
compensate for the direction of the actual measurement.

Such candidate positions are used to replace samples with a low probability. Whether a
samplej is replaced or not is also drawn, based on the probability of that sample in relation
to the average probability of all samples, i. e. if the following condition is satisfied:

rnd

n

n∑
i

pi > pj (3.35)

In this case,rnd provides a random number between 0 and 1. If a sample is replaced, the
new sample has probabilitiesq′ that are a little bit below the average. Therefore, they have
to be acknowledged by further measurements before they are seen as real candidates for
the position of the robot.

The samples in the distribution are replaced by postures from the template buffer with a
probability of1− p′

i. Each template is only inserted once into the distribution. If more templates
are required than have been calculated, random samples are employed.

46 CHAPTER 3. MODULES IN GT2004

3.3.3.3 Probabilistic Search

In a third step that is in fact part of the next motion update, the particles are moved locally
according to their probability. The more probable a sample is, the less it is moved. This can be
seen as a probabilistic random search for the best position, because the samples that are randomly
moved closer to the real position of the robot will be rewarded by better probabilities during the
next observation update steps, and they will therefore be more frequent in future distributions.

The samples are moved according to the following equation:

posenew = poseold +

 100(1− p′)× random(−1 . . . 1)
100(1− p′)× random(−1 . . . 1)
0.5(1− p′)× random(−1 . . . 1)

 (3.36)

3.3.4 Estimating the Pose of the Robot

The pose of the robot is calculated from the sample distribution in two steps: first, the largest clus-
ter is determined, and then the current pose is calculated as the average of all samples belonging
to that cluster.

3.3.4.1 Finding the Largest Cluster

To calculate the largest cluster, all samples are assigned to a grid that discretizes thex-, y-, and
θ-space into10× 10× 10 cells. Then, it is searched for the2× 2× 2 sub-cube that contains the
maximum number of samples.

3.3.4.2 Calculating the Average

All m samples belonging to that sub-cube are used to estimate the current pose of the robot.
Whereas the meanx- andy-components can directly be determined, averaging the angles is not
straightforward, because of their circularity. Instead, the mean angleθrobot is calculated as:

θrobot = atan2(
∑

i

sin θi,
∑

i

cos θi) (3.37)

3.3.4.3 Certainty

The certaintyc of the position estimate is determined by multiplying the ratio between the num-
ber of the samples in the winning sub-cubem and the overall number of samplesn by the average
probability in the winning sub-cube:

c =
m

n
· 1

m

∑
i

p′
i =

1

n

∑
i

p′
i (3.38)

This value is interpreted by other modules to determine the appropriate behavior, e. g., to look at
landmarks to improve the certainty of the position estimate.

3.3. SELF-LOCALIZATION 47

a) b)

c) d)

e) f)

Figure 3.17: Distribution of the samples during the Monte-Carlo localization while turning the head. The
bright robot body marks the real position of the robot, the darker body marks the estimated location. a)
After the first image processed (40 ms). b) After eight images processed (320 ms). c) After 14 images
(560 ms). d) After 40 images (1600 ms). e) Robot manually moved to another position. f) 13 images
(520 ms) later.

3.3.5 Results

Figure3.17depicts some examples for the performance of the approach using 100 samples. The
experiments shown were conducted with the simulator (cf. Sect.5.1) and an older version of the
self-locator that only used flags and goals for localization on the field used in 2002. They were
performed using thesimulation time mode, i. e. each image taken by the simulated camera is
processed. The results show how fast the approach is able to localize and re-localize the robot.
At the competitions in Fukuoka, Padova, and Lisbon, the method also proved to work very well

48 CHAPTER 3. MODULES IN GT2004

on real robots. In 2002, the GermanTeam was the only team that supported all features of the
RoboCup Game Manager that allows the referee to give instructions to the robots. This includes
automatic positioning on the field, e. g. for kickoff. For instance, the robots of the GermanTeam
were just started somewhere on the field, and then—while still many people were working on
the field—they autonomously walked to their initial positions. Even in 2004, the majority of the
teams are not able to do this. In addition, the self-localization worked very well on fields without
an outer barrier, e. g. on the practice field in Fukuoka. In 2003, it was also demonstrated that the
GermanTeam can play soccer without the flags.

3.4 Ball Modeling

3.4.1 Ball Position and Ball Speed

It is of great importance for all players to keep track of the position of the ball even if they are not
able to see it from where they are. Therefore, a model of the ball is created including the ball’s
position and speed.

The ball’s position is derived geometrically from the “ball percept” taking into account the
robot’s pose. The ball speed is calculated from the current and the last ball position perceived.

3.4.2 Kalman Filtering of Ball Percepts

To reduce the measurement’s noise a Kalman filter is applied to ball position and speed derived
from the “ball percept”. The implemented Kalman filter uses a discrete process model of the
form

xt+∆t = A · xt

wherext is the actual state of the ball andxt+∆t is the predicted state of the ball after time∆t.
The implementation uses a constant speed model. Therefore state vectorx and matrixA are

chosen as

x =

px

py

vx

vy

 A =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

wherepx andpy specify the position andvx andvy specify the speed of the ball.

The Kalman filter algorithm consists of two steps. The first step is the time update (predic-
tion):

x−
t+∆t = Axt (3.39)

P−
t+∆t = APtA

T + Q (3.40)

Variables indexed witht are the results of the previous cycle of the algorithm, variables with
index t + ∆t are the results of the current cycle. MatrixQ is the process covariance matrix

3.4. BALL MODELING 49

that specifies the process model noise that is expected. MatrixP is the internal filter covariance
matrix that is maintained by the filter and should be initialized with high values.

The second step is the measurement update (correction):

K = P−
t+∆t

(
P−

t+∆t + R
)−1

(3.41)

xt+∆t = x−
t+∆t + K

(
zt+∆t − x−

t+∆t

)
(3.42)

Pt+∆t = (E−K)P−
t+∆t (3.43)

Matrix R is the measurement covariance matrix that specifies the measurements noise that is
expected. Finallyxt+∆t contains the estimated state of the ball.

It is important to choose the parameters of the covariance matrices carefully because they are
essential for the quality of the filter results. However, it turned out that it’s quite hard to find the
optimal parameters for the process and measurement covariance matrices used by the Kalman
filter. These difficulties are caused by the frequent changes of the ball state. If the ball is kicked
by a robot or bounces against a robot or the field border the real ball state and the ball state
predicted by the process model differ. The filter cannot determine if the ball really changed its
state or if the measured ball state change is caused by measurement noise.

So if values of the measurement covariance matrix are chosen too high and the ones of the
process covariance matrix are chosen too low the ball state calculated by the filter becomes
“smoother” but the robot is unable to detect real sudden ball state changes and is less “reactive”.
In the reverse case (values of measurement covariance matrix too low and values of process
covariance matrix too high) the ball becomes “jumpy” because the filter is not able to filter out
the measurement noise.

Because it is impossible to find the optimal static values the measurement covariance matrix
is made dependent on the distance of the robot to the ball and on the speed of the head. The
nearer the ball is to the robot the better are the results of the measurements and the faster the
head (and as a result the camera) is moved the worse are the results of the measurements.

So if the ball is far away the measurement noise is high and it is not very important for the
robot to be reactive to sudden ball changes. As a result high values are chosen for the measure-
ment covariance matrix (the filter “trusts” the process model prediction more than the measure-
ments). If the ball is near to the robot, the measurement noise is quite low. In this case low values
are chosen for the measurement covariance matrix (the filter “trusts” the measurements more
than the process model prediction).

The following strategy was used to adapt the measurement covariance matrixR each cycle
of the filter (see figure3.18):

1. The variances (the diagonal elements of the matrix, squares of parametersa andb in the
figure) are calculated by a quadratic polynomial dependent on the distance of the ball to
the robot (parameterr in the figure). The remaining elements are set to zero.

2. These variances are increased proportional to the head speed if the speed of the head (and
with it the camera) exceeds a threshold.

50 CHAPTER 3. MODULES IN GT2004

Figure 3.18: Idea of measurement covariance adaption

3. Finally the 2x2 submatrices specifying the position and speed variances are rotated accord-
ingly to the angle of the direction from the robot to the ball (“alpha” in the figure):

Rsub =

(
cos α − sin α
sin α cos α

) (
a2 0
0 b2

) (
cos α sin α
− sin α cos α

)
The calculated ball speed was quite good. However, in many cases the ball position calculated

by the filter did not reflect the real position of the ball when the ball was manipulated by players.
On the one hand that reduced the reactiveness of the robots using the filter and on the other hand
it raised a problem with the head motion control that was trying to detect the ball at the position
that was calculated by the filter. So finally only the speed calculated by the filter was used, the
ball position was adopted directly from the ball percept.

There is still work to be done. The filter cannot be configured easily using RobotControl, it
has to be adapted directly in the code. Also the results could probably be improved by doing
some fine-tuning. Additionally a dynamic adaptation of the process covariance matrix could lead
to further improvements.

3.4.3 Communicated Information about the Ball

In addition to this information, meta data is stored that describes whether or not the robot actually
saw the ball or if the ball’s position was communicated to it by other robots. This distinction is
important because of two reasons:

• The way the robot moves its head: it performs a periodic left-right scanning motion, scan-
ning its surroundings for the ball, other players, and landmarks. Due to the small opening

3.5. OBSTACLE MODEL 51

angle of the robot’s camera, the ball cannot be seen by the robot during some intervals of
the scanning motion even if the robot is relatively close to the ball.

• The different errors of the ball measurements: while a robot is able to perceive with suffi-
cient accuracy (ball position in coordinates relative to the robot) where the ball is, commu-
nicating the ball’s position from one robot to another requires the use of a global system of
coordinates. Since the robots are only localized within a certain accuracy, the localization
errors of both robots accumulate and deteriorate the quality of the information communi-
cated.

If the robot can see the ball (or hasrecentlydetected the ball in the camera image), this
information is used. If the robot was unable to see the ball for some time, the ball position is
derived from where other robots perceived the ball using the “team ball locator”. This means that
three different situations have to be distinguished:

Ball Was Seen. The ball was seen and detected in the camera image (e.g. when the robot is
directly looking at the ball). If the ball was perceived (i. e. the percept collection contains a ball
percept) the position of the ball is determined from the offset stored in the percept and the actual
position of the robot yielding a global position of the ball.

Ball Was Not Perceived for a Short Period of Time. This happens, e. g., if the position of the
ball makes it difficult to process the image and to detect the ball in some images but not in all.
This was also introduced to make the ball model more robust against errors in image processing.
When the robot is looking at the ball, image processing does not necessarily detect the ball in all
sequential images. This is due to motion blur, temporary obstruction of the ball and special cases
in which the image processing algorithm does not yield good results. To describe the situation
where the robot sees the ball most of the time (but not necessarily in every single image), a time
called “consecutive time ball seen” was introduced. Odometry is used to correct the ball position
in the cases, in which it is not seen.

Ball Was Not Seen for Some Time. This is the case when the ball is completely obscured
from where the robot is standing, or the robot is simply looking into another direction. If the ball
was not seen for some time (i.e. no ball percept was generated by image processing for a number
of seconds), the ball position communicated by other robots will be used.

3.5 Obstacle Model

In the obstacle model, a radar-like view of the surroundings of the robot is created. To achieve
this, the surroundings are divided into 90 (micro-)sectors. For each of the sectors the free distance
to the next obstacle is stored (see Fig.3.19). In addition to the distance, the actual measurement
that resulted in the distance is also stored (in x,y-coordinates relative to the robot). These are
called representatives. Each sector has one representative.

52 CHAPTER 3. MODULES IN GT2004

Figure 3.19: The obstacle model as seen from above and projected into the camera image. The robot is in
front of the opponent goal.

For most applications, the minimum distance in the direction of a single sector is not of
interest but rather the minimum value in a number of sectors. Usually, a sector of a certain width
is sought-after, e. g. to find a desirable direction free of obstacles for shooting the ball. Therefore,
the obstacle model features a number of analysis functions (implemented as member functions)
that address special needs for obstacle avoidance and ball handling. One of the most frequently
used functions calculates the free distance in a corridor of a given width in a given direction. This
can be used to check if there are any obstacles in the direction the robot is moving in and also if
there’s enough room for the robot to pass through.

3.5.1 Updating the Model with new Sensor Data

The robot performs a scanning motion with the camera. The sectors which are within opening
angle of the camera can be updated. Image processing can yield two points, the first correspond-
ing to the lower image boundary and the second corresponding to either the distance of a detected
obstacle or the upper boundary of the image (if no obstacle was detected). This is necessary be-
cause the image only gives information about a certain distance range (due to the vertical opening
angle, see fig.3.20).

Earlier versions of the obstacle model also used the PSD distance sensor of the robot. This
was not used in the competition because image processing yielded better, more detailed data.
However, most of what has been said can also be applied to the case when only the PSD is
used which is extremely useful in domains other then RoboCup where there may be little or no
knowledge about the surface available.

3.5.2 Updating the Model Using Odometry

The distances stored in the sectors are adjusted according to how the robot moves. To do this,
the representatives are translated and rotated by the robot odometry. The odometry corrected
representatives are then used to re-calculate the distances stored in the sectors.

3.6. COLLISION DETECTOR 53

r s t u

obstacle

d
obstacle

Figure 3.20: The above diagram depicts the robot looking at an obstacle. The robot detects some free
space in front of it (s) and some space that is obscured by the obstacle (t). The obstacle model is updated
according to the diagram (in this case the distance in the sector is set todobstacle unless the distance value
stored lies inr).

This method has one drawback: it occurs frequently that after moving the representatives by
the odometry, two or more representatives are placed in one new sector. In this case, the one with
the smallest distance to the robot is used; the other, further away representatives are discarded.
This, however, results in the total number of representatives being smaller than the total number
of sectors, which results in sectors of unknown distance. This is acceptable for most applications
since usually a single sector is not of interest.

Obstacle avoidance based on the obstacle model described here was used in the RoboCup
competition in Lisbon for a number of applications. It did, however, prove to be difficult to make
good use of the information. One example to illustrate this is the case of two opposing robots
going for the ball: in this case, obstacle avoidance is not desirable and would cause the robot to
let the other one move forward. Many such situations are imaginable which resulted in a very
limited use of the model so far. Future work will investigate ways of using obstacle avoidance,
collision detection, and - ultimately - path planning in more thorough, extensive fashion.

3.6 Collision Detector

A method for collision detection was implemented. Knowledge about whether or not a robot
is running into something can obviously be used to have the robot act accordingly. In addition,
collision detection can be employed to improve self-localization by adding a validity measure to
the odometry data.

Since the Aibo is not equipped with sensors to directly perceive the contact to obstacles,
ways of detecting collisions using the sensor readings from the servo motors of the robot’s legs
were investigated. It was found that under laboratory conditions, comparison of motor commands
and actual movement (as sensed by the servo’s position sensor)—after having compensated for
the phase shift between the two signals—yields good results, i.e. collisions and obstructions
are detected reliably. When the concept was applied to the RoboCup environment, it had to be

54 CHAPTER 3. MODULES IN GT2004

Sensor and Actuator Data of a Collision with the Field Boundary

Walking Forward at 150 mm/s

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350 400

time in 1/125 s

S
u
m
o
f
s
q
.
d
if
fs
.
in
m
ra
d
2

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

a
n
g
le
v
a
lu
e
in
m
ra
d

SSD for last 12 frames
actor, FL1
sensor FL1, phase shift = 8 frames

Figure 3.21: The graph shows the actuator and sensor curves and the sum of the squared differences (SSD).
Peaks in the SSD curve correspond to collisions.

extended to cope with arbitrary movements and accelerations produced by the behavioral layers
of the agent.

In an ideal world, the actuator commands and the servo motor’s direction sensor readings
should be congruent. If this is the case, collisions can be detected by calculating the differences
between the two signals and comparing them against a threshold value (see fig.3.21).

In the actual implementation, two things had to be considered:

• In order to make the method robust against sensor noise, not only one pair of actua-
tor/sensor signals was compared but a sum over the last 12 squared differences (SSD)
was used.

• A phase shift of variable length between the signals was observed. This phase shift is due
to various reasons such as the amplitude of the signal, whether or not the robot’s feet are
touching the ground, and others. To compensate for this phase shift, the sum of squared
differences is being calculated for a range of possible phase shifts. The smallest value of
the set of SSDs was used for comparison against the threshold.

The threshold value depends on the speed of the robot. Threshold values are stored in a table
and need to be calibrated for a given gait.

Using this approach we were able to detect robot collisions under laboratory conditions, i. e.
if the robot was moving in a straight line or rotating at a given speed. Although abrupt changes in
motor commands made it harder to detect collisions during game situations than in the laboratory,
this approach enabled us to detect and react to collision.

Another task was finding an “appropriate” behavior once a collision is detected. During game
struggle for the ball we preferred not to react to collisions, because they are unavoidable in such
situations. But therefore the robot reacted in situations, when he was far away from the ball and

3.7. PLAYER MODELING 55

detected a collision during his movement towards the ball. In those cases he would perform a
sideways movement to avoid the obstacle he just has collided with.

A sample behavior was also developed for the agent in which the robot would turn away
from obstacles when a collision was detected. Future work will explore possibilities of finding
appropriate behaviors and using collision detection to improve localization.

3.7 Player Modeling

The knowledge of other robots positions is important for avoiding collisions and for tactical plan-
ning. The locator for other players performs the calculation of these positions based on players
percepts. In addition, positions of teammates received via the wireless network communication
are integrated.

Determining Robot Positions from Distributions. The positions of percepts of other robots
are relative to the position of the observing robot. In a first step, they are converted to absolute
positions on the field. In a second step, it is tested, whether the absolute positions of the percepts
are outside the field. In this case, they are projected to the border along an imaginary line which
connects the robot with the absolute position of the player percept. The resulting positions of the
percepts are stored in a list for about two seconds.

The soccer field is discretized as a grid. The positions of the percepts are converted into grid
points, and distributions inx andy directions are created. Then, the maxima in these distributions
are determined. A maximum results from a high density of perceived robots at a certain location
in the grid. The maxima are sorted by their distinctiveness in descending order. If a maximum is
above a certain threshold, a robot is assumed to be located at the corresponding point. The point
in the grid is converted to an absolute position on the soccer field. Finally, this position is added
to thePlayersCollectionthat contains the positions of all players recognized.

The process described above is done separately for the opponents and for the teammates.

Integration of Team Messages. The positions of the teammates are communicated between
the robots via the wireless network. In a first approach these positions are also used for the lo-
calization of other robots. It is assumed that a position sent by a teammate is often more precise
than a position calculated from the percept showing that teammate. Therefore, positions commu-
nicated by teammates are used by the players locator.

The positions resulting from percepts are replaced by the transmitted ones. If the robot has not
received the positions from all teammates, or if the last position received is too old, the positions
calculated from percepts are kept. To avoid representing a teammate twice, a position calculated
from percepts must have a minimum distance to all positions received from teammates.

Usage in the Competitions. For the competitions in Lisbon only the communicated positions
of the team members were used. The colortable used for imageprocessing was manipulated, so
no percepts were generated for own or opponent players.

56 CHAPTER 3. MODULES IN GT2004

3.8 Behavior Control

The moduleBehaviorControlis responsible for decision making based on the world state, the
game control data received from theRoboCup Game Manager, the motion request that is cur-
rently being executed by the motion modules, and the team messages from other robots. It has
no access to lower layers of information processing.

It outputs the following:

• A motion requestthat specifies the next motion of the robot,

• ahead motion requestthat specifies the mode how the robot’s head is moved,

• aLED requestthat sets the states of the LEDs,

• asound requestthat selects a sound file to be played by the robot’s loudspeaker,

• abehavior team messagethat is sent to other players by wireless communication.

For behavior control the German Team uses theExtensible Agent Behavior Specification
Language XABSL[38, 39] since 2002 and improved it largely in 2003 and 2004. AppendixE
gives an introduction into this system and a complete documentation can be found at theXABSL
web site [37].

For the German Open 2004, each of the four universities of the GermanTeam usedXABSL
for behavior control and continued the behaviors that were developed by the German Team for
Padova 2003. They all followed different approaches:

The Aibo Team Humboldt from the Humboldt-Universiẗat zu Berlin won the German Open
2004. They kept the high-level behaviors from Padova nearly unchanged and mainly fo-
cused on ball handling skills. New methods for dribbling and ball grabbing as well as kick
selection tables were introduced.

The Darmstadt Dribbling Dackels from the Technische Universität Darmstadt reached the
second place at the German Open 2004, also by mainly fine-tuning the GermanTeam’s
2003 behaviors.

The Microsoft Hellhounds from the University of Dortmund reached the fourth place with a
additional decision making module on top of theXABSLsystem, thedynamic team tactics.

The Bremen Byters from the Universiẗat Bremen merged the existing XABSL behaviors with
their potential field approach.

After the German Open 2004 the behaviors of the teams could be easily merged into a com-
mon solution that was continued until the RoboCup 2004 in Lisbon. This section describes in
detail the implemented strategies and behaviors of the GermanTeam 2004. Those who are not
familar with theXABSLlanguage should probably read appendixE first.

3.8. BEHAVIOR CONTROL 57

Figure 3.22: The option graph of the soccer-related behaviors of theGermanTeam.

58 CHAPTER 3. MODULES IN GT2004

The behaviors which theGermanTeamdeveloped inXABSLfor the RoboCup championships
2004 in Lisbon are distributed among about 60 options. Figure3.22shows the option graph of
the soccer related behaviors.

In general, the lower behaviors in the option hierarchy such as ball handling or navigation,
have to react instantly on changes in the environment and are therefore very short-term and
reactive. The more high-level behaviors such as waiting for a pass, positioning, or role changes
try to prevent frequent state changes to avoid oscillations and make more deliberative and long-
term decisions. This section describes from bottom to top how theGermanTeam’s robots play
soccer starting with basic capabilities and finishing with the high-level team strategies.

An extensive automatically generated HTML documentation of these behaviors can be found
athttp://www.ki.informatik.hu-berlin.de/XABSL/examples/gt2004/. It is recommended to use this
site as an additional source to this Section.

3.8.1 Ball Handling

The GermanTeamwon the 2004 RoboCup world championships due to – besides other things
– its sophisticated well tuned ball handling behaviors. They are composed from 18 options and
7 basic behaviors, which looks much. But this section will show how step by step the whole
behavior is composed from simple options in a clear and straight forward way.

3.8.1.1 Approaching

All behaviors for ball approaching and dribbling are based on one single basic behavior:
“go-to-ball” is responsible for walking to the ball. For the use in different contexts, it provides
a variety of parameters. First, the body of the robot is always directed to the ball, restricted by
the parameter“max-turn-speed”. The maximum walk speed is given by the parameter“max-
speed”, making higher options responsible for slowing down near the ball. The“max-speed.y”
parameter restricts the sideward component, allowing for sprinting with the “dash” walk type.
For dribbling and the “turn kick” (cf.3.8.1.2), “y-offset” specifies a y offset with that the robot
shall arrive at the ball. If the robot is very close to the ball and if the ball is much to the left or
right, the translation component is almost completely inhibited, making the robot only turn in
order to avoid pushing the ball away with the front legs.

The ball handling behaviors do not reference the“go-to-ball” basic behavior directly but use
the option“approach-ball” (cf. fig. 3.23). This option makes a distinction whether the robot is
far away from the ball or close. In the first case, in state“search-auto”, the head-control mode
“search-auto” is set. This lets the head of the robot look at the ball and – frequently, always after
a certain time of consecutively perceived balls – shortly look around for landmarks and obstacles
to improve self-localization. These head scans are disadvantageous near the ball. That’s why if
the robot gets closer to the ball than specified in the option parameter“look-at-ball-distance”, in
state“search-for-ball” the head control mode is set to“search-for-ball” . This lets the head look
at the ball only. To avoid frequent changes between these two states, there is a distance hysteresis

3.8. BEHAVIOR CONTROL 59

Figure 3.23: Option“approach-ball” controls the head movements while approaching the ball and
handles collisions and ball losses. The complete documentation of the option can be found at
http://www.ki.informatik.hu-berlin.de/XABSL/examples/gt2004/option.approach-ball.html.

of 5 cm between them. In both states, the option“approach-ball-set-walk-speed”, which controls
the walk speed (see below), is referenced.

If the robot is far away from the ball (in state“search-auto”) and there is a collision with
another robot (detected as described in [26]), in the states“draw-back-left” and “draw-back-
right” the robot walks sideways for a short time to uncouple from the other robot. There is no
transition from“search-for-ball” to the draw back states in order to give opponent robots no
advantage near the ball.

If the ball was not seen for 1.3 seconds in the“search-auto” state or not for 400 ms in the
“search-for-ball” state, in state“ball-not-seen” the option“turn-for-ball” (see below) tries
to redetect the ball. If the ball is seen again, the state“ball-just-found” remains active for 2
seconds, setting the head control mode“search-for-ball” in order to avoid further ball losses
due to scanning around with“search-auto”.

60 CHAPTER 3. MODULES IN GT2004

a) b)

Figure 3.24: a) Option“approach-ball-set-walk-speed”controls the speed of ball approaching. b) Option
“turn-for-ball” tries to redetect a previously lost ball.

Option “approach-ball-set-walk-speed”(cf. fig. 3.24a) controls the speed of ball approach-
ing. It is only used by option“approach-ball” . In state“fast” , the basic behavior“go-to-ball”
is executed with a fixed speed of 350 cm per second. If the robot gets closer to the ball than
specified in parameter“slow-down-distance”(minus 2,5 cm hysteresis), in state“slow” the
speed given in“slow-speed” is passed to“go-to-ball” . From the“fast” state, if the ball is
farer away than 1200 cm and if the angle to the ball is between plus and minus 7 degrees, state
“dash” becomes active. There“go-to-ball” is executed with walk type“dash” , a faster but not
omnidirectional walking gait.

The ball approaching stops immediately after the ball was not seen for a certain time (see
above). In this case,“approach-ball” references the option“turn-for-ball” (cf. fig. 3.24b) to
redetect the ball. In the initial state“ball-not-seen”, the basic behavior“stand” is executed.
Note that“stand” does not stop walking immediately but continuously slows down in order to
avoid bumpy movements if the ball is redetected fast. As“turn-for-ball” can be activated from
different contexts and situations, the time how long state“ball-not-seen” remains active depends
on how long the ball was not seen and where it was seen last. The state remains active for at
least 800 ms which are needed for“stand” to almost slow down. As long as the ball was seen
1.7 seconds before,“ball-not-seen” keeps active to give the head control a chance to make a
complete scan around. If the ball was seen in the last 5 seconds and in the near, it is very likely
that the ball is at the side of the robot. Therefore, in state“back-up” the robot walks backward for

3.8. BEHAVIOR CONTROL 61

Figure 3.25: Option“approach-and-turn” dribbles the ball into given direction by pushing the ball with
the chest or pulling it around with the front legs.

1.5 seconds to redetect the ball. If that fails (or from“ball-not-seen” if all other conditions fail),
the state“ball-not-seen-left”or “ball-not-seen-right” gets active, depending on whether the ball
was previously seen left or right. The robot turns around using the“walk” basic behavior. The
head control mode is set to“look-left” or “look-right” , letting the robot look into the direction
of turning. Although the“turn-for-ball” option is not activated anymore from“approach-ball”
when the ball is redetected, state“ball-seen” becomes active when the ball is seen again, turning
the robot to the ball.

3.8.1.2 Dribbling

The option“approach-and-turn” (cf. fig. 3.25) dribbles the ball into the direction that is passed
through the parameter“angle” . Already this behavior is able to get the ball reliably into the op-
ponent goal. It is composed from mainly“approach-ball” and a few other short walk sequences
that push the ball into the desired direction. It does not use any kicks which makes it a fast and
robust behavior.

State“approach-ball” activates option“approach-ball” with proper parameters for fast ball
approaching. When it happens that the ball is very close and that the robot is already directed into
the direction where the ball shall be dribbled to, state“go-to-ball-without-turning” is activated

62 CHAPTER 3. MODULES IN GT2004

and basic behavior“go-to-ball-without-turning” is selected. Different from“go-to-ball” , this
basic behavior uses only x and y translation. The advantage is that it is a bit faster near the ball
than the normal ball approaching. As soon as the conditions above are not met anymore (with a
hysteresis), the option returns to the state“approach-ball” .

If the ball is seen well and directly in front of the robot, one of the three dribbling moves
starts: state“turn-right” becomes activated if the destination is more to the right than -30 degrees,
“turn-left” gets active if the destination is more to the left than 30 degrees, and otherwise state
“go-on” is chosen. In“go-on” , the robot just runs blindly straight ahead for 250 ms, pushing the
ball forward with the front legs or chest. If after the time the ball is seen again or still seen, it is
returned to state“approach-ball” . Otherwise, in state“find-ball-again” , the robot does not stop
– as it would happen when in the“approach-ball” option the ball is not seen anymore – but still
walks forward with a slow speed for maximum 500 ms, assuming that the ball is still in front of
the robot and not at the side or behind.

In the states“turn-left” and“turn-right” , the robot simultaneously walks forward and turns
at the same time for 500 ms, pushing the ball reliably and strong into a direction of approxi-
mately 60 degrees. A different walk type,“turn-kick” is used in order to have the front legs more
stretched to the front for safer guiding the ball with the outer leg. If the ball is not seen after the
500 ms, in the states“find-ball-again-left” and“find-ball-again-right” the robot does not stop
but also walks straight ahead at a slow speed. Additionally, the head control mode“search-for-
ball-left” or “search-for-ball-right” is set, which gives the head control a hint in which direction
the ball was pushed and where to search first.

3.8.1.3 Grabbing and Pushing Backward

The dribbling with“approach-and-turn” is only reasonable when the robot is behind the ball
(seen from the direction where the ball shall be played to). For all other cases, option“turn-and-
release”grabs the ball with the head (the ball is shut between the front legs and the head), turns
with the grabbed ball, and then releases the ball again.

The behavior for ball grabbing is encapsulated in a separate option,“grab-ball-with-head
(cf. fig. 3.26). In the initial state“approach-ball” , option “approach-ball” is selected with a
quite low speed near the ball. If the ball is in the correct position for grabbing, in state“grab”
the robots walks forward at a low speed “onto the ball”. The head control mode is set to
“catch-ball” and the actual job of grabbing is done by the head control. The infrared distance
sensor in the chest is used to measure the exact distance to the ball. If the ball is not at the
chest yet, the head is lifted in order to push the ball not away with the head. Otherwise, the
head is bended over the ball. The state“grab” is active without feedback for 1 second. After
that, in state“continue-grab” it is checked with the infrared distance sensor whether the grab
was successful (it has to be checked both in the head control and in the behavior control as a
transmission of this information from theMotion to theCognitionprocess would last too long).
If not, it starts from the beginning in the“grab” state. If the ball was grabbed, the option stays
in the state“grabbed” , which is a target state to signal higher options that the whole behavior
was successful.

3.8. BEHAVIOR CONTROL 63

Figure 3.26: Option“grab-ball-with-head” grabs the ball with the head.

In the initial state“grab” of option“turn-and-release”(cf. fig. 3.27), the option“grab-ball-
with-head” is executed until it reaches its target state. After that, in the states“turn-left” and
“turn-right” , the robot turns with the ball to the desired direction given by the option parameter
“angle” . The head control mode is set to“catch-ball” in order to keep the ball grabbed. The
special walk type“turn-with-ball” is set. With that, the robot uses almost only the hind legs for
turning, the front legs enclosing the ball. After the difference to the target angle gets less than
110 degrees, in the states“release-ball-left” and“release-ball-right” the ball is released again.
The head control mode is set to“release-caught-ball-when-turning-right”and“release-caught-
ball-when-turning-left”. While the robot just continues to turn with walk type“turn-with-ball” ,
again the actual job is done by the head control. To give the ball a strong push with the outer leg,
the head is lifted only if the current position in the walk cycle is between 0.77 and 0.85 when
turning right or between 0.27 and 0.35 when turning left. If state and option“approach-ball”
would be activated directly after that, the ball would be assumed to be lost as it indeed was not
seen during turning. Therefore, in state“find-ball-again” , the robot has a chance to redetect the
ball while slowly walking forward for maximum 500 ms.

3.8.1.4 Kicking

Kicking fast and precisely is crucial when playing robot soccer. Thus, theGermanTeamdevel-
oped about 50 different kicks, suitable for almost all situations that can happen during a match.

64 CHAPTER 3. MODULES IN GT2004

Figure 3.27: Option“turn-and-release” grabs the ball and pulls it around. The actual job of lifting the
head in the right moment is done in the head control.

This large amount of specialized kicks requires a proper evaluation method to select which kick
should be used in a certain situation.

Thereto, theGermanTeamfollowed three main goals for kicking: First, the robots should
be able to play without any kicks. This goal was achieved first by implementing options like
the above discussed“approach-and-turn” and“turn-and-release”. Second, there should be no
actions that try to establish a special situation in that a kick can be applied (like strafing or exact
positioning at the ball). Instead, the robots should play the ball as if they were not using any kicks
and kicks should be performed only if there was by chance an appropriate situation. And third,
the kick selection itself should be more flexible, easy to extend, and, above all, not inXABSL, as
it is indeed possible but very hard and time consuming to model and fine-tune the prerequisites
of a kick inXABSL.

The goals two and three were achieved by introducingkick selection tables. A kick is re-
trieved from such a table by putting in the desired kick direction and the current x and y position
of the ball. The look-up table stores for 12 discrete sectors (30 degrees each) of desired kick di-
rections the start positions of appropriate kicks in a 1 cm wide grid, as shown in figure3.28a) and
c). To gain the table, a semi-autonomous teach-in mechanism was developed. Thereto, a robot
stands on the playing field and kicks the ball several times with the same kick. Meanwhile, the
starting position and the final position of the ball are measured relative to the robot. The results
of such kick experiments can be seen in figure3.28b) and d). For editing the kick selection table
based on that data, a kick editor was developed.

As different situations on the field require different kicks, there are multiple kick selection
tables. There are ones for the goalie, a field player playing in the center of the field, near the

3.8. BEHAVIOR CONTROL 65

a) b)

c) d)

Figure 3.28: a) The kick selection table for the goalie when the desired kick direction is “forward” (in
the sector between -15 and 15 degrees). If the current position of the ball is in the outer blue areas, the
“left-paw” or “right-paw” kick is selected, in front of the robot (red area), kick“chest-strong”, and in a
narrow range more distant in front of the robot (brown area)“forward-kick-hard” . b) Data recorded from
kick experiments for the“left-paw” kick. The dots mark the position where the ball was perceived before
the kick started. The lines out of the dots indicate in which direction and how far the ball was kicked in
the experiment. All kick experiments in that the ball was kicked into the “forward” sector are highlighted
blue. The area for“put-left” in a) was defined by taking these highlighted entries into account. c) The
goalie kick selection table for the sector between 45 and 75 degrees. For the ball to the very left (purple
area),“put-left” is selected, close to the robot (red area)“hook-left” , and in the brown area“head-left” .
d) Kick experiments for the“head-left” kick, with those entries highlighted where the ball was kicked
into the direction between 45 and 75 degrees.

66 CHAPTER 3. MODULES IN GT2004

a) b)

Figure 3.29: Both a) option“approach-and-turn-and-kick”and b) option“turn-and-release-and-kick”
execute a behavior that is able to play the ball without kicking and only perform a kick if by chance it is
applicable.

own goal, at the right border, at the left border, at the left opponent border, at the right opponent
border, near the own goal, and near the opponent goal (cf. sect.3.8.1.5).

To make the data stored in the kick selection table accessible to theXABSLbehaviors,XABSL
constants for the table and kick ids are generated automatically from the C++ implemented kick
selection table. The decimal input function“retrieve-kick” is used to retrieve a kick, taking the
desired kick direction and the id of the table to be used as parameters. If the returned kick is
different from“action.nothing”, an appropriate kick was found for the current situation and the
kick can be executed by using the option“execute-kick”.

Option“approach-and-turn-and-kick”(cf. fig. 3.29a) is an example for a behavior that uses
kicks. It is composed from a behavior that is able to play the ball without kicking (“approach-
and-turn”) and the kick execution option“execute-kick”. In the initial state“approach-and-
turn” , the kick selection table is always queried whether a kick is possible. If so, the kick is
executed in the statekick. After it finished (the option“execute-kick” reached its target state),
option“approach-and-turn-and-kick”remains for 2.5 seconds in the state“approach-and-turn-
after-kick”, which executes the same behavior as state“approach-and-turn”but makes sure that
there elapse at least 2.5 seconds between two successive kicks.

Similarly, the option“turn-and-release-and-kick”(cf. fig. 3.29b) is composed of“turn-
and-release”and“execute-kick”. In the option“turn-around-ball-and-kick”, the basic behavior
“turn-around-ball” turns the robot behind the ball, which is needed at the borders of the field
(“turn-and-release” does not work there). Option“approach-and-kick-and-go-on”uses only
“approach-ball” but has an additional state“go-on” , similar to in“approach-and-turn”.

3.8. BEHAVIOR CONTROL 67

Figure 3.30: Option“handle-ball” selects between different behaviors for different zones on the field.

3.8.1.5 Zones for Ball Handling

Some zones of the field require different behaviors than when playing in the center of the field.
For instance, if the ball is at one of the borders, it is often not possible to grab the ball with the
head. Instead, if the robot is in front of the ball, it has to turn behind the ball before it can be
dribbled or kicked. Near the own goal, the direction where to play the ball is not that important as
to clear the ball just somewhere. And, at the opponent goal, there is much more precision needed
than in the rest of the field.

Option“handle-ball’ (cf. fig. 3.30) selects between these behaviors depending on where the
ball is on the field. The initial state“ball-in-center-of-field” covers most of the area of the field,
executing option“handle-ball-in-center-of-field”. At the borders and near the goals there are
separate states, executing the corresponding ball handling options. To avoid oscillations between
these states, a broad distance hysteresis was added there. For instance, there is a transition from
“ball-in-center-of-field” to “ball-at-left-border” when the y position of the ball is greater than
1250 mm. If then the y position of the ball gets less than 1100 mm, there is a back transition to
“ball-in-center-of-field”.

In the center of the field, option“handle-ball-in-center-of-field”selects only between“turn-
and-release-and-kick”and “approach-and-turn-and-kick”, depending on whether the robot is
behind the ball or not. As the desired direction of play the“best-angle-to-opponent-goal”is
passed. This angle is mostly the direct angle to the opponent goal. If there are obstacles on the

68 CHAPTER 3. MODULES IN GT2004

way there, the angle is bended to the bigger gap in the obstacles. If there are obstacles everywhere
in the direction of the goal, the angle to the next team mate is chosen, which sometimes results
in a pass.

Near the own goal, option“handle-ball-in-center-of-field”uses the same options as in the
center of the field, but passes a different angle: the“best-angle-away-from-own-goal”is not
directed to the opponent goal but away from the own goal.

At the opponent goal, option“handle-ball-at-opponent-goal”combines“approach-and-
turn-and-kick” with “turn-around-and-ball-and-kick”, using the angle“angle-to-point-behind-
opponent-goal”. The turning behind the ball is indeed slower than when doing a kick to the side,
but it is safer when opponent players such as the goalie are involved.

At the left and right border, option“handle-ball-at-left-and-right-border”chooses between
“approach-and-turn-and-kick-and-go-on”if the robot is completely behind the ball,“approach-
and-turn-and-kick” if the robot is almost behind the ball, and“turn-around-ball-and-kick” if
not. The average distance to the ball over two seconds is used to decide whether the robot got
stuck to other robots. If so, the kick selection table“when-stuck”containing quite imprecise but
strong kicks is used. If not, less kicks are performed.

Option “handle-ball-at-opponent-border”has a very similar structure but uses less aggres-
sive kicks to dribble the ball securely along the border into the opponent goal.

3.8.1.6 Transitions Between Ball Handling Behaviors

In the more high-level options, it is important to take into account when to do transitions between
different behaviors. In general, all ball handling behaviors should be such that it is no problem
to switch between them (which does not allow for strafing behaviors or behaviors for exact
positioning for a certain kick). But there are some phases in behaviors such as ball grabbing,
dribbling, or kicking, in that the behaviors should not be interrupted.

In XABSL, options have no chance to determine whether an option deep below in the option
graph is in such a critical state. Therefore, the information whether the ball is handled at the
moment is transmitted through an external variable, which can be queried through the Boolean
input symbol“ball.is-handled-at-the-moment”. In the dribbling and kicking options, all states
that execute a behavior that should not be interrupted set this variable by setting the enumerated
output symbol“ball.handling” to “handling-the-ball”. In options higher in the option hierarchy,
there are only transitions between states if“ball.is-handled-at-the-moment”is false.

Another principle for gaining smooth ball handling performance is that the higher the behav-
ior in the option hierarchy, the less frequent transitions between states should be. A once selected
behavior should always be continued unless there is a strong reason to change it.

Furthermore, if it happens that the ball is not seen anymore, the previously executed behavior
should be continued until the ball is redetected (all ball handling options are based on“approach-
ball” , which autonomously tries to redetect the ball using the“turn-for-ball” option). Therefore,
there are only transitions in the higher options when the ball is just seen.

3.8. BEHAVIOR CONTROL 69

a) b)

Figure 3.31: a) Option“get-to-position-and-avoid-obstacles”walks to a position avoiding obstacles on
the way there. b) On top of that,“get-to-ball-and-avoid-obstacles”walks to the ball.

3.8.2 Navigation and Obstacle Avoidance

Navigation includes fast walking to a position with and without obstacle avoidance as well as
positioning of the supporters (the players that do not handle the ball but try to reach a good
position for support, pass interception, or defense).

3.8.2.1 Walking to a Position

There are two basic behaviors for walking to a position. First,“go-to-point” has the parameters
“x” and“y” for the destination point,“destination-angle” for the orientation of the robot at the
end, and“max-speed” for the maximum walk speed. As the rotation which is needed to reach
the target angle is distributed over the whole distance to the target, it may happen that the robot
walks backward.

Second, basic behavior“go-to-point-and-avoid-obstacles”uses the vision based obstacle
model [27] to avoid obstacles on the way to the destination. Therefore, the robot has to walk
forward to be able to detect the obstacles. The parameter“avoidance-level”defines how strict
collisions shall be avoided. As it walks forward to its destination, it has no parameter for a target
angle.

The option“get-to-position-and-avoid-obstacles”(cf. fig. 3.31a) combines these two ba-
sic behaviors. Far away from the destination, in state“far-from-destination”, “go-to-point-and-

70 CHAPTER 3. MODULES IN GT2004

avoid-obstacles”is used. As this basic behavior has problems near the target and as a target angle
has to be reached, in state“near-destination” “go-to-point” is used. The distance from which on
no obstacles shall be avoided can be set with the parameter“no-obstacle-avoidance-distance”.
At the destination in state“at-destination”, the robot stops by using the basic behavior“stand” .

3.8.2.2 Walking to a Far Away Ball

The ball handling behaviors do not perform any obstacle avoidance and are therefore only exe-
cuted near the ball. For longer distances, option“get-to-ball-and-avoid-obstacles”(cf. fig.3.31b)
is used.

For the ball position, there is a distinction between “seen” and “known”. A “seen” ball po-
sition is a position that was modeled from perceptions made by the own camera of the robot. A
“known” ball position is derived from a ball that was either seen or, after a time of 5 seconds in
that no ball was seen, from a ball position that was transmitted over the Wireless LAN by team
mates (the “communicated” ball position). As the “seen” ball position is measured and mod-
eled relative to the robot, it is independent from localization errors. Instead the “communicated”
ball position contains both the localization errors of the sending and the receiving robot and is
therefore much more imprecise. That’s why the “known” ball position can only be used to walk
approximately into the direction of the ball but not for exact positioning near the ball or even ball
handling.

If the ball is seen and far away, in state“far-from-seen-ball” the option“get-to-position-and-
avoid-obstacles”is executed with a high speed parameter. If the ball is not seen but known and
far, the same option is used in“far-from-known-ball” at a medium speed. Near the seen ball, in
state“near-seen-ball”, option “approach-ball” is chosen. If the ball is not seen but known in
the near, option“turn-for-ball” searches the ball, as from the short distance the robot would see
the ball if the communicated ball position was correct.

3.8.2.3 Positioning

TheGermanTeamemployed artificial potential fields for the positioning of the supporters on the
field [33]. The basic behavior“potential-field-support”has the parameters“x” and“y” for the
destination point as well as“max-speed” for the maximum speed. Inside, a potential field of
superposed force fields with repelling forces from obstacles, the own penalty area, and the ball,
tries to navigate the robot to the requested point without collision and without obstruction of the
ball handling robot. At the same time the body of the robot is always oriented towards the ball.

Amongst others, the option“position-supporter-near-ball”(cf. fig. 3.32) makes use of that
basic behavior. It tries to support a ball handling robot by staying near the ball to be available if
the other robot loses the ball for some reason. Additionally, opponent robots are pushed away or
obstructed in approaching the ball.

The parameters“x” specifies the desired relative x offset in field coordinates and“y” the
distance in the y direction to the ball. The actual side (in y direction) is chosen in the initial state
“choose-side”. If the ball is at the left border (y> 80 cm), the robot positions right to the ball,

3.8. BEHAVIOR CONTROL 71

Figure 3.32: Option“position-supporter-near-ball”positions the robot near the ball. The speed is con-
trolled depending on the reliability of the ball position.

vice versa at the right border. In the center of the field the robot chooses the side on that it is
already.

As there is very often a crowd of robots around the ball, especially in games against weaker
teams, the ball is often not seen, leading to an imprecise ball model. Therefore, the supporting
robots try to keep calm and move cautious in order to stay well localized. For that, in the states
“position-left-ball-seen”and“position-right-ball-seen”the maximum speed of movement is set
to 350 mm/s second minus 20 mm/s for every second that the ball was not seen. If the ball
is not seen but known (see above in sect.3.8.2.2), in the states“position-left-ball-known” and
“position-right-ball-known”, the robots walk only half that fast as the communicated ball posi-
tion is very erroneous near the ball. For the case that the ball is neither seen or known, there are
two states for option“turn-for-ball” in order to continue on the previous side if the ball is found
again.

72 CHAPTER 3. MODULES IN GT2004

3.8.3 Player Roles

The four robots on the field have different roles. The player with the number one is always the
goal keeper, the other three players change their roles dynamically. There is always only one
robot at the same time that approaches the ball, the “striker”. The “offensive supporter” positions
in front of the ball or in the opponent half and the “defensive supporter” backs up from behind
the ball and stays in the own half of the field.

3.8.3.1 Striker

The complete soccer playing behavior of the striker is implemented in option“playing-striker”
(cf. fig. 3.33). In state“get-to-ball” , the option“get-to-ball-and-avoid-obstacles”(cf. sect.
3.8.2.2) is executed to approach the ball while avoiding obstacles on the way there. If the ball gets
closer than 90 cm, in state“handle-ball” option“handle-ball” (cf. sect.3.8.1.5) approaches and
handles the ball without avoiding obstacles, as this would be disadvantageous. The back transi-
tion from “handle-ball” to “get-to-ball” is if the ball is farer away than 120 cm.

When the ball is inside the own penalty area (where the field players are not allowed to be
in), in state“ball-in-own-penalty-area” the option“position-striker-when-ball-is-inside-own-
penalty-area”positions the striker at the side of the penalty area, waiting for the goalie to clear
the ball out of it.

Sometimes it happens that none of the four players of the own team is able to detect the ball
for 12 seconds (for instance when two robots of the opponent team obstruct each other with the
ball between them). Then, in state“ball-not-known-for-long” option “search-for-ball” walks
along a fixed path between the left and right border of the field in order to redetect the ball. As
also the supporters do that in other areas of the field, the whole field is covered and the ball is
found again soon.

3.8.3.2 Supporters

The main task of the supporters is to position themselves well for pass interception, defense, and
support of the striker. They cover the whole field in order to be able to be first at the ball if the
ball is kicked out of a crowd. At last, they try to stay away from the ball in order to not obstruct
the striker.

The “offensive-supporter” stays most of the time in front of the ball and is implemented
in option “playing-offensive-supporter”(cf. fig. 3.34a). If the ball is in the own half, in state
“ball-in-own-half” the robot positions short behind the center line at the y position of the ball
using optionposition-supporter-on-line, waiting for the pass. If the ball is inside the opponent
half, in state“position-supporter-near-ball”the offensive supporter assists the striker by staying
near the ball using option“position-near-ball” (cf. sect.3.8.2.3). If the robot is still far away
from the ball, in state“get-to-far-ball” the robot first walks there using option“get-to-ball-and-
avoid-obstacles”(cf. sect.3.8.2.2). If the striker plays the ball at the opponent border (which is
detected through the position that the striker transmits over the WLAN), in state“position-near-
opponent-goal”the supporter positions at the opposite corner of the penalty area using option

3.8. BEHAVIOR CONTROL 73

Figure 3.33: Option“playing-striker” implements a complete striker.

74 CHAPTER 3. MODULES IN GT2004

a) b)

Figure 3.34: a) Option“playing-offensive-supporter”and b)“playing-defensive-supporter”decide where
to position the robot.

“position-offensive-supporter-near-opponent-goal”, waiting for a pass or a failed kick of the
striker.

Similar to that, the defensive supporter implemented in option“playing-defensive-
supporter” (cf. fig. 3.34b) mostly stays behind the ball. When the ball is in the opponent half, in
state“ball-in-opponent-half” positions in the middle of the own half at the y position of the ball
using option“position-supporter-on-line”. If the ball is inside the own penalty area, the robot
positions at the side of the penalty area opposite to the striker (state“position-near-own-goal”
and option“position-supporter-near-own-goal”). Otherwise, it positions behind the striker to
be there if the striker gets into difficulties.

Option “playing-supporter-switch-roles”selects between these two supporter options, de-
pending on the role determined by the role negotiation process. It is executed from the initial
state“normal-playing” of option “playing-supporter” (cf. fig 3.35) for the positioning of the
supporters. In state“ball-not-known-for-long” option“search-for-ball” is executed if the ball is
not known for more than 12 seconds. If a ball is going to roll fast closely along the robot towards
the own goal, it is stopped in states“block-left” and“block-right” by jumping to the side. The
actual analysis whether this could be successful is done in the ball locator module, storing the
information in the ball model and providing it to theXABSLbehaviors by the Boolean input
symbols“ball-rolls-by-left” and“ball-rolls-by-right” .

In order to not loose the ball out of view when the striker kicks the ball somewhere, the
striker notifies the other players on each kick through the Wireless LAN. Therefore, in all states
of the ball handling options that prepare or perform a kick, the enumerated output symbol“team-
message”is set to“performing-a-kick”. When the boolean input symbol“another-teammate-is-

3.8. BEHAVIOR CONTROL 75

Figure 3.35: Option“playing-supporter” intercepts kicks from the own team and blocks kicks of the other
team.

performing-a-kick”becomes true, in state“intercept-before-kick”the supporters stop position-
ing but look only at the ball using head control mode“search-for-ball” and turn themselves
for the ball, using option“turn-for-ball” (cf. sect.3.8.1.1). After the striker finished its kick,
“another-teammate-is-performing-a-kick”is not true anymore. In state“intercept-after-kick”,
the robot still turns for the ball until the ball does not roll anymore (low ball speed), the ball
passed the robot forward (x position of ball greater than of the robot), the ball is not seen any-
more, or after a timeout of 3 seconds.

3.8.3.3 Goalie

TheGermanTeamhad one of the best defenses in the RoboCup 2004 tournament, receiving only
8 goals compared to 65 goals scored by the team. This was achieved with an almost not moving
goalie, standing at the right position for most of the time. As even small errors in the localization

76 CHAPTER 3. MODULES IN GT2004

a) b)

Figure 3.36: a) Option“goalie-position” positions the robot inside the goal. b) Option“goalie-clear-ball”
tries to get the ball out of the penalty area.

can make the robot believe that it is beside and not inside the own goal, the goalie behavior is
much more dependent on good localization than the behaviors of the field players. The goalie
behaviors have to support the localization with appropriate head movements and calm actions –
it is very often a good strategy to let the goalie not move at all.

Option “goalie-position” (cf. fig 3.36a) makes use of the basic behavior“goalie-position”,
which lets the robot position between the ball and the center of the own goal. To deal with errors
in the localization, inside that basic behavior the robot’s position is corrected using the odometry
and the ball position – the robot uses the ball as a landmark and the odometry is trusted more
than the position provided by the self localization. If the robot does not move (the basic behavior
requests a“stand” motion), in the state“ball-just-seen-not-moving”the head control mode is
set to“search-for-ball” (the head looks only at the ball), allowing for a better detection of fast
balls. Otherwise, in state“ball-just-seen” the self localization is supported by setting the head
control mode to“search-auto” (which scans also for landmarks). If the ball is not seen for 3.5
seconds, the robot walks to the center of the goal using basic behavior“go-to-point” .

Option “goalie-clear-ball” (cf. fig 3.36b) is responsible for the ball handling of the goalie.
As there is mostly the striker and defensive supporter in the near, the task of the goalie is
not to kick the ball very far (which requires strong and therefore dangerous kicks) but just to
move it out of the penalty area. As there are often opponent robots that obstruct the goalie,
no exact approaching of the ball is tried. Instead, in state“walk” the basic behavior“go-to-
ball-without-turning” is used. Thereby the robot does not turn at all, which is faster than the
normal“go-to-ball” basic behavior. If by chance the ball is in a good starting position for a kick
(depending on a special kick selection table for the goalie, cf. sect.3.8.1.4), in state“kick” a

3.8. BEHAVIOR CONTROL 77

Figure 3.37: Option“playing-goalie” implements the goal keeper behavior.

kick is performed. If it happens that the ball is behind the goalie (x position of the ball greater
than the x position of the robot), in state“ball-behind” option“turn-and-release-and-kick”(cf.
sect.3.8.1.4) is used to clear the ball.

The complete goal keeper behavior is implemented in option“playing-goalie” (cf. fig.
3.37). In the initial state“position” , option “goalie-position” is selected. If the robot is far
out the own penalty area for some reason, it returns to it in state“return” using basic behav-
ior “goalie-posion-return”, which is faster than“goalie-position”. Similar to the supporters (cf.
sect.3.8.3.2), the goalie blocks fast balls by jumping left, right, or ahead (states“block-middle”,
“block-left” , and“block-right”).

Only when the ball is far inside the own penalty area (more than 20 cm over the line), in
state“clear-ball” the option“goalie-clear-ball” is activated. There is already a transition back
to state“position” when the ball is still inside the penalty area, 10 cm to the line. That’s why
it happens very often that the ball is far inside the penalty area and the goalie does not move,
standing between the ball and the center of the goal. But this is a very good strategy, as opponent

78 CHAPTER 3. MODULES IN GT2004

Figure 3.38: Option“playing” selects between the different roles.

strikers only have a chance to get the ball across a well positioned goalie when the goalie makes
an error and opens a gap. Additionally, it can provoke that opponent strikers are taken out due to
the “goalie-pushing” rule or that continuous pushes from the strikers let the ball roll out of the
penalty area by chance. Only when there are no obstacles (opponent players) in the near, in state
“clear-ball-courageous”the goalie also clears a ball that is in the outer parts of the penalty area
and it returns to“position” when the ball is 7 cm out of the penalty area.

If the goalie does not see a previously seen ball anymore for more than two seconds, it is very
likely that the ball is at the side of the robot, where it can not be redetected by scanning around
with the head. Therefore, in state“head-back” the robot walks backwards to the rear wall of the
own goal for maximum four seconds, hoping to redetect a ball that is at the side of the robot.
If the robot is at the field border besides the goal and does not see the ball anymore, in state
“head-back-from-border”it first walks to the center of the goal line in order to not collide with
one of the goal posts.

3.8.3.4 Dynamic Role Assignments

Option“playing” (cf. fig. 3.38) assigns the different roles to the four robots. As only a specially
marked robot is allowed to be inside the own penalty area, player one is always the goalie. But the
field players negotiate, which of them is the striker or a supporter. Therefore, all players transmit
trough WLAN the time, how long they will approximately need to reach the ball. This time is
computed such:

estimatedTimeToReachBall = distanceToBall / 0.2
+ 400.0 * fabs(angleBetweenBallAndOpponentGoal)
+ 2.0 * timeSinceBallWasSeenLast;

3.8. BEHAVIOR CONTROL 79

For every 10 cm to the ball it is assumed that the robot needs 500 ms to get there. The angle
between the ball and the opponent goal is multiplied with 400 ms and added, preferring robots
that are already behind the ball (no time is added) over robots that would have to grab the ball
with the head or that would have to turn behind it (maximum400 ms×π/2 is added). In the last
term, two seconds are added for every second that the ball was not seen, preferring robots that
see the ball well.

For the role negotiations, the robot with the least estimated time to reach the ball is chosen
to be the striker. To stabilize the decision, the player that is already the striker gets a time bonus
of 500 ms. From the other robots, the robot with the higher x position (plus a bonus of 30 cm for
the current offensive supporter) becomes the offensive supporter.

As an exception, if a supporter positions in front of the opponent goal (option“position-
offensive-supporter-near-opponent-goal”, cf. sect.3.8.3.2), it becomes immediately a striker if
the ball is between the robot and the opponent goal.

If the WLAN does not work, a fallback with semi-fixed mappings from robot numbers
to roles is applied: Player number two becomes striker if the ball is not far in the oppo-
nent half (x position of the ball less than 50 cm) and if the ball was seen in the last five
seconds. Otherwise, it is a defensive supporter, staying in the own half. Players three and
four become strikers when the ball is not far in the own half (x position of ball greater than
-50 cm), otherwise they are offensive supporters. This can lead to situations (when the ball is
in the center of the field) in that all three field players are strikers, which does not look very good.

The computed role is provided to theXABSLbehaviors through the enumerated input symbol
“role” . However, in option“playing” this role is not directly mapped onto the states for the
different roles. For example, if the striker performs a kick or has the ball grabbed (the Boolean
symbol “ball.is-handled-at-the-moment”is true), option“playing” remains in state“playing-
striker” . Additionally, if the supporters intercept a pass (option“playing-supporter” is not in
one of its target states), there is also no transition to other states. This is helpful if a ball is kicked
in the direction of a supporter. It becomes only a striker when the ball passed the robot or if
the ball does not roll anymore, preventing the robot from running into the wrong direction and
possibly pushing the ball back.

3.8.4 Game Control

The GermanTeamsupports the RoboCup Game Manager to minimize human interaction dur-
ing the games. This program is operated by a co-referee and sends via WLAN the state of the
game (initial , ready, set, playing, penalized, or finished), the current score, the team color, and
which team has kick-off to both teams. If the WLAN does not work for some reason, there is a
sophisticated standardized interface to set these states manually through the buttons of the robot.

If all the game states would be implemented in one option, the number of transitions between
states would be unmanageable high, as there are both transitions for messages from the game
controller and button press events. Additionally, theGermanTeamadded also transitions that
are needed when the game controller is wrongly operated. That’s why the implementation of
the game control is distributed over three options:“play-soccer”, “initial-ready-and-set”, and

80 CHAPTER 3. MODULES IN GT2004

Figure 3.39: Option“play-soccer” is the root option of the option graph.

“initial-set-team-color”.

The option“play-soccer” (cf. fig. 3.39) is the root option of the option graph. It has a state
for the “penalized” game state where the robot does not move, a state for the“finished” game
state where the option“finished” is executed (cf. sect.3.8.5), and a state for the“playing”
game state where the option“playing” (cf. sect.3.8.3.4) is executed. All other game states
are managed by the state“initial-ready-and-set”, executing the option with the same name.
As the option“initial-ready-and-set” also executes a kick-off behavior when the“playing”
message was received,“play-soccer” switches only from“initial-ready-and-set” to “playing”
when“initial-ready-and-set” is in its target state, indicating that the kick-off behavior is finished.

The option “initial-ready-and-set” (cf. fig. 3.40) implements the game states“initial” ,
“ready” , and “set” , as well as the post-kick-off behavior. As the kick-off positions and the
post-kick-off behaviors are different for own and opponent kick-off, there are always two option
states for each game state.

In the beginning, if there was a goal, in the state“own-team-scored”or “opponent-team-
scored” the corresponding option performs a short happy or sad cheering move (cf. sect.3.8.5).
When these options reach their target states, the option switches to the states for the“ready”
game state.

In the“ready” states, the option“go-to-kickoff-position” lets the robots autonomously walk
to their kickoff positions. These positions are read from input symbols to make them easy to
configure. For own kick-off, one robot (robot four) is allowed to go to the center circle. If it
gets close to that, in“go-to-kickoff-position” the stateposition-exactlybecomes active, trying

3.8. BEHAVIOR CONTROL 81

Figure 3.40: Option“initial-ready-and-set” is probably the most complicated looking one.

82 CHAPTER 3. MODULES IN GT2004

to position the robot very precisely and such that after the kick-off the robot can kick the ball
straight ahead through the biggest gap between the opponents. Additionally, robot three positions
at the center line close to the border. To avoid that opponent teams adapt to theGermanTeam’s
kick-off strategies, there are different variants, which are selected randomly.

With the “set” message from the game manager or by touching the head button, the states
for the “set” game state are reached. Before own kick-off, the option“set-before-own-kickoff”
is executed. This option lets robot three, which positioned at the centerline, perform a different
standing pose, allowing him a faster start after the kick-off.

After the “playing” message from the game controller or after a pressed head button,
the states“playing-after-own-kickoff” and “playing-after-opponent-kickoff”become active,
executing the corresponding options. In option“playing-after-opponent-kickoff”the target state
is immediately reached for the goalie, robots three, and four. This lets the option“initial-ready-
and-set” reach its target state“playing” , which again allows for a transition to“playing” in
option “play-soccer”. But robot two keeps standing for 4.5 seconds to avoid that three field
players run for the ball, possibly causing problems with the role negotiations. In the option
“playing-after-own-kickoff”, the goalie and player two immediately start playing using the same
target state mechanism. Player four performs a strong kick straight ahead. Player three runs
blind with the “dash” walk type for 2 seconds along the border into the opponent half. If player
four hits the gap between the opponent robots, player three can approach the ball at the opponent
border before the opponent team does. However, this strategy worked well only against weaker
teams.

If the robots are operated by hand, the option“initial-ready-and-set” is in the states for the
“initial” game state at the beginning. Both execute the option“initial-set-teamcolor”, which
allows for manual setting of team color through the back buttons.

3.8.5 Cheering and Artistry

The Sony Four Legged League is highly interesting to watch because the robots behave very
life-like and the game is highly engaging. To make the games more enjoyable for the crowds,
cheering (and crying) behaviors were implemented in addition to the wide range of kicks. After
each goal, in option“own-team-scored”(cf. fig. 3.41a) one of four happy looking cheering
motions is executed. After a few seconds, the option reaches its target state and the robots walk
back to their kick-off positions. Accordingly, option“opponent-team-scored”selects between
four annoyed and sad looking motions.

After the game, when the own team lost, in option“finished” the robots just let their heads
hang down and behave sad. But when the own team won, the choreography is a bit more complex.
All robots slowly walk to the center of the field. During this, every seven seconds, they stop
walking and perform synchronously some cheering motions. After a while, all robots arrive in
the center of the field and continuously perform headstands, which gives a good foreground for
the winner photo (cf. fig.3.41b).

Besides the cheering motions for the soccer games, many other demos and artistry chore-
ographies were developed withXABSL.

3.9. MOTION 83

a) b)

Figure 3.41: a) Option“own-team-scored”only chooses one out of four“scored” states, executes them
for a few seconds, and then terminates. b) At the end of option“finished” , all robots walk to the center of
the field for being also on the winner photo.

3.9 Motion

The moduleMotionControlgenerates the joint positions sent to the motors and therefore is re-
sponsible for controlling the movements of the robot.

It receives a motion request fromBehaviorControlwhich is of one of four types (walk, stand,
perform special actionor getup). In addition, if walking is requested it contains a vector de-
scribing the speed, the direction, and the type of the walk as there are several different types of
walking, such as dribbling the ball, the behavior can choose from. In case of a special action
request it contains an identifier defining the requested action.

FurthermoreMotionControlreceives head joint values from the moduleHeadControlwhich
is described below (cf. Sect.3.9.3). These values are inherited byMotionControlbut may be
overridden if the current motion also requires controlling the head, e. g., for a kick with the head
or dribbling the ball while holding it with the head.

Finally MotionControlgets current sensor data, because for some motions, sensor input is
required, e. g., standing up uses acceleration sensors to detect how to stand up.

As a result of the actions requested from behavior control, the motion module produces a
buffer containing current joint positions and odometry data, i. e., a vector describing locomotion
speed and direction, which, e. g., serves as input for self-localization.

84 CHAPTER 3. MODULES IN GT2004

hindHeight

hindFootTilt

foreHeight

foreFootTilt

Figure 3.42: Walking by moving feet in rectangles

In respect to the system’s modular approach,MotionControluses different modules for each
of its tasks as well. There is a walking engine module for each possible walking type. Therefore
each walking type can be performed by completely different walking engines as well as instances
of the same engine with different sets of parameters. How the walking engine works is described
below (cf. Sect.3.9.1). The module executing special actions is described below as well (cf.
Sect.3.9.2). A getup engine module brings the robot to a standing position from everywhere as
fast as possible. For standing, the walking engine for the normal walk type is executed with a
speed set to zero. Thus changing from standing to walking is possible immediately as the stand
position is automatically adjusted to the current walking style.

MotionControlkeeps track of the current position in the walk cycle, to smooth transitions
between different walk types, assuming that the periods of the walk types are somewhat compa-
rable.

When the currently used motion module does not reflect the requested motion, the module is
changed after it signals that the current motion is finished. Therefore the modules are responsible
for correct transitions to other motion types, e. g., a walking engine can signal that a change to
a different motion type is only possible after the current step is finished, i. e., all feet are on the
ground.

3.9.1 Walking

A walking engine is a module generating joint angles in order to let the robot walk with the
speed and the direction requested from behavior control. The implementation described here
first is calledInvKinWalkingEngineand was used by the GermanTeam for several years. A main
feature is that the engine and the parameters used are separated. The engine offers a huge set of
parameters. This allows creating completely different walks with the same engine by having dif-
ferent parameter values. A class containing the set of parameter values is given to the constructor

3.9. MOTION 85

Instantaneous
Center of
Rotation (ICR)

Figure 3.43: Principle of treating legs as wheels. Walking and turning combined results in a rotation around
an Instantaneous Center of Rotation (ICR). Instead of really using wheels the robot makes steps (red) with
the same direction and speed a wheel would have.

of the engine. Therefore it is possible to have different instances with different parameter sets. It
is even possible to transmit new parameters via the wireless network from RobotControl to test
them at runtime (cf. Sect.D.6.3).

3.9.1.1 Approach

The general idea is to calculate the position of the feet relative to the body while they move in
parallelograms around their center position (cf. Fig.3.42). The necessary joint angles to reach
the foot position are calculated by inverse kinematics.

For the direction of walking the four legs are more or less treated as wheels. Seen from above,
the rectangles are rotated to the desired walking direction (cf. Fig.3.43). Every combination
of walking forward, walking sideways, and turning results in turning around an Instantaneous
Center of Rotation (ICR). This determines the step direction for each leg.

The walking speed is defined by the size of the rectangles. The time for one step is constant
but when walking faster the step length is bigger and equivalent to the speed a wheel would have
at the same position.

The position and size of these rectangles and the walking gait is defined by the parameter set.
Additionally the walking engine receives a position specifying the current point in the walk

execution cycle, smoothing transitions between different parameter sets.

3.9.1.2 Parameters

As mentioned before, the actual walking style the engine generates is mainly defined by the set
of parameters applied. The parameters are the following:

86 CHAPTER 3. MODULES IN GT2004

a) b) c) d) e)

Figure 3.44: Possible modes of foot movement a) rectangle b) semi-ellipse c) ellipse d) oval e) arbitrary
quadruple.

groundPhase

liftPhase
loweringPhase

z

t/stepLen

groundPhase liftPhase loweringPhase

airPhase = 1 - groundPhase - liftPhase - loweringPhase

airPhase

1

footLift

Figure 3.45: Timing of one step cycle

footMode. This parameter selects how the feet will be moved while in the air. Besides the
rectangular shape mentioned above, it is also possible to have the feet move in differ-
ent shapes, e. g. a semi-circle like it was the case in our walking engine for RoboCup 2001
(cf Fig. 3.44). This parameter was not used much since the rectangular shape seemed to
provide best general performance. It was mainly included for increasing flexibility.

foreHeight, foreWidth, foreCenterX. These values describe the center foot position of the
forelegs relative to the body of the robot.

hindHeight, hindWidth, hindCenterX. The same values for the hind legs describe center foot
positions.

foreFootTilt, hindFootTilt. The foot rectangles are rotated by these angles to compensate for
different fore and hind walking heights.

foreFootLift, hindFootLift define the feet lifting, i. e. the height of the rectangles.

stepLen. This is the time for one complete step cycle (cf. Fig.3.45).

groundPhase, liftPhase, loweringPhase.These values define the timing of the step cycle (cf.
Fig. 3.45). groundPhasedefines how much time of the step cycle the foot will be on the
ground.liftPhasedefines how fast the foot will be lifted,loweringPhasehow fast it will be
lowered. There are two values each, one for the fore and one for the hind legs.

3.9. MOTION 87

legPhase.These values set the relative phase offsets of each leg, and therefore define the gait.
For each leg there is a value which describes when the foot is lifted, relative to the start of
one step cycle.

Although the engine could employ different gaits, nearly all currently available parameter
sets use the trot gait, i. e., two diagonally opposite legs perform the same movement, while
the other two legs move with a half gait phase offset. For the leg phase parameters this
means the values for the left fore and the right hind leg are zero, while the values for the
right fore and left hind leg are 0.5.

3.9.1.3 Combining several optimized parameter sets

In the last years most teams tried to use a walking model that is as universal as possible, i. e.
enables a robot to walk omnidirectional with one set of parameters. Although that is a good
starting point, much better parameters exist for special task like walking forward or backward
only. Therefore the GermanTeam used two or three parameter sets and switched between them
until 2003. As RoboCup is a highly dynamic environment, we decided to use a more continuous
model this year. For every motion request (every combination of desired walk speed, walk direc-
tion, and turn speed) we use a certain parameter set interpolated from several fixed, optimized
parameter sets around, as described in [19].

Many additional walking parameters have been introduced in the last years, most if them
were designed to increase the speed or robustness of walking in a certain direction. Interpolating
between those parameters is only useful if their influence on omnidirectional walking is known
or can be estimated. Furthermore continuously increasing walk speeds without those parameters
were published. Because using several parameter sets increases the effort for measuring, cali-
brating, and fine-tuning, we tried to minimize the number of parameters per parameter set (see
above) and used only those, that proved to have a positive influence on omnidirectional walking.

3.9.1.4 Odometry correction

In theory the robot should walk exactly as fast as its walking model calculates it, but obviously
there is a difference to reality. To minimize this difference the GermanTeam used only few global
correction factors until 2003. Such a correction factor is the quotient of maximum calculated
speed and maximum resulting real speed. That gives a simple estimation for the distance the robot
really walks when it moves its legs. The disadvantage is, that increasing the maximum speed
also increases the average difference between calculated and real speed, because the relationship
between those two is non-linear.

Using several optimized parameter sets in 2004 gave us the possibility to calibrate each such
parameter set on its own without any influence on other parameter sets. Therefore it was possible
to use (and know of) different maximum walk speeds for different walk directions leading to
faster walking in certain directions than before. At the same time the accuracy of this faster
walking was increased by separate calibration. The optimization and calibration was automated
as far as possible [19] to compensate for the increased number of used parameter sets.

88 CHAPTER 3. MODULES IN GT2004

3.9.1.5 Inverse kinematics

After the desired leg position is calculated, it is necessary to calculate the required leg joint angles
to reach that position. Therefore it is necessary to determine the necessary joint angles to reach a
given robot relative target position. This is called inverse kinematics problem.

In general the inverse kinematics problem is a set of non-linear equations, which can often
be solved numerically only. In the given case it is possible to derive a analytical closed form
solution for the inverse kinematics for one leg of the robot.

Forward kinematics solution. First a solution to the forward kinematics problem is given.
This is used in solving the far more difficult inverse kinematics problem.

The forward kinematics problem is the calculation of the resulting foot position for a given
set of joint angles.

The foot position relative to the shoulder joint(x, y, z) can be determined using a coordinate
transformation. The origin of the local foot coordinate system is transformed into a coordinate
system which origin is the shoulder joint.

In the following a simplified model of the robot’s leg is applied in which this transformation
is composed of the following sub-transformations:

1. clockwise rotation about the y-axis by joint angleq1

2. counterclockwise rotation about the x-axis by joint angleq2

3. translation along the negative z-axis by upper limb lengthl1

4. clockwise rotation about the y-axis by joint angleq3

5. translation along the negative z-axis by lower limb lengthl2

In homogeneous coordinates this transformation can be described as concatenation of trans-
formation matrices:

x
y
z
1

 = Roty(−q1)Rotx(q2)Trans

 0
0
−l1

 Roty(−q3)Trans

 0
0
−l2

0
0
0
1

 (3.44)

Rotx/y(α) means a counterclockwise rotation around thex/y-axis of angleα andTrans

 tx
ty
tz

a translation of the vector(tx, ty, tz).

3.9. MOTION 89

l1

l2

q3

q1

z

x

q3

a

l1

l2

(0, 0, 0) shoulder joint

(x, y, z) foot position

x²+y²+z²

Figure 3.46: leg side view, calculation of knee jointq3 via law of cosine

This is equivalent to:
x
y
z
1

 =

cos(q1) 0 − sin(q1) 0

0 1 0 0
sin(q1) 0 cos(q1) 0

0 0 0 1

1 0 0 0
0 cos(q2) − sin(q2) 0
0 sin(q2) cos(q2) 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 −l1
0 0 0 1

cos(q3) 0 − sin(q3) 0
0 1 0 0

sin(q3) 0 cos(q3) 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 −l2
0 0 0 1

0
0
0
1

 (3.45)

Matrix multiplication results in
x
y
z
1

 =

cos(q1) sin(q3)l2 + sin(q1) cos(q2) cos(q3)l2 + sin(q1) cos(q2)l1

sin(q2)l1 + sin(q2) cos(q3)l2
sin(q1) sin(q3)l2 − cos(q1) cos(q2) cos(q3)l2 − cos(q1) cos(q2)l1

1

 . (3.46)

This equation (and all of the following) is correct only for the left fore leg. But due to the
symmetry of the coordinate systems of the four legs, only the signs differ in the calculation for the
other legs. Thus when calculating the position of a right foot they-coordinate has to be negated,
for a hind foot thex-coordinate. Furthermore the lower limb lengthl2 is slightly larger for the
hind legs.

Calculation of knee joint angleq3. To solve the inverse kinematics problem first of all the knee
joint angleq3 is calculated. As the knee joint position determines how far the leg is stretched, the
angle can be calculated from the distance of the target position(x, y, z) to the shoulder joint.

90 CHAPTER 3. MODULES IN GT2004

l1

cos(q3)l2
q2

y

x

y

foot (x,y,z)

z

q1

shoulder (0,0,0)

a

.

a

.

d

ß

q3
l2 .

b

q2

y

l1

a) b)

Figure 3.47: a) leg front view, calculation of shoulder jointq2 b) leg model, calculation of shoulder joint
q1 with several helping variables

According to the law of cosine (cf. Fig.3.46)

cos α =
l21 + l22 − x2 − y2 − z2

2l1l2
(3.47)

with upper limb lengthl1 and lower limb lengthl2.
With

|q3| = |180◦ − α| = arccos
x2 + y2 + z2 − l21 − l22

2l1l2
(3.48)

the absolute value of the first joint angle is calculated.
The inverse kinematics problem always has two solution, as there are two possible knee

positions to reach a given target. These two solutions are selected via the sign ofq3. With respect
to the joint limitations the positive value is used due to the larger freedom of movement for
positiveq3.

Calculation of shoulder joint q2. Plugging the result forq3 into the forward kinematics so-
lution allows determiningq2 easily. According to equation (3.46) (geometrically apparent cf.
Fig. 3.47a)

y = sin(q2)l1 + sin(q2) cos(q3)l2

= sin(q2) [l1 + cos(q3)l2] . (3.49)

Consequently

q2 = arcsin

(
y

l2 cos(q3) + l1

)
. (3.50)

Since|q2| < 90◦ determination ofq2 via arc sine is satisfactory.

3.9. MOTION 91

Calculation of shoulder joint q1. Finally the joint angleq1 can be calculated. According to
equation (3.46) (cf. Fig. 3.47b)

x = cos(q1) sin(q3)l2 + sin(q1) cos(q2) cos(q3)l2 + sin(q1) cos(q2)l1

= cos(q1) sin(q3)l2 + sin(q1) [cos(q2) cos(q3)l2 + cos(q2)l1] . (3.51)

When defining

a := sin(q3)l2, (3.52)

b := − cos(q2) cos(q3)l2 − cos(q2)l1 (3.53)

and

β := arctan
(a

b

)
, (3.54)

d :=
√

a2 + b2

(
=

b

sin(β)

)
, (3.55)

so that

a = d cos(β), b = d sin(β), (3.56)

equation (3.51) simplifies to

x = cos(q1)a− sin(q1)b

= d [cos(q1) cos(β)− sin(q1) sin(β)] (3.57)

which can be transformed to

x = d cos(q1 + β). (3.58)

Hence

|q1 + β| = arccos
(x

d

)
. (3.59)

The sign ofq1 + β can be obtained by checking the z-component of equation (3.46). As in
equations (3.51)-(3.58) this results in:

z = sin(q1) sin(q3)l2 − cos(q1) cos(q2) cos(q3)l2 − cos(q1) cos(q2)l1

= sin(q1) sin(q3)l2 − cos(q1) [cos(q2) cos(q3)l2 + cos(q2)l1]

= sin(q1)a + cos(q1)b

= d [sin(q1) cos(β) + cos(q1)sin(β)]

= d sin(q1 + β). (3.60)

As d > 0, q1 + β is of the same sign asz. Hence ifz < 0 the calculated value ofq1 + β has
to be negated.

After subtraction ofβ the last joint angleq1 is computed.

92 CHAPTER 3. MODULES IN GT2004

l1
=6

4.
0m

m

l2
=7

7.
0m

ml2=69.6m
m

q10=0.200q10=0.200

q30=0.385 q30=0.367

l1=64.0m
m

Figure 3.48: Sending an angle of 0 degrees to all joint motors results in vertical legs but not in angles of 0
degrees between the joints.

Anatomy Corrections. The above calculations assume that a vertically stretched leg results in
an arc of 0 degrees at all joints. Whereas this might be true for a wire netting model, it is incorrect
for an Aibo. Adding constant offsets as in Fig.3.48compensates for this difference.

3.9.1.6 Gait Evolution

The task to find a fast and effective parameter set describing the walk becomes more and more
difficult with an increasing number of parameters. Finding the fastest possible walk using a
walking engine withn parameters means to find the representation of the fastest walk in ann-
dimensional search space. For a large numbern this is not feasible by trying different parameter
combinations by hand. Two different approaches to optimize the gait parameters were used in
the GermanTeam:

Localization-Based Fitness. The major problem in autonomous learning approaches for walk-
ing is to find a way to measure the speed of the resulting walk reliably. This approach uses the
self-locator of the robot to determine the walking speed.

First the robot stands on the field and localizes itself. After being well localized, the robot
walks for a fixed period of time into a specified direction with maximum speed. Then it stops
and localizes it self again. By calculating the distance between the starting and ending point on
the field, the robot can calculate the speed of the walk. To increase the reliability of this kind of
measurement, we let the robot walk three times with the same parameter set and take the average
of the three measured speeds.

For the optimization process we used a simple(1+1) Evolution Strategy [5]. An individual is
represented by a set of walking parameters. Its fitness is discovered by the corresponding speed
of the robot while walking on the field. Since this approach does not need any external hardware
it is easily possible to adapt the walking parameter set to the actual environmental conditions.

3.9. MOTION 93

With this approach we found a stable walk for the ERS-7 walking with 35 cm/s. Slight mod-
ifications in the PID settings increased the walking speed to 38 cm/s. These walking parameters
were used by the GermanTeam in the competitions for the “normal” walk.

Odometry-Based Fitness. The other approach to gait optimization employs a probabilistic
evolution scheme [50]. It separates the typical crossover-step of the evolutionary algorithm into
an interpolating step and an extrapolating step, which allows for solving optimization problems
with a small population, which is an essential for robotics applications. In contrast to other ap-
proaches, real odometry is used to assess the quality of a gait. The motion of the robot is estimated
from the trajectories of the rear legs while they have contact to the ground. The main advantage is
that gaits can be assessed very quickly (every 5 seconds a new one), so learning is very fast. The
only drawback of this approach is that it can only learn gaits in which the ground contact sensors
of the rear feet touch the ground. With this approach, a maximum forward speed of 40 cm/sec
and a turning speed of 195◦/sec were reached. This gait was only used to cover large distances
on the field.

This approach is implemented in theBB2004WalkingEngine. It loads gait parameter sets from
the fileConfig/Walking.cfg. Currently, four different sets are supported both for the ERS-7 and
the ERS-210:forward (normal forward motion including rotations),fastForward, backward, and
stand(same body posture asforward, but motionless). When the debug keylearnWalkingis acti-
vated, the evolution starts (in the code release, theforwardset is selected for evolution). However,
the behavior control has to request the motion that has to be learned, e. g. walking straight as fast
as possible or following the ball. It is important that the different parameter sets tested receive a
comparable feedback, e. g., it is not recommended that the robot has collisions while assessing
some of the parameter sets while not colliding when assessing others. The winning parameter set
of each generation is printed to the message window. When the gait is fast enough or after the
battery is replaced, the best set can be copied to the fileConfig/Walking.cfg, so that it either can
be used or it can be the starting point for further evolution. Please note that the ground contact
sensors of the rear legs must touch the ground, otherwise the evolution will not have a useful
direction.

3.9.2 Special Actions

Special actions are all motions of the robot that are not generated by their own algorithms but
merely consist of a sequence of fixed joint positions. Currently this includes a wide variety of
kicks with which makes it possible to play the ball from different positions relative to the robot
to various directions. The behavior is responsible for choosing a useful kick according to the
position of the ball and the game situation.

The moduleSpecialActionsis responsible for performing these motions. It receives the cur-
rently requested motion and produces joint angles as well as the odometry vector of the resulting
movement.

The module implements a chain of nodes which is traversed every time the module is exe-
cuted. These nodes either contain joint data, PID data, transitions, or jump labels.

94 CHAPTER 3. MODULES IN GT2004

Joint data nodes contain angles for all joints which are sent to the robot as well as timing
information that state for how long these values will be sent.

Transition nodes contain a destination node and an identifier for the target special action. If
the currently requested motion matches the target, the transition is followed. By this mechanism
the nodes will be traversed. This ensures that the requested special action as well as the transitions
from the current motion are being executed. Transitions make it possible to define conditions, i. e.
that another action has to be executed before the requested action, e. g. grabbing the ball before
kicking.

The nodes for each special action are specified in a special description language which is
compiled into a C data structure with its own compiler described in section5.4. The generated
data is loaded from the special action module. For each special action there is one file in the
description language which contains all the necessary joint data and transition statements.

In addition, there is one special file calledexternwhich serves as entry point to the module.
It contains transitions to all special actions of which the correct one will be executed when the
module is entered from other motion types.externalso serves as special transition target for
leaving the special action module. If another motion type is requested, the special action module
continues until a transition toexternis reached. This ensures that the current special action will
always be finished, avoiding, e. g., starting to walk while standing on the head.

The odometry data is calculated from the current movement and rotation speed taken from a
table containing values for all special actions. This table can contain information about the result
of completely executing a special action once, e. g. that the bicycle kick turns the robot by 180
degrees. Additionally the table may contain entries giving a constant speed for a special action.
The table also contains an indication of the walk cycle the special action is suitable to be executed
in, when switching from walking to the special action. This can smooth the overall motion.

Teaching and Inverse Kinematics. Special Actions are recorded by “teaching”. The robot’s
joints are brought in the desired position(s) by hand and are then recorded. A full motion is
constructed by playing back a squence of such snap shots. The sequence can later be edited and
optimized.
To create more life-like motions that utilize the robot’s entire body, inverse kinematics is used
in much the same manner that it is used for generating the walking motions: The four paw
positions on the ground are specified and the relative position and orientation of the robot’s trunk
is also be specified. The joint angles are calculated from this data using inverse kinematics. Using
this approach, robot motions using all of its legs synchronously can easily be created, allowing
for much quicker and stronger motions than the ones usally realized by teaching. (The “head
kick” is an example of a kick that was designed using inverse kinematics. It builds up additional
momentum by rotating the robot’s body, adding force to the actual head kick.)

3.9.3 Head Motion Control

The moduleHeadControlcalculates gaze directions for the robot. It receivesHeadControlModes
from the behavior control and generates the requiredhead motion requestswhich contain the an-

3.9. MOTION 95

gles of the three head joints and the mouth. These requests are sent to the moduleMotionControl
which forwards them directly to the motors (cf. Sect.3.9). HeadControlreceives sensor data and
the internal world model and it is part of theMotionProcess.

The Aibo ERS7 head has three degrees of freedom: neck tilt, head pan, and head tilt. This is
in contrast to the Aibo ERS210 which has the ability to roll its head (instead of the second tilt).
This required some rework of the existing inverse kinematics.

TheHeadControlfor the ERS-7 was mostly rewritten to get a more intelligentHeadControl.
Our approach to improve the quality of theHeadControl, was to develop a behavior, which gets
more information about the own position on the field during watching the ball. This means,
the gaze needs to be adjusted in a way, that the ball and any useful landmarks are in sight.
Additionally, the gaze direction should only change if it is necessary and spend most of the time
on watching the ball to prevent losing the ball and disturbing the speed measuring of the ball
locator. Another concern was to guide the gaze towards the positions of landmarks to improve
the quality of the selflocator results.

Since the robot can only see a small portion of its environment, it is necessary to have its head
(and thus its camera) point in certain directions depending on the situation the robot is facing.
A number of such situations have been identified and suitable head motions and gaze directions
were developed.

Additionally, XABSL was used to model the different modes and states of attention.
It was also found out in experiments that the ERS7 has considerable more trouble tracking

the ball compared to the ERS210 due to the new robot design (the quality of the camera images
is not as good and the servo motor response is more sluggish).

The actual robot behavior can communicate with the Head Control by means of setting a
HeadControlMode. This allows the behavior module to request certain attention modes. The
most important ones are “search-for-ball” and “search-auto”. The former forces the camera to
track the ball only (e.g. when the robot is about to kick the ball) whereas the latter allows the
robot to look at landmarks too (e.g. when it is far away from the ball or needs to re-localize).

3.9.3.1 Geometric Considerations

To direct the robot’s gaze in the direction of a given target, head joint angles are calculated using
inverse kinematics. This is outlined in the following paragraph. Furthermore, geometric consid-
erations regarding the landmarks and optimizing gaze direction are discussed in the following
paragraphs. The following is implemented as helper methods.

Look At Point. This method is used extensively in the head control to determine the gaze
direction. From the coordinates~r = (x, y, z) in the robot coordinate system, head joint angles
are calculated. For the ERS210, a unique analytical solution could be derived. In case of the
ERS7, two of the joints (“neck tilt”θ1 and “head tilt”θ3) are not independent. This means that
more than one unique solution exist: the robot can use both of the two joints to raise its head (and
any combination of the two). The neck tilt joint is located at the robot’s shoulders (at the base of
its neck) whereas the two other joints are located at the end of the neck (we assume them to be
at exactly the same point).

96 CHAPTER 3. MODULES IN GT2004

y

z

θ2

θ3 x

gaze
direction r'

r'

r
T1

T2

Robot
Coord.
System

Head
Coord.
System

Figure 3.49:Left: the target point is transformed from the robot coordinate system to the shoulder coordi-
nate system (T1) to the head coordinate system (T2). Right: transformation from cartesian into spherical
polar coordinates yields the desired joint angles.

When deriving a solution, the assumption is made, that it is desireable for the robot to have
the neck joint as far up as possible. This means that the robot’s head is as far away from the
ground as possible thus minimizing the distance error when looking at something on the ground.
Setting the neck tilt to zero (straight up), the problem is reduced to two degrees of freedom which
can be solved analytically.

To derive a solution, the target point is transformed from the coordinate system relative to the
robot into the “shoulder coordinate system” (this is where the neck tilt joint is attached). Since
the neck joint is set to a constant, the transformation into the “head coordinate system” can be
performed. In this coordinate system, the remaining calculations are basically a transformation
from cartesian coordinates into spherical polar coordinates (see fig.3.49):

θ1 = θc, θ2 = arctan
y′

x′ , θ3 = arctan

√
x′2 + y′2

z′ (3.61)

where~r′head = (x′, y′, z′) is the vector pointing in the desired gaze direction in the head
coordinate system, andθc denotes the constant angle of the neck tilt.

There are cases, however, where the solution exceedes the physical limits of the robot’s head
tilt joint, θtotal tilt > θ3, max (e.g. if the target is very close). In this case, the robot can look at the
target if it uses the neck tilt. To achieve this, the head tilt is set to the maximum and neck tilt
is set to the the missing tilt:θ3 = θ3, max andθ1 = θtotal tilt − θ3, max. This is, of course, only an
approximation and more accurate solutions can be found. The presented solution turned out to
have a big advantage which is not immediately obvious when looking at the calculations: when
the robot tries to look at something that is not quite within reach, it will look over its shoulder
whereas other solutions tended to look between the robot’s feet. Looking over the soulder has
two advantages: the robot sees more of its surroundings (it is more likely to see the ball and
landmarks) and the joints are closer to their “default” values (this means that very small head
movement has to be performed once a target actually comes into view).

3.9. MOTION 97

Calculate Closest Landmark. To be well localized, the robot needs to frequently look at land-
marks. To minimize the time the robot needs to look away from the ball, the closest landmark
with regard to the current gaze direction (or any other desired direction) is calculated. This is
done by calculating the relative angle to all landmarks and then determining the minimal abso-
lute angle with respect to the reference angle.

The actual head motion that we want to achieve is a sweeping motion that tries to look at
as many landmarks as possible along the way (until it reaches a time limit or the physical joint
limit). These scans are performed alternately left and right. Therefore, the algorithm was adjusted
to also calculate the closest landmark in a given direction w.r.t. the current gaze direction (this is
done by taking into account the sign of the relative angle to the landmark).

In experiments, it was observed that small errors in the localization caused the calculation of
the closest landmark to oscillate. To make the scanning motion robust against such oscillations,
the current result of the calculation is compared to the last result and the current scan direction,
making sure that the direction of the scan is maintained.

Look At Ball And Closest Landmark. When looking only at the ball, landmarks sometimes
come into view (e.g. the goal). The gaze direction of the robot can, however, be altered in such
a way that the robot still has full view of the ball but is also able to see landmarks that are close
(and would otherwise be outside its field of view). Fig.3.50illustrates how the gaze direction can
be altered when landmarks are near (this is particularly important for landmarks that can only be
used if they are fully in the field of view of the robot).

To determine if two objects can be looked at simultaneously, their relative angle to the camera
is calculated. If the difference between the two is smaller than the opening angle of the camera,
the two objects’ centers can be looked at simultaneously. To make sure that the objects fully fit
into the image, their angular width needs to be considered too. This is done for the two dimen-
sions independently (pan and tilt).

The gaze direction is changed from being centered on the ball to a direction where the robot
can just see the landmark. This is important for ball tracking to still function reliably. Also, some
buffer is added at the image edges (lessening the effective opening angle) so that the ball is always
fully within the field of view and cannot be lost easily and to compensate for the sluggishness of
the robot’s head joints.

If the ball is close to the robot, the gaze direction remains fixed on the ball. On the one hand,
this is because the ball takes up most of the camera image and effective adjustment is no longer
possible. On the other hand, the assumption is made that if the ball is close, the robot is about
to kick it (or interact with it in some other way) so it is of greatest importance to know exactly
where the ball is.

3.9.3.2 Head Path Planner

Often the head describes simple movements to collect information, like scanning for beacons
and landmarks. To provide an easy tool, theHeadPathPlannerwas developed. The planner is
initialized with an array of joint settings and timings. It calculates a path along the given angles.
By repeatedly calling a function for every clock step the angles for the head joints are returned,

98 CHAPTER 3. MODULES IN GT2004

camera
opening
angle

Figure 3.50: Top down view of the field of view of the robot. In the left diagram, the robot’s field of view
is centered on the ball. The right diagram shows the optimized gaze direction which enables the robot to
perceive the goal too.

until the last position of the path is reached.
The planner takes the starting head position and the speed limits of the head joints for a optimal
head movement into account. The speed limits can be retrieved by using theHeadControlMode
calibrateHeadSpeeds. This function has been initiated by the observation that the joint speeds
differ from robot to robot.

3.9.3.3 Landmark State

Because there is no information stored in the selflocator about the seen beacons, the classLand-
markStatesstores the time of sight for every single beacon. This is used by theHeadControlto
look, if possible, on different beacons, which improves the quality of the selflocator. In theHead-
Control behavior the time between the two last different beacons is needed to decide, whether
to look at ball or beacons in search-auto mode. Furthermore, if no beacon was seen recently, the
HeadControlstarts a search for beacons to avoid a total dislocation.

3.9.3.4 State Machine

The robot faces various situations during the game. Those situations require the robot to direct
its attention towards different targets (as the ball when chasing the ball or landmarks when trying
to (re-)localize). This can be modeled in a state machine that controls the robot’s gaze direction.
Roughly, the following situations can be distinguished: look at the ball, look at landmarks, search
for the ball when the ball has been lost. A tradeoff has to be made between looking at the ball
as much and as long as possible and looking at or scanning for landmarks. Both are equally im-
portant. Looking only at the ball for prolonged periods of time causes localization to deteriorate
for two reasons: first of all, the opening angle of the robot’s camera is limited and too few land-
marks come into view when the robot is only looking at the ball. On the other hand, odometry
data is of relatively poor quality requiring the robot to frequently perform vision updates for its
localization.

3.9. MOTION 99

ball
seen

ball
just
lost

ball
lost

return
to ball

directed
scan away

from ball

scan
back

to ball

ball
found
again

Figure 3.51: State machine used for tracking the ball. On the right side of the diagram, states are shown
related to “intentionally not looking at the ball but at landmarks instead”. To the left (highlighted in red)
the states are shown that the robot passes through/visits when it has lost sight of the ball.

The state machine is shown in figure3.51. There are three types of states that can be grouped
together: states that are active when the ball is seen, those that are involved in intentionally
looking away from the ball, and those that are active when the ball is lost. The individual states
are described here and some of the transitions are pointed out (for a more detailed description,
please use the generated XABSL documentation):

Ball Seen. The robot sees the ball and is looking at it.

Ball Just Lost. The robot has recently seen the ball but is not currently seeing it. The gaze
direction is the direction where the ball was recently seen. This is a step between Ball Seen and
Ball Lost to not starting a ball search, if only the ball is partially covered or the image processor
could not find the ball during some frames.

Ball Lost. The robot has not seen the ball for quite some time and is performing left and right
scanning movements with its head. Once the ball has been found, there is a transition to the state
“Ball Found Again”.

Directed Scan Away From Ball. When the ball has been seen for a certain period of time,
the robot starts a scanning motion to the right or the left side off the ball. This motion directs
the camera towards landmarks. The state will be exited either if the scanning motion has been
performed for a certain time period, if the head has reached its joint limits, or if there is no

100 CHAPTER 3. MODULES IN GT2004

landmark in the direction of the scan (e.g. if the next landmark in the scanning direction is
behind the robot).

Scan Back To Ball. This state returns the robot’s gaze to the ball. The state is necessary because
the robot does not see the ball but “knows” where the ball is, in other words the “ball is not lost”.

Ball Found Again. This state is reached when the ball is seen again after it has not been
seen. This state stabilizes the robot’s gaze on the ball because if the ball was not seen before, it
will most likely re-appear at the edge of the field of view and percepts may be of poor quality.
Additionally, this state gives the ball locator some time to calculate the ball speed before the
HeadControlbegins to look at ball and landmarks.

Return To Ball. This state is used to quickly return the robot’s gaze towards the ball. If the
HeadControlModewas set to search-auto and the robot is performing a scan for landmarks,
setting theHeadControlModeto search-for-ball causes a transition to this state. It does essentially
the same as “Scan Back To Ball” only quicker.

Other Modes. This state catches every head movement which is not implemented in an own
Basic Behavior.

3.9.3.5 Basic Behaviors

The Basic Behaviors are used to describe atomic behaviors. For a more detailed description,
please use the generated XABSL documentation

look-at-ball. This will only look at the seen ball position.

look-around-at-seen-ball. This Basic Behavior is used by Ball Just Lost to begin a ball search.
The resulting head movement descibes a rectangle around at the last seen ball position.

directed-scan-away-from-ball. This calculates the smallest head pan angle to the next beacon.
On the results of this calculation, the side to look at is choosen. While this Basic Behavior is
active a scan for more beacons is done, until the head pan joint reaches its stop.

look-at-ball-and-closest-landmark. If the HeadControlModeis in search-auto, the headcon-
trol attempts to adjust the gaze simultaneously towards the ball and one landmark. The landmark
which will be chosen depends on the distance and the angle between landmark and ball. For
instance, far landmarks on the ground can probably not be detected by the image processor or a
big angle increases the probability that the ball rolls out of sight when moving fast.

3.9. MOTION 101

directed-scan-for-landmarks. This Basic Behavior calculates the closest landmark and moves
the head towards it, depending on the last scanned side. If a landmark is reached, the closest one
will be calculated and aimed. This repeats until the head pan angle limit is reached. The gaze
stops for some time at every landmark to avoid blurred images of the landmark.

other-head-movements. This Basic Behavior is used for simple head movements to avoid a
Basic Behavior implementation of every single, simple movement like Look Left, Look To Stars,
Look Between Feets, etc. Most of the moves, which are implemented here, use theHeadPath-
Planneror set head joints directly.

102 CHAPTER 3. MODULES IN GT2004

Chapter 4

Open Challenge

Besides the soccer competitions in the Sony 4-legged Robot League the teams also are invited to
take part at annual technical challenges. One of these challenges is the so-calledOpen Challenge.
There, teams can present and demonstrate parts of their research in a creative and entertaining
way. We decided to create a scenario in which our research on cooperative behavior could be
demonstrated and came up with the following idea:

A robot should kick a goal with a ball from the RoboCup Mid-Size League. To accomplish
this task, one robot has to cooperate with four more robots of his team and the whole has to act
as a “virtual Mid-Size League robot”.

For this transformation we built a cart with rails at the sides and a ramp, enabling a robot
to climb on the cart using a ramp. Then, this randomly selected robot stays on top of the cart,
meanwhile the four other robots search for the cart. When they found it, they stay at the sides of
the cart and bite the rails. In this manner we literally visualized the virtual robot metaphor used
by us so far: All five robots together form a virtual Mid-Size robot!

The robot on the top of the cart localizes itself and searches for the orange ball. As all other
robots are blind, because they look directly toward the sides of the cart, they require localization
information from the non-blind one on top of the cart. On the other hand, the robot on top can
not move himself. For this reason, he sends walking requests to the four cart-moving robots. In
this situation they are simply representing actuators of the virtual robot.

The low level behavior like walking to positions or performing certain tasks were realized in
XABSL (see Sec.E). On top of this behavior we used the Dynamic Team Tactics (DTT) that was
first introduced at the GermanOpen 2004 in Paderborn, Germany. DTT was developed to comply
with the needs of sharing robots as a whole and sensory information as well. Additionally, tasks
can be scheduled to all active robots of the team.

Let’s assume there areτ different tasksT1 . . . Tτ which can be executed on at least one in-
dividual Rj of the team. When there are more tasks than robots(τ > ρ), we have to deal with
a matching problem. To solve it efficiently, priorities must be assigned to all tasks. Further, we
have to find out which resources are occupied by executing a task. Hence, we distinguish between
sensor tasks, processing tasks, and action tasks [16].

The next step is to obtain knowledge about the actual situation and the environmental condi-
tions:

103

104 CHAPTER 4. OPEN CHALLENGE

4.1 Classification

Typically, for each robotRi the environment at timet can be described by its own world model
Mi(t) [17]. Without loss of generality,M(t) can be classified into a set of situationssk with
1 ≤ k ≤ σ.

In case of robot soccer, there is nothing more important than scoring, especially if the agent
is in front of the opponent goal. Hence, in this example the task “scoring” has a higher priority
than “defend own goal”. The situation changes if the opponent moves the ball in the other half
and consequently gets an advantageous position to score a goal. Therefore, we assume that in
every situationsk exists an optimal priority-rating of the tasksTi.

Let ~v = (v1, v2, . . . vτ) be aτ -dimensional weight vector, where the importance (priority) of
taskT1, . . . , Tτ is stored. If there areσ different situations, then there will beσ corresponding
weight vectors~v1 . . . ~vσ, too.

Thus, after classification of the actual world-state, finding the corresponding optimal rating
is a matching problem [57].

4.2 Matching

To find the best solution of the matching problem, we suggest to estimate the abilitywi
j of robot

Ri to solve taskTj. For the following, this value is called task-rating. Further, the current world-
state beliefMi(t) of roboti has to be classified into a situationsj(Mi). Then, finding the optimal
task distribution means to maximize the dot-product of task-rating vector and priority-vector
according to the actual situationv(sj).

This problem can be illustrated by a bipartite graph: A number ofρ robots is connected to
τ tasks, whereas every robotRi has an edge of weightwi

j to taskTj. The problem to find the
combination of task assignments that maximize the global weight can be solved efficiently by
applying the so-called “Hungarian Algorithm” [43].

4.3 Estimation

If all robots had the same information about their environment (i.e. if they shared the same world
model), every robot would find the same solution of the matching problem.

The matching would be identical and unique, resulting in a deterministic problem solution.
However, due to the physical limits of communication speed and inaccuracies in measurements,
the world models of the robots differ from each other. Thereto, it is necessary to estimate the
decisions of all teammates and address the hazards which might occur.

4.4 Arbitration

Hazards can occur whenever reality and estimate differ from each other [54]. A serious problem
is a non-unique task assignment: first, this can lead to allocation problems; second, it blocks robot

4.5. CONCLUSION 105

Figure 4.1: Frontal view of the virtual robot: Four robots work as actualors at the groud. Another robot
works as sensor on top.

resources which should be utilized more efficiently. As a result, an efficient arbitration is required
to avoid such conflicts. As the robotic system works in real-time, it’s required an approach that
fits this additional constraint.

4.5 Conclusion

Almost every team in Lisbon which saw this demonstration was truly impressed and enter-
tained. Accordingly we achieved the first place in the open challenge competition by a great
margin. More details about behavior, image processing and dynamic resource sharing can be
found in [16]. An overview of the shown performance is given by Figure4.1.

106 CHAPTER 4. OPEN CHALLENGE

Chapter 5

Tools

The GermanTeam spent a lot of time on programming the tools that do not run on the AIBO
platform but that helped very much in the development of the soccer software.

In section5.1and5.2 two very similar programs are described: the simulator based on Sim-
Robot and RobotControl. They both have in common:

• The complete source code that was developed for the robot is also compiled and linked
into these applications. That allows algorithms to be tested and debugged very easily. New
source code can be tested with the tools before compiling it for the robot and testing it on
the field.

• As the interfaces of the source code to a physical robot are very narrow, the robot could be
easily replaced by a simulator.

• They provide a lot of debugging and visualization tools.

MakeStickis tool for writing memory sticks. It can copy compiled code to the sticks and
allows for configuring existing sticks. Code is copied using the scriptcopyfiles.bashthat provides
several options to influence what is copied.

TheUniversal Resource Compiler(URC, formerly known asMotion Net Code Generator, cf.
Sect.5.4) was used by the GermanTeam for generating a C data structure from motion description
files containing, e. g., the kicks as well as for generating xml files containing a list of all motions
that can be requested by the behavior.

TheEmon Log Parser(cf. Sect.5.6) was used to get as much information as possible out of
the log files produced by the Open-R SDK Emergency Monitor.

5.1 Simulator

SimRobot is a kinematic robotics simulator that was developed at the Universität Bremen [45].
It is written in C++ and is distributed as public domain [48]. It consists of a portable simulation
kernel and platform specific graphical user interfaces. Implementations exist for theX Window

107

108 CHAPTER 5. TOOLS

System, Microsoft Windows 3.1/95/98/ME/NT/2000/XP, andIBM OS/2. Currently, only the de-
velopment of the 32 bit versions for Microsoft Windows is continued. The version used in 2004
is an intermediate release that is only available as part of the GermanTeam 2004 code release.
The official release, called SimRobot 2005, will include a physical simulation as well as a new
generic description language for robot simulations, and will be released in spring 2005. It is
currently also ported to Linux, but that version will probably appear later.

SimRobot consists of three parts: thesimulation kernel, thegraphical user interface, and a
controller that has to be provided by the user. Already in 2002, the GermanTeam has imple-
mented the whole simulation of up to eight robots including the inter-process communication
described in appendixF as such a controller, providing the same environment to robot control
programs as they will find on the real robots. In addition, an object calledthe oracleprovides
information to the robot control programs that is not available on the real robots, i. e. the robots’
own location on the field, the poses of the teammates and the opponents, and the position of
the ball. On the one hand, this allows implementing functionality that relies on such information
before the corresponding modules that determine it are completely implemented. On the other
hand, it can be used by the implementors of such modules to compare their results with the
correct ones.

The following sections will give a brief overview of SimRobot, and how it is used to simulate
a team of robots.

5.1.1 Simulation Kernel

The kernel of SimRobot models the environment, simulates sensor readings, and executes com-
mands given by the controller. A simulation scene is described textually as a hierarchy of objects.
Objects are bodies, sensors, and actuators. Objects can contain further objects, e. g. the base joint
of a robot arm contains the objects that make up the arm.

The kernel is platform independent. It is connected to a user interface and a controller via a
well-defined interface. This enables an easy porting to other platforms as well as the embedding
into other application, e. g.RobotControl(cf. section5.2).

The current release has a completely revised kernel which contains several important features
compared to the previously used simulator:

OpenGL graphics: All functions for drawing objects are part of the simulation kernel. Through
using OpenGL (cf. Fig.5.1) instead of an own library for 3-D graphics, SimRobot now
benefits from modern graphics hardware and offers a fast display of the simulated environ-
ment.

Hardware accelerated offscreen renderingis a feature which several manufactures imple-
ment on their graphics hardware. SimRobot is able to detect and use this acceleration for
the generation of camera images. On computers which do not support this feature, a quite
slow, software-based implementation is used.

An XML-based modeling language is now used to describe the simulation scenes. This offers
the possibility of using a vast variety of existing tools for editing and validating scenes.

5.1. SIMULATOR 109

Figure 5.1: SimRobot simulating the GermanTeam 2004.

The SimRobot kernel is able to simulate the following classes of objects:

Bodies. Currently, bodies can be modeled as spheres, cylinders or as a collection of polygons.
To each object, a surface class is assigned, which determines the color of the object. The Ger-
manTeam uses color tables to map the colors measured by the robot’s camera ontocolor classes.
To avoid having two different color tables, one for the real robot and one for the simulation, the
simulation scene is automatically colored according to the actual color table.

Actuators allow the user or thecontroller to actively influence the simulation. They can be
used, e. g., to move a robot or to open doors. Each actuator can contain other objects, i. e. the
objects that it moves. SimRobot provides three types of actuators: rotational joints, translational
joints, and objects moving in space in six degrees of freedom. SimRobot is currently only a
kinematic simulator; thus it cannot directly simulate walking machines. Therefore, the motion
of the simulated AIBOs is generated by a trick: the GT2004 robot control program has its own
model of which kind of walk will generate a certain motion of the robot. This model is also
employed for the simulation. Thus, the simulated robots will always behave as expected by their

110 CHAPTER 5. TOOLS

control programs—in contrast to the real robots, of course. In addition, the body tilt is simulated.
This is performed under the assumption that the body roll is always zero. The computation is
performed by the same function that is also calculating the position of camera in the code that is
actually running on the robots.

Sensors. The current version of SimRobot provides, in contrast to previous releases, only two
different kinds of sensors:

• A camerawhich computes a two-dimensional array of RBG pixels which have a color
depth of 24 bits.

• A whiskerwhich imitates the behavior of an infrared sensor. On the one hand, it is used
to simulate the PSD sensors in AIBO’s head and body. On the other hand, whiskers could
be employed to implement the ground contact sensors in the feet of the robots. As these
sensors are not used by the GermanTeam, this has not been implemented yet.

5.1.2 User Interface

The user interface of SimRobot includes an editor for writing the required scene definition files.
If such a file has been written and has been compiled error-free, the scene can be displayed as
a tree of objects (cf. Fig.5.1, left window) . This tree is the starting point for opening further
views. SimRobot can visualize any object and the readings of any sensor that are defined in a
scene (cf. Fig.5.2, upper right window). Objects may be displayed as wire-frames, simple flat
shaded polygons or smooth shaded polygons whose surface brightness is dependent on their
current angle to a global light source.

While data from the camera sensor can only be displayed as a color image, data from distance
sensors can be depicted as line graphs, column graphs, and monochrome images. Any of these
views and a numerical representation of the sensory data can be copied to the system’s clipboard
for further processing, e. g. in a spreadsheet application or a word processor.

The whole window layout is always stored when a scene is closed and restored when Sim-
Robot is started again with the same scene.

SimRobot also has a console window that can be used to enter text and to print some data
on the screen. The code of the GermanTeam uses this window to print text messages sent by the
robot processes, and it allows the user to enter a large variety of commands. These are docu-
mented in appendixC.

5.1.3 Controller

The controller implements the sense-think-act cycle; it reads the available sensors, plans the
next action, and sets the actuators to the desired states. Then, SimRobot performs a simulation
step and calls the controller again. Controllers are C++ classes derived from a predefined class
CONTROLLER. Only a single function must be defined in such a controller class that is called

5.1. SIMULATOR 111

Figure 5.2: SimRobot displaying an image from a simulated camera, a single robot, and a user-defined
view.

before each simulation step. In addition, the controller can recognize keyboard and mouse events.
Thereby, the simulation supports to move around the robots and the ball.

A very powerful function is the ability to insertviewsinto the scene. These are similar to
sensors but in contrast to them, their value is not determined by the simulation but instead by
the controller. This allows the controller to visualize, e. g., intermediate data. In fact, the lower
window in figure5.2 is a view that contains the soccer field overlaid by a visualization of the
robot’s percepts and the currently estimated world state.

112 CHAPTER 5. TOOLS

Figure 5.3: The RobotControl application

The whole environment, that the processes of a robot control program will find on a real
robot, has been resembled as such a controller. It supports multiple robots, each robot can run
multiple processes, these processes can communicate with each other, and also the communica-
tion between different robots is supported. Thus the code of a whole team of four communicating
robots runs in the simulator.

5.2 RobotControl

In contrast to the pure simulator SimRobot (see previous section), RobotControl (cf. Fig.5.3)
was initially intended to be a general support tool that should help to increase the speed and
comfort of the software development process.

First, it functions as a debugging interface to the robot. Via the wireless network or a memory
stick, messages can be exchanged with the robot. Almost all internal representations of the robot
(images, body sensor data, percepts, world states, sent joint data) and even internal states of
modules can be visualized.

5.3. MAKESTICK 113

In the other direction, many intermediate representations of the robot can be set from Robot-
Control. For instance, one can send motion requests that are normally set by the behavior control
module of the robot to test the motion modules separately.

Second, as in the Simulator application, the complete source code for the robots is compiled
into RobotControl and encapsulated in “simulated robots”. The debugging interfaces of Robot-
Control function both for the simulated and the physical robots. So it is possible to test source
code without switching to a robot. The virtual robots can receive their data from a simulator
(which was adapted from SimRobot), a real robot, or a log file. The GermanTeam could develop
its vision modules long before they had a wireless network connection to the robot by testing the
algorithms on log files.

In addition, a variety of other helper tools is integrated into the application, e. g. for color
calibration or for copying data to the memory sticks.

Almost all of RobotControl’s functionality was programmed into toolbars and dialogs. There
are simple interfaces to create and embed them in the application, so that many team members
could easily program graphical user interfaces for their debugging needs.

This is also one of the two main differences between RobotControl and the Simulator: In
the Simulator most of the interaction with the program is done using a text console whereas in
RobotControl many graphical user interfaces exist. As many tasks require a graphical user inter-
face, e. g. creating color tables, the Simulator provides only a small portion of the functionality
of RobotControl.

AppendixJ describes the structure and mechanisms of RobotControl in detail.

5.3 MakeStick

MakeStick allows the user to copy data to a memory stick and/or configure the stick afterwards.
Configuringmeans to set a robot’s role, its team color, its team identifier, its location, and the
parameters required for wireless networking. The code copied to the stick can just have been
compiled, or it was compiled long ago and stored in a zip archive afterwards. Although the code
can run on both the ERS-7 and the ERS-210, the correct version of the operating system for the
target system has to be copied. And last but not least, for practice games, not only the current
code of the own team can be copied and configured, but also the code of other teams (currently,
only the code of CMPack’02, CMPack’03, and hopefully CMPack’04 is supported).

5.3.1 Installation

MakeStick is a small application. If it is compiled using the configurationMakeStick Release
with Visual Studio 2003 .NET, the resulting executable in the directoryBin is only 28 kB in size.
This allows it to be installed as an autoplay handler for the memory stick drive. So MakeStick
is always started when a memory stick is inserted. To accomplish this, Microsoft’s TweakUI
can be used. Using this tool, MakeStick can be established as a handler formusic filesin My
Computer/Autoplay/Handlers, because the code of the GermanTeam contains wav-files. After
inserting such a memory stick, Windows will ask for the handler to use (if it does not, reset

114 CHAPTER 5. TOOLS

Figure 5.4: The MakeStick tool

the default handler in the properties dialog of the memory stick drive), and MakeStick can be
selected as default handler.

5.3.2 Usage

Figure5.4 shows the dialog components of MakeStick. The combobox at the top of the dialog
allows selecting the kind of operation performed:

• The GermanTeam currentoptions copy the GermanTeam 2004 code that was compiled
last together with the operating system either for the ERS-7 or the ERS-210 using the
scriptcopyfiles.bash. The stick is configured afterwards with the information specified in
the dialog.

• Theconfigureoptions configure memory sticks that already contain code. Here, it can be
selected betweenGermanTeam 2003, GermanTeam 2004, andCMPack. Depending on the
selection, the other dialog elements will be adapted.

• Thefrom ZIPoptions unpack an image file to the memory stick and configure it afterwards.
Again,GermanTeam 2003, GermanTeam 2004, andCMPackcode is supported.

5.3. MAKESTICK 115

5.3.2.1 Actions

Write executes the command that was selected. In most cases, a shell script will be started in a
separate window.

Show Error starts theemon log parser(cf. Sect.5.6) to analyze the information that was written
to the memory stick the last time the robot software crashed.

Browse opens an Explorer window that shows the contents of the memory stick. This button is
useful if MakeStick is used as default handler for the memory stick drive.

Close decides whether MakeStick is closed afterWrite, Show Error, or Browsewere success-
fully executed.

Load opens a file selector dialog to select the compressed stick image file to be unpacked to the
memory stick.

5.3.2.2 Copy Options

This section allows specifying how and where the data will be copied:

Drive selects the memory stick drive. This selection is very important because this drive may be
formatted without any warning.

Console. The operating system copied supports the WLAN console.

Unsafe. This option deactivates the Open-REmgcyMonmodule. This module is responsible for
shutting down the robot if the battery load is too high. This option has to be selected with
care, because it deactivates a safety system of the operating system.

Copy/Force/Update. If Copy is selected, all files are copied to the memory stick. IfForce is
selected, the stick will be quick-formatted before.Updatewill only copy newer files. It
will not change the operating system. So, whenever a memory stick with an unknown
configuration is used,Force is the best selection. Afterwards,Updateensures the fastest
copy times.

5.3.2.3 Player Role

Each robot has a role in its team. This role is fixed at least for the goalie. But also for field players,
it is important that they have at least one distinguishable feature. So depending on the code that
is configured, the player role is either interpreted as a real role or just as a player number. All
robots in a team must have different roles.

116 CHAPTER 5. TOOLS

5.3.2.4 Team

Name. The robot’s of the GermanTeam use UDP broadcasts to find each other in the network.
To be able to distinguish between teammates and opponents, a team name is transmitted.
This name can be configured here.

Location. Since the GermanTeam consists of four sub-teams using a single software reposi-
tory, some configuration information is location-dependent (color tables, module selec-
tion, etc.). All these different settings are stored in a sub-directory belowConfig/Location.
The dropdown list allows selecting one of them. Please note that only the selected loca-
tion information is copied to the memory stick, so all other configurations will be missing.
Therefore, selecting a location only makes sense when actually copying the current Ger-
manTeam code to a memory stick, and not when unpacking or only configuring it.

Red/Blue specifies the color of the team.

5.3.2.5 WLAN

In this section, the wireless connection of the robot is configured. To ease the configuration of
whole teams in practice games, the hostname and the IP-address of a robot is based on its role
and its team color.

IP-Base specifies the base of the last byte of the IP-address. The resulting address of a robot is
computed asbase + 4× team + role.

IP allows specifying the first three bytes of the IP-address.

Netmask. The subnet mask required.

ESSID. The ESSID of the wireless network.

WEPKey. The key required for a WEP-encrypted network. If none is specified, no encryption
will be used.

AP-Mode. If an access point is used, specify 1 here. If the ad-hoc mode is used together with a
computer running Windows XP, specify 2. Otherwise, use 0.

Channel specifies the network channel used by the access point or the ad-hoc connection.

Swap IPs. Normally, the IP-addresses of a blue team always start above the IP-addresses of the
red team. Here, this sequence can be inverted.

5.4. UNIVERSAL RESOURCE COMPILER 117

5.4 Universal Resource Compiler

TheUniversal Resource Compiler(formerly knows asMotion Net Code Generator) parses a set
of motion specifications described in a special language and compiles it into a C data structure.
The parser checks the motion set defined for consistency, i. e., it checks for missing transitions
from one motion to another and for transitions to unknown motions.

With this tool it is possible to generate motions that consist only of fixed sequences of joint
positions quickly and easily. This is the case for all kicks implemented by the GermanTeam as
well as some other motions including, e. g., head stand and ball holding. The resulting C data
structure is loaded from theSpecialActionsmodule (cf. Sect.3.9.2).

TheUniversal Resource Compileralso generates an xml representation of all motions allow-
ing new motions to be used in the behavior (cf. Sect.3.8) without having to specify them in more
than one place.

For interactively testing motions and their transitions, RobotControl provides a dialog to
request specific motions. The requested motion and the transition from the current one will be
executed immediately (cf. Sect.D.5.1). Furthermore, a second dialog is provided to transmit new
motion descriptions to the robot and execute them without the need to recompile anything (cf.
Sect.D.5.3).

5.4.1 Motion Description Language

The specification for a single motion consists of the description of the desired action and the def-
inition of a set of transitions to all other motions. This is simplified by using groups of motions,
e. g., it is possible to define that the transition from motionX to any other motion always goes
via the motionY .

As most simple motions (such as kicking or standing up) can be defined by sequences of
joint data vectors, a special motion description language was developed, in which all our special
motions are defined. Programs in this language consist of transition definitions, jump labels, lines
defining motor data, and lines defining PID data. A typical data line looks like this:

˜ ˜ ˜ ˜ ˜ ˜ -350 -190 1750 -350 -190 1750 -1840 -40 2500 -1840 -40 2500 1 25

The first three values represent the three head joint angles, the next three values describe the
mouth and the tail angles, followed by the twelve leg joint angles, three for each leg, all angles
given in milliradians. The last but one value decides whether specified joint angles will either be
repeated or interpolated from the current joints angles to the given angles. The last value defines
how often the values will be repeated or over how many frames the values will be interpolated,
respectively. The tilde character in the first six columns means that no specific value is given,
i. e. “don’t care”. This has special importance for the head joint angles as it allows head motion
requests to be executed.

118 CHAPTER 5. TOOLS

5.5 Depend

The directory structure of the GermanTeam is not based on the layout of the processes that are to
be build as binaries. Source files may belong to different sets of binaries according to the chosen
process layout.

Dependsolves the problems that occur when multiple teams try to resolve the dependencies
and compile as well as link different binaries for different purposes. (See Sect.2.2.4for a detailed
description of the problem).Dependenormously speeds up the process of resolving dependencies
while leaving great flexibility to developers.

Depend is used to completely generate all dependencies for the chosen build target in
GT2004/Build/*/*/depends.incleach time. Even with several hundreds of source files, this takes
only a few seconds.

Dependwas developed for the competitions in 2003 and 2004. It is a simple speed optimized
pre-processor written inC.

Implementation. First of all, Dependreads all*.cpp and*.h in all subdirectories ofGT2004
into memory and sorts their paths alphabetically. That speeds up further processing dramatically,
because most files have to be touched several times and would normally be searched somewhere
in the include path and loaded from hard disk each time. Given the main source file of the process,
such asMotion.cpp, Dependcalculates all object files needed to link the process binary as well
as all header files needed to compile each of the object files.

Dependchecks all includes in all source files takingdefinesandif[n]defs into account. Based
on this information, it creates a list of all directly or indirectly included files for each*.cpp file.
Thus, all object dependencies for every object possibly needed are available.

To be able to do that calculation faster than a normal preprocessor,Dependuses a cou-
ple of assumptions. None-system#includes are not allowed inside#if (but are allowed inside
#if[n]def), includes must be case-sensitive and have to use slashes instead of backslashes. The
implementation of a function declared in a header file is assumed to be found in the header file
itself or in acppfile with the same name in the same directory. Any offence against these rules
results in an appropriate error message.

Dependgenerates dependency files accepted bymake. It probably only works and compiles
under Windows.

5.6 Emon Log Parser

The Perl scriptemonLogParserprovided by the Open-R SDK samples was considerably ex-
tended to retrieve as much information as possible from the log files calledemon.loggenerated
by the Emergency Monitor.

The script GT2004/Bin/emonLogParser.pluses mipsel-linux-readelf and mipsel-linux-
objdumpto output an assembler dump around the crashing opcode and around the caller of
that routine. The crashing line is highlighted. This is especially useful if the crash happened in

5.6. EMON LOG PARSER 119

unoptimized binaries with debug symbols. Furthermore the call stack is analyzed to give an idea
of the order of calling methods.

The script has to be called by:

Bin/emonLogParser.pl <emon.log> <configuration>

So, the path to the emon.log of the crash has to be provided as well as the name of the
configuration of GT2004 that caused the crash, e. g.Debug, Releaseor DebugNoDebugDrawing.
This will find the correct*.nosnap.elfin the build directories. It can easily be modified to be used
with binaries of other teams. Of course it is only useful to provide the binaries that caused the
crash.

120 CHAPTER 5. TOOLS

Chapter 6

Conclusions and Outlook

The GermanTeam now exists for more than three years. Over the years, the results achieved in
the RoboCup competition got better and better, culminating in winning the world championship
in 2004. The general architecture developed for RoboCup 2002 has proven to be sustainable,
still satisfying our needs. Only a few changes were applied over the years. For RoboCup 2003,
switching from the Greenhills-based environment to the gcc-based environment required only
minor changes in the platform dependent part. For RoboCup 2004, the robot dependent parts of
the code were virtualized, so that the compiled binaries run on both the ERS-210 and the ERS-71.
All other changes are described in Section1.5, and they are not repeated here.

Despite all the problems that arise when software is developed by a group of persons dis-
tributed over different towns, we recommend to build up national teams as the GermanTeam is
one. Having enough participating team members, different solutions for single tasks can be em-
ployed and compared to each other. The different scientific backgrounds of the members from
different universities enriched the project very much. At last, the rivalry between the single teams
results in better solutions for single tasks.

In RoboCup 2004, two other teams (the Hamburg Dog Bots and the Dutch Aibo Team) were
also using the GermanTeam code base. The Hamburg Dog Bots even reached the quarter final.
Also from a scientific point of view, the GermanTeam provides a good foundation for doing
research. In 2003 and 2004, it was the team with most publications at the RoboCup Symposium,
e.g., every sixth talk of the RoboCup Symposium 2004 was given by a member of the team
[26, 29, 33, 50, 58], and besides there were three poster presentations [20, 27, 59].

6.1 The Competitions in Lisbon

The GermanTeam scored very well at the past RoboCup world championship. During round-
robin, we became winner of our Group D. (4:2, 13:0, 6:1, 12:0, 7:0). During quarterfinals, we
defeated CMPack with a 9:0 score. We won against NuBots by scoring 9:2. Finally, we got world
champion as we bet UTS in the finals 5:3.

1However, the actual code does not behave properly on an ERS-210, because some differences such as computing
power and the orientation of the third head joint cannot be compensated for.

121

122 CHAPTER 6. CONCLUSIONS AND OUTLOOK

Round Robin
GermanTeam – rUNSWift 4:2
GermanTeam – Team Chaos 13:0
GermanTeam – ASURA 6:1
GermanTeam – Georgia Tech Yellow Jackets12:0
GermanTeam – Baby Tigers 7:0

Quarter Final
GermanTeam – CMPack’04 9:0

Semi Final
GermanTeam – NuBots 9:2

Final
GermanTeam – UTS Unleashed! 5:3

Table 6.1: The results of the GermanTeam in Lisbon

As every year, teams were invited to take part at the so called “Technical Challenge”. Each
team has to demonstrate, that it is able to solve a number of scientific problems with the robots. In
2004, we took part at the so-called “Open Challenge” and scored best (see Chapter4 for details).

6.2 Future Work

The GermanTeam owns a powerful code basis for the next year’s work. For the RoboCup German
Open in April 2005, each of the four universities will again set-up its own team based on the
shared code basis with own solutions for different tasks. From their different research interests,
the teams will also focus on different topics next year.

6.2.1 Humboldt-Universität zu Berlin

In the future we will continue to integrate case based reasoning to robot control architectures and
machine learning. The efforts will be pursued not only in the Sony Legged League but also in
the Simulation League.

A behavior architecture called the “Double Pass Architecture” [13] has already been imple-
mented in the Simulation League and will be applied to the Sony Legged League. It provides
for long term “deliberator” planning and short time “executor” reactions. The executor allows
quick reactions even for the options on the higher levels in the option hierarchy. This is made
possible by using the reduced search space defined prior by the deliberator. It implements a kind
of bounded rationality. Therefore, the state machine concept has to be extended for the two sep-
arate passes of the deliberator and the executor (the name “Double Pass Architecture” refers to
these two passes). Many useful behaviors have been developed. Selecting the appropriate one
becomes an increasingly difficult task. It becomes even more difficult if behaviors are combined
to more complex ones, such as they can be described in the option hierarchy. TheExtensible
Agent Behavior Specification Language(XABSL) will be extended and adopted to that.

6.2. FUTURE WORK 123

Another prerequisite of useful decisions is a reliable world model. In case of the Sony AIBO,
knowledge about the environment is exclusively derived from the camera image. With this lim-
ited field of view, information gathering has to be optimized. First steps in this direction have
been taken by actively scanning for landmarks using world model information (i. e. pointing the
camera in a direction where a landmark should be according to the world model). A tighter cou-
pling of information gathering and information processing turned out to be desirable rather then
having the two run as separate processes. Active vision and attention based vision approaches
will be examined. World and object modeling will be extended to make use of negative infor-
mation (e. g. the ball was not seen) and to actively search for information that is needed (e. g.
have the robot look for a specific landmark that is needed to clarify the robot’s position on the
field). Having both, complex behavior and reliable world model, the correspondence of situa-
tions and most appropriate actions have to be resolved. This will be done by methods of case
based reasoning. Cases describe typical behavior in typical situations (e. g. standard situations).
The recent situation is matched against the case base, and the most similar cases are analyzed for
proposals of behaviors. The behaviors are adapted according to the recent situations. Problems to
be solved in the next steps include description of cases, definition of useful similarity measures
and adaptation methods.

Furthermore, we are trying to improve the motion modeling of the robot, the long term goal
being to develop a full motion model of the robot: a model that integrates robot locomotionand
robot (special) actions such as kicking. By this we hope to achieve smoother, better controlled,
and overall quicker and more livelike robot movement.

This year we will invest a certain amount of time to develop a new debug tool that enables us
to validate our vision system, the modeling methods and the behaviors.

6.2.2 Technische Universiẗat Darmstadt

Until 2001 the GermanTeam was able to measure the true positions of the robots on the (at that
time smaller) field with the global view of a web camera mounted above the field at the ceiling of
the lab. Currently such a mechanism is newly developed in Darmstadt and will be reintegrated in
GT2005 with a much higher accuracy and reliability than the previous approach. This will enable
us to systematically evaluate and improve different localization methods. Furthermore, using
accurate reference data from global view not only the self-localization but also a number of other
algorithms can be evaluated and even automatically improved through learning and optimization
methods. The plans of the Darmstadt Dribbling Dackels until the competitions in 2005 are to
improve the ball modeling based on the Kalman Filter, the recognition and modeling of the other
players, the ball passing and cooperation of players, the ball controling and kicking capabilities
as well as the walking capabilities of the robots. We plan to integrate these developments in a new
world model incorporating informations, such as position, orientation and velocity of all objects,
which are shared with the other groups in the GermanTeam for different research purposes (team
behavior planning, opponent’s plan recognition, scheduling of resources and others).

124 CHAPTER 6. CONCLUSIONS AND OUTLOOK

6.2.3 Universiẗat Bremen

Due to a lack of time, the implementation of a fully probabilistic world model was postponed
till 2005. Instead, the current localization method was improved, and ball modeling based on the
Kalman filter approach was added by team members from Darmstadt. However, a fully integrated
model is still required, because the larger field and the lack of field walls will require more
precision in game play. Kwok and Fox [32] have already laid the foundation for a more integrated
world model. However, their approach ignores the possibility of communicating information
between the different robots in a team. While the integration of Kwok’s and Fox’s approach into
the framework of the GermanTeam has already started, further research is required on integrating
the perceptions of different robots, because they result from points in time.

Another research topic will be the elimination of manual color calibration. Although several
approaches have already been presented [18, 30, 29], non of them was used in real soccer games
so far. A rather robust recognition of the beacons has already been implemented. It is based on
similarity to prototypical colors and the presence of certain spatial relations between neighboring
surfaces.

In 2004, the OpenGL-based version of SimRobot was used to simulate both the ERS-7 and
the ERS-210. It is only a kinematic simulator. Currently, SimRobot 2005 is developed. It inte-
grates theOpen Dynamics Engine(ODE) to perform a physical simulation. This will result in a
rather realistic simulation of collisions, ball movement, and walking as well as kicking motions
of the robots. The interface to the code of the GermanTeam will not change, so it can be used
immediately when it is available.

6.2.4 Universiẗat Dortmund

The University Dortmund will contribute to the GermanTeam code by adapting it to the official
changes of the rules (field size enlargements, changes of ball, removal of the border). Further, we
will open our ceiling cam resources to the public. We try to help migrating the current Robot-
Control to a modular approach that uses the .NET framework. Additionally, we will give our best
to place in at least one of the annual challenges.

Other work at the code is already cover by our scientific goals which are described in Sec-
tion 1.2.4.

Chapter 7

Acknowledgments

The GermanTeam and its members from Berlin, Bremen, Darmstadt, and Dortmund gratefully
acknowledge the continuous support given by the Sony Corporation and its Open-R Support
Team. The GermanTeam thanks the organizers of RoboCup 2004 for travel support. The team
members from Berlin, Bremen, and Dortmund thank the Deutsche Forschungsgemeinschaft
(DFG) for funding parts of their respective projects. The team from Darmstadt thanks Deutscher
Akademischer Austauschdienst (DAAD1) for travel support to Lisbon, as well as Vereinigung
von Freunden der Technischen Universität zu Darmstadt e.V.2, Siemens3 and Fachbereich In-
formatik of TU Darmstadt4 for financial support. Allied Vision Technologies5 supplied Darm-
stadt with the ceiling camera. The team members from Dortmund thank Microsoft MSDNAA
and Lachmann & Rink GmbH for their effective cooperation and sponsoring.

The members of the GermanTeam 2004 also want to thank the members of the GermanTeam
2002 and 2003 for creating the foundation for the continuing success of the GermanTeam and
for writing the previous year’s team reports [12, 46] that were the basis for this document.

The GermanTeam uses a variety of code libraries and tools and also likes to thank the authors
of them:

• A code library called “Sizing Control Bars” from Cristi Posea.
(http://www.datamekanix.com) is used for the dialogs in RobotControl.

• A code library for “Internet Explorer-like toolbars” from Nikolay Denisov (nick@actor.ru)
is used.

• The code library “Grid Control” from Chris Maunder (cmaunder@mail.com) is used for
the “Settings” dialog.

• Doxygen (http://www.doxygen.org/) is used for the source documentation.

1http://www.daad.de
2http://www.tu-darmstadt.de/freunde
3http://www.ct.siemens.de, http://www.siemens.com
4http://www.informatik.tu-darmstadt.de
5http://www.alliedvisiontec.com

125

h
h
h
h
h

126 CHAPTER 7. ACKNOWLEDGMENTS

• The “dot” tool from the GraphViz collection (http://www.graphviz.org) is used for behav-
ior documentation purposes.

• The LibXSLT (http://xmlsoft.org/XSLT/) library is used used for behavior documentation
purposes.

• This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

• This product includes DOTML developed by Martin Lötzsch (http://www.martin-
loetzsch.de/DOTML).

• This product includes XABSL developed by Martin Lötzsch (http://www.ki.informatik.hu-
berlin.de/XABSL).

• RobotControl includes parts of SimRobot developed by Thomas Röfer, Uwe Siems,
Christoph Herwig, and Jan Kuhlmann (http://www.informatik.uni-bremen.de/simrobot).

• This product includes SimRobot XP developed by Tim Laue and Thomas Röfer.

Appendix A

Installation

The GermanTeam uses Microsoft Windows as development platform. The package provided was
used under Windows 2000 and Windows XP. The center of the development process is Microsoft
Visual Studio; all parts of the system are edited and built with (or at least within) this software.

A.1 Required Software

• Microsoft Windows 2000/XP

• Microsoft Visual C++ 6.0 SP6 or Visual C++ 2003 .Net (can be installed anywhere)

• Cygwin 1.5 including CygIPC 2 (can be installed anywhere).

• gtk+ 2.2.1 for Cygwin (unpack it to Cygwin-Path/)

• Open-R SDK 1.1.5-r2 and MIPS developer tools 3.3.3 (Cygwin-Path
/usr/local/OPENR SDK)

The system path and the path of Visual Studio (extras/options/directories/executable files)
must include...\cygwin\bin;...\cygwin\lib; .

On the homepage of the GermanTeam (http://www.robocup.de/germanteam) an archive is
provided that contains the correct versions of Cygwin, gtk+, and Open-R together with some
scripts that automate the installation process. They even update the search path of Visual Studio 6,
but the search path of Visual Studio 2003 .NET still has to be updated manually (or VisualStudio
has to be installed afterwards). It is strongly advised to use the provided package to get a suitable
build environment.

A.2 Source Code

The source code has to be unpacked anywhere in a directoryXXX\GT2004. Without white spaces
in XXX. There are several subdirectories under this root:

127

128 APPENDIX A. INSTALLATION

Bin contains the binaries of the programs running on the PC after they have been compiled.

Build contains all intermediate files during compilation.

Config contains the configuration files. Most of them will also be copied toOPEN-R/APP/CONF
on the memory stick.

Doccontains the documentation generated byDoxygenfrom the source files.

Make contains makefiles, batch files, and Visual C++ project files. The workspacesGT2004.dsw
(Visual Studio 6) andGT2004.sln(Visual Studio 2003 .NET) are located here, i. e. the files that
have to be launched to open Visual C++.

Src contains all source files of the GermanTeam.

Util contains additional utilities, e. g.Doxygen.

The directorySrccontains subdirectories that can be grouped in two categories: on the one
hand, some directories contain code that runs on the robots, on the other hand, other subdirecto-
ries hold the code of the tools running on the PC.

A.2.1 Robot Code

Modulescontains source files implementing the modules of the robot control program. For each
module there exist an abstract base class, one or more different implementations, and, at least if
there are multiple implementations, a module selector that allows switching between the different
implementations.

Platform contains the platform dependent part of the robot code. There exist three subdirec-
tories containing the platform specific implementations forAperios(i. e. Open-R), Win32, and
Linux (Cygwin). A fourth directoryWin32Linuxcontains implementations that are shared be-
tween Cygwin and Windows.Platform itself contains some header files that automatically in-
clude the code for the right platform.

Processescontains one subdirectory for each process layout, and each of these subdirectories
contains one implementation file for each process (*.cpp), the object.cfg, the connect.cfg, and
the.ocf-file required for the process layout.

Representationscontains source files implementing classes with the main purpose to store infor-
mation rather than to process it. Objects of classes defined here are often communicated between
different modules, processes, or even different robots.

A.3. THE DEVELOPER STUDIO WORKSPACE GT2004.DSW/.SLN 129

Toolscontains everything that does not fit into the other categories. The mathematical library (cf.
Sect.2.1.4) can be found here, the implementation of streams (cf. App.G), and message queues.
However, the code of the Windows tools such as RobotControl cannot be found here.

A.2.2 Tools Code

Src/Dependcontains the code of the tool (cf. Sect.5.5) to create the dependencies for all robot
builds as well as for RobotControl and SimGT2004.

Make/DSP generation contains a few scripts to create Visual Studio (6 as well as 2033.Net)
project files from these dependencies generated byDepend(cf. Sect.2.2.4.4).

URC contains the code of the tool (cf. Sect.5.4) to create new motions, i. e. special actions (cf.
Sect.3.9.2), Xabsl symbols, etc.

RobotControl contains the code of the tool with the same name (cf. Sect.5.2).

SimRob95contains parts of the old version of the kinematic robotics simulator SimRobot that
is used in RobotControl (cf. Sect.5.2).

SimRobXPcontains the new, OpenGL-based version of SimRobot.

A.3 The Developer Studio Workspace GT2004.dsw/.sln

The Developer Studio Workspace GT2004.dsw/.sln contains several projects, most of them in
different configurations:

Documentation. This project creates the documentation of the code usingDoxygen. Docu-
mentation can be generated for the projectsGT2004, RobotControl, and Simulator. Please
note that legacy code such as the old version ofSimRobotdoes not supportDoxygenand gener-
ates no proper help files.

GT2004creates the code for the robots. It can be selected betweenRelease(optimized, no de-
bugging information and support),Debug(full debugging information and support),Debug no
DebugDrawings(debugging information and support, but no DebugDrawings to reduce perfor-
mance impacts), andDebug no WLAN(debugging information and support, but memory stick
and console are used instead of wireless lan). In addition, a process layout (at the moment only
CMD) can be selected.

The result of the build process can be copied to a memory stick by callingcopyfiles.bash. If
no drive is associated to your HOSTNAME in the script, it is tried to find the memory stick drive
by searching the main directory of all drives for a sub-directoryopen-ror a file memstick.ind.

130 APPENDIX A. INSTALLATION

If the search fails,E: is used as default. Trycopyfiles.bash --helpto see all options. Instead of
calling copyfiles.bashmanually, you can use the WLAN configuration dialog of RobotControl
(cf. Sect.D.2.4) to ensure that the same configuration parameters are used in RobotControl and
on the memory stick.

RobotControl can be built in different configurations. The executable will be copied to
GT2004\Bin. TheWin32 CMD Releaseconfiguration uses statically linked MFC libraries, the
Debug configurations dynamically linked ones. The configurationWin32 Debug Optimizeduses
G6 optimization, but does not supportEdit and Continue. Win32 Debugsupports it but is not
optimized.

Simulator currently only supports a single configuration. The executable, together with the
help file, will be copied toGT2004\Bin.

The other projects generate libraries (GUI, GuiLib, SimRobotCore, SimRobotForRobot-
Control), source code (SpecialActionsby executing the universal resource compilerURC cf.
Sect.5.4)), tools (Dependcf. Sect.5.5), or preprocessed behavior (Xabsl2cf. Sect.3.8) required
by at least one of the projects named above. There is no need to build them directly because they
will be built on demand. The only exception is the configurationDocumentationof the project
Xabsl2. It produces a pretty good documentation of the behavior.

Appendix B

Getting Started

If you have installed the required software and the source code we suggest you to follow the
introduction to GermanTeam’s code given in this section. Step by step it is explained how to let
the robots play and how to use the debug tool on the PC. In addition, the main configuration files
used by the robots are described.

B.1 Configuration Files

The robots of the GermanTeam are configured using several configuration files. The files that
have to be adapted to be able to run the code of the GermanTeam are described in this section.
On the memory stick, all configuration files are located underMS/OPEN-R/APP/CONF.

B.1.1 location.cfg

This text file contains the name of a subdirectory underConfig\Location. The subdirectory con-
tains location-dependent configuration information such as camera settings, the color table, and
the set of active solutions. Thelocation.cfgallows the members of the GermanTeam to store
several such settings in the common CVS repository (a set of settings for each sub-team), while
the only file that has to be changed locally is this one. In addition, in the subdirectory there
are two further subdirectoriesers7anders210that allow to specify different configurations for
each type of robot. Iflocation.cfgis not present or it is empty, thecamera.cfg, coltable.c64, and
modules.cfgare read from the main configuration directory, i. e.MS/OPEN-R/APP/CONFon the
robot andGT2004\Configon the PC. In the code release, the file contains the name “Lisboa”, so
the configuration files in that subdirectory are used.

B.1.2 coltable.cfg

The GermanTeam uses an 18-bit color table with 6 bits color depth for each of the YUV channels,
i. e. the two LSBs of each channel are dropped:

unsigned char colorClasses[64][64][64];

131

132 APPENDIX B. GETTING STARTED

Each of the entries in the color table is one of the following color classes:

enum colorClass {noColor, orange, yellow, skyblue, pink,
red, blue, green, gray, white, black};

However, the color table in the binary filecoltable.c64is compressed. It has to be written by
a routine such as

unsigned char* colorTable = &colorClasses[0][0][0];
unsigned char currentColorClass = colorTable[0],
int currentLength = 1;
for(int i = 1; i < sizeof(colorClasses); ++i)

if (colorTable[i] != currentColorClass)
{

stream << currentLength << currentColorClass;
currentColorClass = colorTable[i];
currentLength = 1;

}
else

++currentLength;
stream << currentLength << currentColorClass << int(0);

B.1.3 camera.cfg

This file describes the camera settings. It must contain the settings that were active when the color
table was created. The binary file consists of three values (each four bytes and little endian):

enum whiteBalance {wb_indoor_mode, wb_outdoor_mode, wb_fl_mode};
enum gain {gain_low, gain_mid, gain_high};
enum shutterSpeed {shutter_slow, shutter_mid, shutter_fast};

B.1.4 player.cfg

With this text file, it is possible to set the team color and the number of a robot. The goalie must
always have player number 1. The team identifier is used for theDog Discovery Protocolto
identify all robots of the same team, so that can establish connections between each other.

// teamColor red | blue
teamColor blue
// playerNumber 1 | 2 | 3 | 4
playerNumber 2
// teamIdentifier string (up to 15 characters)
teamIdentifier GT2004

B.1. CONFIGURATION FILES 133

B.1.5 robot.cfg

The vision module determines many distances to objects by intersecting a view ray with planes
that are parallel to the field. At least if objects are far away, the precision of such computations
depends on precision of the estimation of the pose of the camera relative to the field. It has turned
out that there are some variations between different robots in the relationship between the joint
angles measured and the real posture of the head. Therefore, therobot.cfgcontains correction
values for thetilt and theroll of the body of the robot1. Therobot.cfgcontains these corrections
for all robots of the GermanTeam, indexed by the MAC-addresses of the robots, e. g.:

[00022D1F626B]
bodyTiltOffset 0.06
bodyRollOffset 0

The goal of the calibration process is that a robot located in one goal, looking at the other
goal, will calculate thehorizonparallel to the field and on the height of the camera. This can
be checked by displaying camera images and thehorizon drawingin RobotControl. Using the
Debug Message Generator Dialog(cf. App.D.6.3) with “Body Offsets” selected, the correction
values can be directly entered into the edit field and sent to the robot, e. g. “0.06 0”. If the horizon
is display parallel to the field and in the vertical middle of the opponent goal (i. e. at a height of
approximately 15 cm), the values are correct. However, the robot will forget them. Therefore they
have to be entered manually into therobot.cfgunder the MAC-address of that robot afterwards.

Please note that the localization capabilities of the robots using theGT2004SelfLocatorde-
pend on these correction values.

B.1.6 wlanconf.txt

Don’t forget to adapt thewlanconf.txtlocated inMS/OPEN-R/SYSTEM/CONFto the appropriate
network settings.

B.1.7 coeff.c{u,v,y}
These files contain the coefficients calibrated off-line for the color correction. They can be gener-
ated from a log file with a tool which is not included in the GermanTeam source code distribution,
however this shouldn’t be needed as they work fine for ERS7 robots under a very wide range of
lighting situation, provided that the camera white balance mode is set toIndoor; the correction
effect is valid but weaker inOutdoormode, and currently untested inFluorescentmode. Do not
use these coefficients on ERS210(A) robots, as the result would be an artificially induced chro-
matic distortion; to disable the color correction, simply make sure that these files are not present
in the currently selected configuration folder.

1The two values are a first approach to compensate for the deviations. More correction values are required.
Hopefully, it will be possible to let the Aibos automatically calibrate themselves in the future.

134 APPENDIX B. GETTING STARTED

Appendix C

Simulator Usage

C.1 Introduction

The simulator is based on SimRobot [48], a kinematic robotics simulator. In fact, only a so-called
controller has been added to SimRobot that provides the same environment to robot control code
that it will also find on the real robots. Therefore, the simulator shares the user interface with
SimRobot. This user interface is documented in the online help file that comes with SimRobot.
Please note that because the version of SimRobot used by the GermanTeam is only an inter-
mediate release, the help file contains a completely outdated manual on the scene description
language. The description language used is now based on XML.

The simulator is the second Windows tool of the GermanTeam besides RobotControl. While
RobotControl focuses oninteraction, the simulator has its strength inautomation. In addition,
the simulator uses a new simulation kernel that employs OpenGL for rendering, and therefore, is
much faster. The main input channel of the simulator is a console window that is much harder to
use than the mouse-enabled interface of RobotControl, but the text based approach to command
input also provides the possibility to use script files, which is the key feature to automate a lot of
processes. Therefore, the simulator can speed up the development, because—once configured—
no further user intervention is required after the start of the program. Therefore, there is no
waste of time for opening log files, setting debug keys, switching solutions, and connecting to
robots. Each process layout has its own set of views, and message handling is not dependent
on Windows idle time. The approach requires a lot less synchronization, which also makes the
simulator faster than RobotControl. On the other hand, there are a lot of things that cannot be
done with the simulator, e. g. creating color tables and all kinds of OpenGL visualizations, etc.
And, in fact, if very different tasks have to be performed in a row as, e. g., during a contest, the
mouse-enabled interface of RobotControl is much more comfortable.

135

136 APPENDIX C. SIMULATOR USAGE

Figure C.1: Scene views showing the whole field and two robots of the red team

C.2 Getting Started

The simulator can either be started directly from the Windows Explorer (fromGT2004\Bin),
from Microsoft Developer Studio, or by starting a scene description file1. In the first case, a
scene description file has to be opened manually, whereas it will already be loaded in the lat-
ter two cases. When a simulation is started for the first time and no layout has been patched
into the Windows registry, only the editor window will show up in the main window. Select
Simulation|Start to run the simulation. TheTree Viewwill appear. AScene Viewshowing the
soccer field can be opened by double-clickingscene GT2004. The view can be adjusted by using
the context menu of the window.

After starting a simulation, a script file may automatically be executed, setting up the robots
as desired. The name of the script file is the same as the name of the scene description file but
with the extension.con. Together with the ability of SimRobot to store the window layout, the
software can be configured to always start with a setup suitable for a certain task.

Although any object in theTree Viewcan be opened, only displaying certain entries in the
object tree makes sense, namely thescene, the objects in the grouprobots, and all information
views.

C.3 Scene View

TheScene View(cf. Fig. C.1) appears if thesceneis opened from theTree View. The robots are
modeled in great detail, e.g. the state of its LEDs. Please note that the face LEDs of the ERS-7 are

1This will only work if the simulator was started at least once before.

C.4. INFORMATION VIEWS 137

Figure C.2: Image view and field view with several debug drawings

not simulated, but all other LEDs are. The view can be rotated around two axes, and it supports
several mouse operations:

• Left-clicking an object allows dragging it to another position. Active and inactive robots
and the ball can be moved in that way.

• Right-clicking allows rotating objects around their body centers, in the case of the Aibo
this is the middle between its forelegs.

• Select anactiverobot (see below) by double-clicking it. Robot console commands are sent
to the selected robot only (see also the “robot” command).

• Buttons on the robot can be “touched” by left-clicking them. However, in the scene view,
they are typically too small to be useful, but they can easily be pressed when a single robot
is displayed.

C.4 Information Views

In the simulator,information viewsare used to display debug drawings. These are gener-
ated by the robot control program, and they are sent to the simulator viamessage queues.
In the simulator, the views are defined in the source code. They are instantiated separately
for each robot. There are five kinds of views related to information received from robots:
image views, field views, Xabsl views, sensor data views, and timing views. Field and im-
age views display debug drawings received from the robot, whereas the views visualize spe-
cific information about the current state of the robot’s behavior, its sensor readings, and
the timing of the modules it executes. The available image and field views are defined in
GT2004\Src\Platform\Win32\SimRobot\RobotConsole.cpp.

138 APPENDIX C. SIMULATOR USAGE

C.4.1 Image Views

An image view (cf. left of Fig.C.2) displays information in the system of coordinates of a camera
image. It is defined by giving it a name and by listing the debug drawings that will be part of
the view. The identifiers of all debug drawings are defined in classDrawings. Each drawing is
underlain by an image, e.g. the camera image, the color classified image, both either with or
without color correction, or anyimage drawing. This underlay is specified by the name of the
view.

Note that only information can be drawn that is actually sent by the robot, i. e. the correspond-
ing debug requests must have been set. To receive images, either the debug keyssendImageor
sendJPEGImagemust have been activated. To display a certain debug drawingXYZ, the debug
keysendXYZdrawingmust be set.

For instance, the viewimageis defined as:

IMAGE_VIEW(image)
Drawings::imageProcessor_horizon,
Drawings::imageProcessor_scanLines,
Drawings::perceptCollection,
Drawings::selfLocator

END_VIEW(image)

To display all this information, console commands (cf. Sect.C.6) such as the following are
also required:

dk sendJPEGImage every 100 ms
dk sendPercepts every 100 ms
dk send_imageProcessor_horizon_drawing every 100 ms
dk send_imageProcessor_scanLines_drawing every 100 ms
dk send_selfLocator_drawing every 100 ms

C.4.2 Field Views

A field view (cf. right of Fig.C.2) displays information in the system of coordinates of the soccer
field. It is defined similar to image views. Two special elements can be part of a field view that
are not debug drawings:fieldPolygonsandfieldLines. The field polygons are green, sky-blue and
yellow areas visualizing the field and goal areas. The field lines are the field boundary and all
lines. If used, the field polygons must be the first entry in the list of drawings, because they will
occlude anything drawn before.

For instance, the viewworldStateis defined as:

FIELD_VIEW(worldState)
Drawings::fieldPolygons,
Drawings::fieldLines,
Drawings::selfLocatorField,

C.4. INFORMATION VIEWS 139

Figure C.3: XABSL views and sensor data view in the simulator

Drawings::worldState,
Drawings::percepts_ballFlagsGoalsField

END_VIEW(worldState)

To display all this information, console commands (cf. Sect.C.6) such as the following are
also required:

dk send_selfLocatorField_drawing every 500 ms
dk sendPercepts on
dk sendWorldState on

Please note that the Monte-Carlo drawing is sent less often, because it is pretty large.

C.4.3 Xabsl Views

Two Xabsl views are part of each set of views. One can display information on the general
robot behavior, the other on the behavior of the head. The information displayed is configured
by the console commandsxis andxos (cf. Sect.C.6.3). In addition, the debug keyssendXab-
slDebugMessagesForBehaviorControlor sendXabslDebugMessagesForHeadControlmust have

140 APPENDIX C. SIMULATOR USAGE

Figure C.4: The timing view in the simulator

been set, and a Xabsl behavior that matches the one loaded by the console commandxlb (cf.
Sect.C.6.3) must be active on the robot.

set behavior control solution to GermanTeam 2004
sr BehaviorControl GT2004-soccer

load behavior of the GermanTeam 2004
xlb gt04

request Xabsl debug messages
dk sendXabslDebugMessagesForBehaviorControl on

show some symbols
xis ball.seen.distance on
xis ball.time-since-last-seen on
xos head-control-mode on

set output symbol
xos head-control-mode search-for-ball

C.4.4 Sensor Data View

The sensor data view displays all the sensor data taken by the robot, e.g. all joint angles, the
distance measurements made by the PSDs, etc. To display this information, the debug keysend-
SensorDatamust have been executed (cf. right view in Fig.C.3).

C.5. SCENE DESCRIPTION FILES 141

C.4.5 Timing View

The timing view displays statistics about the speed of certain modules (cf. Fig.C.4). It shows
the minimum, maximum, and average runtime of an execution of modules in milliseconds. In
addition, the frequency is displayed with which the module was executed. All statistics sum up
the last 100 invocations of the module. The timing view only displays information on modules
the debug key for sending profiling information of which is activated, i.e. to display information
about the speed of the image processor, the debug keysendImageProcessorTimemust have been
activated.

C.5 Scene Description Files

The language of scene description files is based on XML, and it is currently not documented. The
scene description files provided include several files to keep the main files small:Surfaces.scn,
Field.scn, ERS210, andERS7.scn. These files cannot be opened directly by the simulator, they
can only be included by other files.

In the main files, such asGT2004.scn, Demo.scn, andMatch.scn, three groups can be edited:

<group name=”robots”>. This group contains allactive robots, i. e. robots for which pro-
cesses will be created. So, all robots in this group will move on their own. However, each
of them will require a lot of computation time.

<group name=”extras”>. Below the grouprobots, there is the groupextras. It containspassive
robots, i. e. robots that just stand around, but that are not controlled by a program. Passive
robots can be activated by moving their definition to the grouprobots.

<group name=”balls”>. Below that, there is the groupballs. It contains the balls, i. e. normally
a single ball, but it can also contain more of them if necessary, e. g. for the ball challenge
in 2002.

A lot of scene description files can be found inGT2004\Config\Scenes. Please note that there
are two types of scene description files: the ones required to simulate one or more robots (about
2 KB in size, but they include larger files), and the ones that are sufficient to connect to a physical
robot or to replay a log file (about 1 KB in size).

C.6 Console Commands

Console commands can either be directly typed into the console window or they can be executed
from a script file. There exist three different kinds of commands. The first kind can only be
used in a script file that is executed when the simulation is started. The second kind areglobal
commandsthat either change the state of the whole simulation, or are sent to all robots at all
times. The last type isrobot commandsthat affect currentlyselected robotsonly (see “robot”
command to find out how to select robots).

142 APPENDIX C. SIMULATOR USAGE

C.6.1 Initialization Commands

sc<name> <a.b.c.d> (ers210| ers7). Starts a wireless connection to a real robot. The first
parameter defines the name that will be used for this robot. The second parameter specifies
the ip address of the robot. The optional parameter specifies whether the robot that will be
contacted is an ERS-210 or an ERS-7. This is necessary because some information used on
the PC differs between the two models. The default is the ERS-7. The command will add
a new robot to the list of available robots usingname, and it adds a full set of views to the
Tree View. Please note that physical robots only send debug drawings on demand, so the
views will remain empty until the drawings are requested by the appropriate debug keys.
When the simulation is reset or the simulator is exited, the connection will be terminated.

sl <name> <file> (ers210| ers7). Replays a log file. The command will instantiate a com-
plete set of processes and views. The processes will be fed with the content of the log file.
The first parameter of the command defines the name of the virtual robot. This name can
be used in therobotcommand (see below), and all views of this particular virtual robot will
be identified by this name in theTree View. The second parameter specifies the name and
path of the log file. If no path is given,GT2004\Config\Logsis used as default. Otherwise,
the full path is used..log is the default extension of log files. It will be automatically added
if no extension is given.

Please note that the backslash character has to be doubled to be recognized by the system,
e. g. writesl AIBO1 c:\\logs\\hello to load the log filec:\logs\hello.log.

When replaying a log file, the replay can only be stopped by halting the simulation, i. e.
by pressing thestart/stopbutton. To avoid the loss of log data during the replay, select the
simulation time mode, i. e. execute the commandst on(see below).

C.6.2 Global Commands

call <file>. Executes a script file. A script file contains commands as specified here, one com-
mand per line. The default location for scripts isGT2004\Config\Scenes, their default
extension is.con.

cls. Clears the console window.

echo<text>. Print text into the console window. The command is useful in script files to print
commands that can later be activated manually by pressing theenterkey.

gc ready[(blue — red) [<blueScore> <redScore>]] | set| playing | finished. Game
control. The command is sent to all robots. Theready-command is interpreted according
to the team color of each robot.

help | ?. Displays a help text.

C.6. CONSOLE COMMANDS 143

jbc <button> <command>. Sets a joystick button command. The first parameter specifies the
joystick button by its number between 1 and 32. Any text after this first parameter is part
of the second parameter. The second parameter can contain any legal script command. The
command will be executed when the corresponding button is pressed. While a joystick
button is pressed, no changes in the walking direction of the robot will be accepted. A
typical command to be assigned to a button is the executing of a special action, e. g.jbc 1
mr forwardKickHardwill try to kick the ball when button 1 is pressed.

jhc tilt | pan | roll. Set head axis to be controlled by the accelerator lever of the joystick. The
other two axes will be controlled by the coolie head. By default, the pan axis is controlled
by the accelerator lever. On the ERS-7,roll represents the second tilt axis.

robot ? | all | <name> {<name>}. Selects a robot or a group of robots. The console com-
mands described in the next section are only sent toselected robots. By default, only the
robot that was created or connected last is selected. Using therobot command, this selec-
tion can be changed. Typerobot ?to display a list of the names of available robots. A single
simulated robot can also be selected by double-clicking it in theScene View. To select all
robots, typerobot all.

st off | on. Switches the simulation of time on or off. Without the simulation of time, all calls to
SystemCall::getCurrentSystemTime()will return the real time of the Windows PC. How-
ever, as the simulator runs slower than real-time, the simulated robots will receive less
sensor readings than the real ones. If the simulation of time is switched on, each step of
the simulator will advance the time by 8 ms. Thus,the simulatorsimulates real-time, but
it is running slower. By default this option is switched off.

<text>. Comment. Useful in script files.

C.6.3 Robot Commands

ci off | on. Switches the calculation of images on or off. The simulation of the robot’s camera
image costs a lot of time, especially if multiple robots are simulated. In some development
situations, it is a better solution to switch off all low level processing of the robots and
to work with oracled world states, i. e. world states that are directly delivered by the sim-
ulator. In such a case there is no need to waste processing power by calculating camera
images. Therefore, it can be switched off. However, by default this option is switched on.
Note that this command only has an effect on simulated robots.

cp (indoor | outdoor | fluorescent) (low| mid | high) (slow | mid | fast). Set camera pa-
rameters. The first parameter defines the white balance, the second the gain, and the third
one the shutter speed. Changing the camera parameters only has an effect on real robots.

dk ? [<pattern>] | (<key> off | on | <number> | every<number> [ms]). Sets a debug
key. The GermanTeam uses so-called debug keys to switch several options on or off at

144 APPENDIX C. SIMULATOR USAGE

runtime. Typedk ? to get a list of all available debug keys. The resulting list can be short-
ened by specifying a search pattern after the question mark. Debug keys can be activated
permanently, for a certain number of times, or with a certain frequency, either on a counter
basis or on time. All debug keys are switched off by default. Please note that there cur-
rently is a problem with debug keys that are not permanently switched on or off. Since
<number>, every<number>, andevery<number> msare interpreted on a frame basis,
they may behave different than expected if the code checking these debug keys is not exe-
cuted in every frame. For instance, the image processor is not executed in every frame of
processCognition, because this process waits for new sensor data, and the image processor
is only executed if also a new image has arrived. So if the image processor checks a certain
debug key that is not always active, it may miss some of the frames in which the key is
active. This is the reason why sending a single image (dk sendImage 1) does not work in
all cases.

hcm ? [<pattern>] | <mode>. Sets the head control mode. Typehcm ? to get a list of all
available head control modes. The resulting list can be shortened by specifying a search
pattern after the question mark.

hmr <tilt > <pan> <roll > <mouth>. Sends a head motion request, i. e. it sets the joint an-
gles of the three axes of the head and the opening angle of the mouth. This will only work
if the actual head control mode isnone. The angles have to be specified in degrees.

log start | stop | clear | save<file>. Records a log file.log start starts or continues recording
all data received from the robot.log stopstops the recording.log clearremoves all recorded
data from memory.log savestores the data recorded to the log file with the name specified.
If the file already exists, it will be replaced. If no path is given,GT2004\Config\Logs is
used as default. Otherwise, the full path is used..log is the default extension of log files. It
will be automatically added if no extension is given.

mr ? [<pattern>] | <type> [<x> <y> <r>]. Sends a motion request. This will only work
if no behavior controlis active. Typemr ? to get a list of all available motion requests.
The resulting list can be shortened by specifying a search pattern after the question mark.
Walk motions also have to be parameterized by the motion speeds in forward/backward,
left/right, and clockwise/counterclockwise directions. Translational speeds are specified in
millimeters per second; the rotational speed has to be given in degrees per second.

msg off | on | log <file>. Switches the output of text messages on or off, or redirects them to
a text file. All processes can send text messages via their debug queues to the console
window. As this can disturb entering text into the console window, it can be switched off.
However, by default text messages are printed. In addition, text messages can be stored in
a log file, even if their output is switched off. The file name has to be specified aftermsg
log. If the file already exists, it will be replaced. If no path is given,GT2004\Config\Logs
is used as default. Otherwise, the full path is used..txt is the default extension of text log
files. It will be automatically added if no extension is given.

C.6. CONSOLE COMMANDS 145

pr ballHolding | keeperCharged| playerCharged | illegalDefender | illegalDefense| ob-
struction | pickup | continue. Penalize robot. The command sends one of the seven
penalties to all selected robots, or it signals them to continue with the game after a penalty.

qfr queue | replace| reject | collect<seconds> | save<seconds>. Send queue fill request.
This request defines the mode how the message queue from the debug process to the PC is
handled.

queue is the default mode. It will insert all messages received by the debug process from
other processes into the queue, and send it as soon as possible to the PC. If more
messages are received than can be sent to the PC, the queue will overflow.

replace. If the mode is set toreplace, only the newest message of each type is preserved in
the queue. On the one hand, the queue cannot overflow, on the other hand, messages
are lost, e. g. it is not possible to receive 25 images per second from the robot.

reject will not enter any messages into the queue to the PC. Therefore, the PC will not
receive any messages.

collect<seconds>. This mode sends messages to the PC for the specified number of
seconds. After that period of time, no further messages will be sent until another
queue fill request is sent.

save<seconds>. This mode collects messages for the specified number of seconds,
and it will afterwards store them on the memory stick as a log file underOPEN-
R/APP/CONF/LOGFILE.LOG. No messages will be sent to the PC until another
queue fill request is sent.

sg ?[<pattern>] | <id> {<num>}. Sends generic debug data. Generic debug data consists
of an id and up to ten decimal numbers. Typesg ?to list all generic debug data ids. The
resulting list can be shortened by specifying a search pattern after the question mark.

so off | on. Switch sending oforacled world stateson or off.Oracled world statesare normally
sent to all processes. This allows the modules calculating the world state to be switched
off without a failure of the robot. However, the option can produce confusing results if
parts of the world state are only sometimes calculated by the robot. Then, the world state
sometimes results from the robot’s own calculations and sometimes from the simulator.
Therefore, sending oracled world states to the robots can be switched off. By default, it is
switched on. Note that this command only has an effect on simulated robots.

sr ? [<pattern>] | <module> (? [<pattern>] | <solution> | off). Sends a solution re-
quest. This command allows switching the solutions for a certain module. To deactivated
a module, either typesr <module> disabledor sr <module> off. Typesr ? to get a list of
all modules. To get the solutions for a certain module, typesr <module> ?. In both cases,
the resulting lists can be shortened by specifying a search pattern after the question mark.

tr ? [<pattern>] | <type>. Sends a tail request. Typetr ? to see all available tail requests.
The resulting list can be shortened by specifying a search pattern after the question mark.

146 APPENDIX C. SIMULATOR USAGE

xbb [hc] (? [<pattern>] | unchanged| <behavior> {<num>}). Selects a Xabsl basic be-
havior. The command suppresses the basic behavior currently selected by the Xabsl engine
and replaces it with the behavior specified by this command. Typexbb ?to list all available
Xabsl basic behaviors. The resulting list can be shortened by specifying a search pattern
after the question mark. Some basic behaviors can be parameterized by a list of decimal
numbers, e. g.xbb go-to-point 1600 0 0to walk to position (1600 mm, 0 mm, 0◦). Usexbb
unchangedto switch back to the basic behavior currently selected by the Xabsl engine. The
commandxbbonly works if a Xabsl behavior was loaded with the commandxlb (see be-
low). If the command is immediately followed byhc, it applies to head control, otherwise
it applies to main behavior control.

xis [hc] (? [<pattern>] | <inputSymbol> (on | off)). Switches the visualization of a Xabsl
input symbol in theXabsl Viewon or off. Typexis ? to list all available Xabsl input sym-
bols. The resulting list can be shortened by specifying a search pattern after the question
mark. The commandxis only works if a Xabsl behavior was loaded with the command
xlb (see below). If the command is immediately followed byhc, it applies to head control,
otherwise it applies to main behavior control.

xlb [hc] (? [<pattern>] | <name>). Load a Xabsl behavior. The command loads the sym-
bols for the specified behavior and will send the compiled version of the behavior to the
robot. The command must be executed before any other Xabsl command and theXabsl
Viewwill work. Typexlb ? to list all available behaviors. The resulting list can be shortened
by specifying a search pattern after the question mark. Please note that the behavior loaded
has to match the solution forbehavior controlselected on the robot. To use theXabsl View,
the corresponding debug key has to be set, i. e.dk sendXabslDebugMessagesForBehavior-
Control onfor the behavior control anddk sendXabslDebugMessagesForHeadControl on
for the head control. If the command is immediately followed byhc, it applies to head
control, otherwise it applies to main behavior control.

xo [hc] (? [<pattern>] | unchanged| <option> {<num>}). Selects a Xabsl option. The
command suppresses the option currently selected by the Xabsl engine and replaces it
with the option specified by this command. Some options can be parameterized by a list
of decimal numbers, e. g.xo go-to-kickoff-position 2000 0to walk to position (2000 mm,
0 mm). Typexo ? to list all available Xabsl options. The resulting list can be shortened by
specifying a search pattern after the question mark. Usexo unchangedto switch back to
the option currently selected by the Xabsl engine. The commandxo only works if a Xabsl
behavior was loaded with the commandxlb (see above). If the command is immediately
followed byhc, it applies to head control, otherwise it applies to main behavior control.

xos [hc] (? [<pattern>] | <outputSymbol> (on | off | ? [<pattern>] | unchanged |
<value>)). Show or set a Xabsl output symbol. The command can either switch the
visualization of a Xabsl output symbol in theXabsl Viewon or off, or it can suppress the
state of an output symbol currently set by the Xabsl engine and replace it with the value
specified by this command. Typexos ?to list all available Xabsl output symbols. To get

C.7. EXAMPLES 147

the available states for a certain output symbol, typexos<outputSymbol> ?. In both cases,
the resulting list can be shortened by specifying a search pattern after the question mark.
Usexos<outputSymbol> unchangedto switch back to the state currently set by the Xabsl
engine. The commandxosonly works if a Xabsl behavior was loaded with the command
xlb (see above). If the command is immediately followed byhc, it applies to head control,
otherwise it applies to main behavior control.

C.7 Examples

This section presents some examples of script files to automate various tasks:

C.7.1 Recording a Log File

To record a log file, the robot shall send images including the camera matrix and odometry data.
The script connects to a robot and configures it to do so. In addition, it prints several useful
commands into the console window, so they can be executed by simply setting the caret in the
corresponding line and pressing theenterkey. As these lines will be printed before the messages
coming from the robot, one has to scroll to the beginning of the console window to use them.
Note that the file name behind the linelog saveis missing. Therefore, a name has to be provided
to successfully execute this command.

connect to a robot
sc AIBO1 172.21.3.201 ers7

suppress messages
msg off

disable everything but sensor data processor and head control
sr SensorDataProcessor Default
sr ImageProcessor disabled
sr SelfLocator disabled
sr BallLocator disabled
sr PlayersLocator disabled
sr RobotStateDetector disabled
sr BehaviorControl disabled
sr HeadControl GT2004

stop motion
mr normal 0 0 0
hcm none
hmr 0 0 0 0

queue real-time mode, send JPEG images and odometry
qfr replace

148 APPENDIX C. SIMULATOR USAGE

dk sendJPEGImage on
dk sendOdometryData on

print some useful commands
echo hcm searchForLandmarks
echo hcm searchForBall
echo hcm none
echo hmr 0 0 0 0
echo log start
echo log stop
echo log save
echo log clear

C.7.2 Replaying a Log File

The example script shown was used to test the GT2004ImageProcessor. It instantiates a robot
namedLOG1 that is fed by the data stored in the log fileGT2004\Config\Logs\logFile-with-
images.log.

replay a log file
sl LOG1 logFile-with-images ers7

suppress messages
msg off

simulation time on, otherwise log data may be skipped
st on

configure modules. Important: sensor data processor disabled
sr SensorDataProcessor disabled
sr ImageProcessor GT2004
sr SelfLocator GT2004
sr BallLocator GT2004
sr PlayersLocator GT2004
sr RobotStateDetector disabled
sr BehaviorControl disabled
sr HeadControl disabled

request some drawings
dk send_imageProcessor_horizon_drawing on
dk send_imageProcessor_scanLines_drawing on
dk send_selfLocator_drawing on
dk send_selfLocatorField_drawing on

C.7. EXAMPLES 149

C.7.3 Remote Control

This script demonstrates joystick remote control of the robot.

connect to a robot
sc 172.21.3.201 ers7

suppress messages
msg off

switch off everything but motion
sr ImageProcessor disabled
sr SelfLocator disabled
sr BallLocator disabled
sr PlayersLocator disabled
sr BehaviorControl disabled

stop motion
mr normal 0 0 0
hcm none
hmr 0 0 0 0
tr noTailWag

queue real-time mode, send JPEG images
qfr replace
dk sendJPEGImage on

use accelerator lever to control head pan
jhc pan

assign actions to joystick buttons
jbc 1 forwardKickHard
jbc 2 mr headLeft
jbc 3 mr headRight
jbc 4 mr demoSit
jbc 5 mr demoScratchHead
jbc 6 tr wagHorizontalFast
jbc 7 tr noTailWag

150 APPENDIX C. SIMULATOR USAGE

Appendix D

RobotControl Usage

This chapter describes how to use the RobotControl application. As RobotControl is a very com-
plex system, not all features will be described. But it will help to get an overview about the
capabilities of the program.

D.1 Starting RobotControl

Requirements. RobotControl needs at least version 4.0 of the Microsoft Internet Explorer in-
stalled on the system to work properly. In addition, it is important that RobotControl is started
from a directory underGT2004.

After the First Start The application looks a little bit strange. No child windows appear and all
tool bars are pushed together. But the toolbars can be moved with the mouse to be distributed
over more rows. To switch toolbars on or off, right-click on the toolbar area and select the visible
toolbars from the pop-up menu. Dialogs can be opened by using the “View” menu. Note that the
window layout will not be restored during the next start of the application unless it is saved using
the “Screen Layout” from the “View” menu.

D.2 Application Framework

The following toolbars and dialogs form the framework of the application.

D.2.1 The Debug Keys Toolbar

Figure D.1: The Debug Keys Toolbar

151

152 APPENDIX D. ROBOTCONTROL USAGE

TheDebug Keys Toolbar(cf. Fig. D.1) is used to switch debug keys on or off. Each debug key
can be parameterized in four different ways describing how often and in which frequency it will
be enabled.

The combo box contains all available debug keys. To edit the properties of a debug key, select
the key from the list and use on of these buttons:

Disabled. The debug key is disabled.

Always. The debug key is always enabled.

n times. The debug key is enabled forn times, i. e., it will returntrue the nextn frames, and
falseafterwards.n has to be entered into the edit control before the button is pressed.

Every n times. The debug key is enabled everyn-th frame, i. e., it will returntrue everyn-th
call, andfalsein between.

Every n ms. The debug key is enabled everyn milliseconds, i. e., it will returnfalseuntil at least
n milliseconds passed since the last time it returnedtrue.

Disable All. Disables all debug keys.

There are five buttons to select how the outgoing message queue is treated on the robot:

Immediately. All outgoing messages are sent immediately via the wireless network.

Realtime. This mode allows dropping messages if there is not enough time to transmit. This is
useful, e. g., for sending as many images as possible without slowing down the robot.

Send aftern seconds.The transmission of outgoing messages is delayed forn seconds. The
value ofn is set with the attached edit field.

Save to stick aftern seconds.Instead of transmitting outgoing messages via the wireless net-
work, they are stored on the robot’s memory stick after a delay ofn seconds. A log file
is created on the memory stick which afterwards can be replayed using theLog Player
Toolbar (cf. Sect.D.2.3). The value ofn is set with the attached edit field.

Reject all. All outgoing messages are dropped.

There are two debug key tables in RobotControl, one for a physical robot connected via the
wireless network, and one for the selected simulated one. With the buttonsEdit table for robot
andEdit table for local processesone can select which of them is edited.Sendsends both debug
key tables to the proper destinations by putting them into message queues, i. e. nothing will
change as long asSendhas not been pressed.

D.2. APPLICATION FRAMEWORK 153

Figure D.2: The Settings Dialog: RobotControl’s most often used dialog

D.2.2 The Settings Dialog

With theSettings Dialog(cf. Fig. D.2), solutions for modules (cf. Sect.3) running on the robot
or on the PC can be switched. A certain combination of solutions is called a setting and can be
stored. All settings are stored inGT2004\Config\Settings. The default solution for each module
is marked with an asterisk.

D.2.3 The Log Player Toolbar

Figure D.3: The Log Player Toolbar

In RobotControl, log files can store a set of messages of any kind used to communicate between
modules or between dialogs or toolbars and modules, e. g. it is possible to record pictures sent
by a robot in a log file, and then play that log file several times to test different kinds of image
processing with exactly the same input data.

The Log Player Toolbar(cf. Fig. D.3) is used to record, play, and modify such log files.
Its buttons should be known from other players, e. g. CD-players.Playing a log file sends all
messages in it to all running modules in RobotControl as well as to all dialogs that can handle
that type of message.Step forwardandStep backwarddo the same with single messages.

154 APPENDIX D. ROBOTCONTROL USAGE

Recording appends all messages sent from a robot via the wireless network to the actual log
file (in memory) that can besaved afterwards.

D.2.4 WLan Toolbar

Figure D.4: The WLan Toolbar

TheWLan Toolbar(cf. Fig.D.4) is used to create, edit, and switch between different wireless net-
work configurations. It also allows connecting to (and of course disconnecting from) all enabled
robots in the current wireless network configuration.

Figure D.5: The WLan Connection Parameters Dialog

Creating new and modifying existing wireless network configurations opens the dialog shown
in figureD.5. The dialog allows all relevant parameters to be specified: the IP addresses of the
robots as well as their TeamID (for Dog Discovery Protocol) and the hardware type of the robots.

Furthermore settings such as the wireless networkESSID, the Netmask, the APMode, the
WepKey, and theChannelcan be edited. Pushing theCopy to stick-button callscopyfiles.bash
with all parameters of the currently selected robot (marked with a memorystick symbol) in the
dialog. So by using this dialog it is possible to keep the settings written to memory sticks and the
settings used to connect to robots consistent.

D.3. VISION RELATED TOOLS 155

Figure D.6: The Game Toolbar

D.2.5 Game Toolbar

With the Game Toolbar(cf. Fig. D.6) the game control data can be generated and sent. So the
RoboCup Game Controller is not needed for testing behaviors. However, this dialog does not
support all functions of the Game Controller.

The slider at the right adjusts thegame speed(from 0.1 to 1). This allows for testing behaviors
in “slow motion”. The value is multiplied to the translation vector of the motion request processed
by theMotionControlmodule.

D.3 Vision Related Tools

D.3.1 Image Viewer and Large Image Viewer

Figure D.7: Image Viewer and Large Image Viewer Dialog

The two image viewer dialogs (cf. Fig.D.7) display images and debug drawings from thequeue-
ToGUI (cf. Fig.J.1) so images from the robot, the log player, or the simulator are displayed. The
Image Viewerhas space for eight images with a fixed size. TheLarge Image Viewershows only
one image and is sizable. With the context menu different types of images and different debug
drawings can be selected. The context menu also containsCopy drawingsandCopy image and
drawingswhich copies only the debug drawings as a vector graphic or the image with the draw-

156 APPENDIX D. ROBOTCONTROL USAGE

ings as a bitmap to the clipboard. Important: to see a debug drawing created in a special solution
of some module (cf. Sect.3), this solution has to be selected (cf. Sect.D.2.2).

D.3.2 Field View and Radar Viewer

Figure D.8: RobotControl’s Field View and the Radar Viewer Dialog

The Field Viewand theRadar Viewer(cf. Fig. D.8) both display percept drawings. TheRadar
Viewerdisplays the percepts relative to the robot. TheField Viewdraws the percepts based on
the robot’s localization on the field. The field view is also used for world state and localization
drawings. In both dialogs the drawings can be selected with the context menu.Copy drawings
copies the drawings as a vector graphic to the clipboard.

D.3.3 Radar Viewer 3D

The Radar Viewer 3D(cf. Fig. D.9) provides a 3D visualization for percepts, but also for the
image. The percepts are displayed in the 3D space after a transformation of the percepts into the
robot’s system of coordinates of using the camera matrix. The sliders can be used to adjust the
position of the camera.

D.3.4 Color Space Dialog

TheColor Space Dialog(cf. Fig.D.10) visualizes how an image uses the YUV color space, and
it displays either the y, u, or v channel as a height map. By dragging with the left mouse button
the 3-D scene can be rotated. With the context menu the type of view can be selected.

D.3. VISION RELATED TOOLS 157

Figure D.9: The Radar Viewer 3D

D.3.5 The Color Table Dialog

TheColor Table Dialog(cf. Fig. D.11) is used to create color tables for image processing. The
current image from the simulator, a logfile, or the robot’s camera (via WLAN) is shown top left
(cf. Fig. D.11). Beneath the same image can be seen, segmented with the current color table.
Choosing a color class and clicking with the left button on a pixel in one of the two images will
assign the color class to the4 × 4 × 4 cube in YUV color space according to the color value of
the pixel. The result takes effect immediately and the segmented image will be updated. Clicking
with the right button on a pixel will remove the according color class assignment. There are also
functions to undo the last assignment, to clear all assignments for a whole color class and to reset
the complete table.

To speed up the process of creating a color table, pixels with no neighbors of the same color
class can be removed by pressing theremovebutton. For large areas of the same color class, it
is useful to add pixels with at least a given count of neighbors and a maximum distance in the
color space. This can be done by pressing themedianbutton. Both optimizations can work with
the selected color class or with all colors (all colors checkbox selected). If existing assignments
should not be overridden,allow reassigncheckbox should not be selected to prevent unwanted
changes.

With auto-remove/medianenabled, the optimizations are triggered with every incoming im-
age. This is useful if logfiles with specific colors have been recorded. The color table can be
created without many manual assignments.

158 APPENDIX D. ROBOTCONTROL USAGE

Figure D.10: The Color Space Dialog showing the u-channel of an image as a height map.

After having assigned all colors needed, the table can be sent to the robot via WLAN or saved
to a file. The GT2004 vision modules need a file namedcoltable.c64. It is also possible to load
an existing file and to modify it.

D.3.6 HSI Tool Dialog

This tool uses the HSI color space to create a color table. It allows the user to specify the min-
imum and maximum values for hue, saturation, and intensity for each color class using sliders,
and it gives an instant feedback by real time color classification of four images at the same time.
These images are directly taken from the memory ofRobotControland can be held as long as
needed. It is also possible to update an image simultaneously with the one in the memory of
RobotControl. The tool saves the color table both in HSI and YUV format. By selecting an im-
age there is another dialog with a zoomed view (cf. Fig.D.13) of it and the belonging color
classified image. In this dialog the color class can simply be edited by selecting single pixels.
There is also an undo function for several steps.

This HSI approach leads to good results very quickly by defining big sectors in the color
space and it is more tolerant against changing light conditions. The tool can be combined with
the other color table tool using YUV color space. First, the HSI tool is used to quickly generate
a color table and the YUV tool can be employed for fine tuning if required.

Dialog Structure. The main dialog (cf. Fig.D.12) consists of two parts. In the upper half are
spaces for four RGB images and below them the corresponding color classified images will be
displayed. Below each space there are buttons for capturing an image, and at the left is a check
box for an automatic update of the image above it.

In the lower half of the dialog most of the controls are located. There is a combo box with
entries for all color classes used by the image processing module, a button for loading HSI color
tables, a button for saving the HSI and the corresponding YUV color table, and six sliders for

D.3. VISION RELATED TOOLS 159

Figure D.11: The Color Table Dialog

determining the range of the selected color class in the HSI color system. An HSI color class
consists of a minimum and a maximum value for hue (H), saturation (S), and intensity (I).

Main Dialog. With thecapturebuttons in the upper half of the main dialog (cf. Fig.D.12) the
actual image thatRobotControlhas in memory can be saved. It can be done for four images.
When the box beforeupdatebelow the left place is checked, this image is updated automatically,
whenRobotControlgets a new image from the robot or a log file. The color classified image will
be updated automatically when you change the range of a color class.

With the combo box at the lower left of the dialog the color class to be edited can be selected.
The sliders show the minimum and maximum values of this color class. The ranges for H, S,
and I can be modified by changing the positions of the sliders. While moving a slider the color
classified image is permanently updated.

The range of values for the hue of a color class goes from 0 to 360, and for saturation and
for intensity from 0 to 100. Because the value for hue in HSI color system lies on a circle, it
is possible that the maximum value for this range is smaller than the minimum value. For a red
color, e. g., the minimum of the hue range could be 350 and the maximum could be 15. For
saturation and intensity the minimum value should be below the maximum value.

The color table can be saved by pressing theSavebutton. It appears a file dialog where
the destination and the name of the color table can be selected. The suffix.hsi will be added
automatically. A YUV color table converted from the HSI color table will also be saved with the
same name and the suffix.c64.

160 APPENDIX D. ROBOTCONTROL USAGE

Figure D.12: The HSI Tool Dialog

An HSI color table can be load by pressing theLoadbutton. It can be selected in the appearing
dialog. It is only possible to load HSI color tables. YUV color tables are not supported yet by the
HSI tool.

Figure D.13: The HSI Tool Zoom Dialog

Zoom Dialog. By performing a click with the left mouse button on one of the RGB images,
another dialog window with a zoomed view (cf. Fig.D.13) of the selected image and the belong-
ing color classified image will appear. In this dialog it is possible to improve the precision of the
ranges for color classes by selecting single pixels. At the lower left the combo box with the color
classes to edit is located. There is also anUndobutton for the last six changes.

By pressing the left or the right mouse button on a pixel in one of the zoomed images the
selected color class will be modified. If the left mouse button has been pressed and the color of

D.3. VISION RELATED TOOLS 161

the selected pixel lies outside the color class, the range will be enlarged until the values for hue,
saturation, and intensity are inside this range. If the right mouse button has been pressed and the
selected pixel lies inside the range of the color class, the range will be reduced until the values
for hue, saturation, and intensity are outside of it.

By selecting single pixels, it is possible to determine which color should belong or not belong
to the chosen color class. Thus precision of the class can be improved.

D.3.7 The TSL Color Segmentation Dialog

The main idea of color segmentation is to partition the chrominance space into subspaces, where
each subspace represents exactly one color. The algorithmic performance of color classification
depends on the chosen chrominance space. The reason for that is, that the complexity of color
segmentation strongly depends on the shape of the subspaces. If the normal vectors of all bound-
ing hyperplanes are parallel to the unit vectors of the chrominance space coordinate system, then
the color assignment can be done at highest efficiency. Therefore, we define a new chrominance
space where all relevant colors can be extracted by using a set of thresholdstc1, . . . , t

c
6 per color

c. For our purpose, a classification is needed to distinguish between the main nine RoboCup col-
ors (green, sky-blue, yellow, orange, pink, dark blue, red, black and white). The so-called TSL*
chroma-space based color-segmentation is more robust against luminance variation than similar
YUV-based algorithms.

The TSL Dialog is a powerful tool for creating a set of thresholds for a robust color classifi-
cation. On the left side of the dialogbox, two images are displayed. The upper images contains
the raw data (either camera data or simulator output). The lower images shows the result of the
color classification.

The user can select a color (e.g. ”yellow” in theSelect colorlist in Fig. D.14) and a corre-
sponding region in the image by clicking on the upper left and lower right corners of a rectangle.
Then, a histogram of each color component (T’, S’, and L’) is calculated in real-time and dis-
played immediately. By pressing theAutobutton, threshold values are set automatically. Using
the sliders, the user can adjust and optimize the thresholds (in Fig.D.14: tyellow

1 , . . . , tyellow
6) man-

ually. The influence of parameter values on the color classification can be seen in the lower left
image. The robustness of the classification can be checked by adding noise using theNoiseslider
to the original image.

If areas overlap, a classification is not unique. Thus, the order of color classifications is im-
portant. With theUp andDown buttons, the priority of a selected color can be changed. The
priority is displayed in theTSL Orderlist. Settings can be saved and reloaded by using theLoad
andSavebuttons. TheSave YUVbutton stores the settings in the conventional YUV color table
format. A set of threshold values can be send to a connected robot by clicking theSendbutton.

D.3.8 Camera Toolbar

TheCamera Toolbar(cf. Fig.D.15) is used to set the parameters that are provided by the robot’s
camera. These parameters are set with the combo boxes. White balance may be set to indoor,

162 APPENDIX D. ROBOTCONTROL USAGE

Figure D.14: The TSL Color Table Tool.

Figure D.15: The Camera Toolbar

outdoor, or FL mode. Shutter speed may be selected from slow, medium, or fast. Finally low,
medium, or high camera gain can be chosen.

Thesend to robotbutton sends the selected parameters via the wireless network to the robot.
The new settings are applied immediately. When viewing the camera pictures with the image
viewer (cf. Sect.D.3.1) the effects of different camera settings can be observed.

Thesavebutton writes the settings to a file namedcamera.cfg. This file is loaded at the start
of RobotControl to initialize theCamera Toolbarwith its contents. But more important this file
is copied to the memory stick and loaded when booting the robot. The settings from this file are
used on the robot unless different parameters are sent with the toolbar.

D.4 Behavior Related Tools

D.4.1 Xabsl2 Behavior Tester

The Xabsl2 Behavior Testeris a debugging interface to the behavior modules derived from
Xabsl2BehaviorControl(cf. Sect.3.8) and the HeadControl. One can view almost all internal
states of the engine.OptionsandBasic BehaviorsandOutput Symbolscan be selected manually
for separate testing.

With the check boxtest on robotin the right upper corner one can set whether the behavior
shall be tested on the robot or in the simulator.

In the topmost combo box an option or basic behavior can be selected. If an option is selected
it is used as the root option. The execution of the option tree starts from that option. If a basic
behavior is selected, only this behavior gets executed without any option tree being traversed.

D.4. BEHAVIOR RELATED TOOLS 163

Figure D.16: The Xabsl2 Behavior Tester Dialog

This allows testing single options and basic behaviors separately. If the option or basic behavior
selected has parameters these can be entered into the edit fields below.

The following two combo boxes allow altering output symbols manually. The left box selects
an output symbol while the right one sets its value. If this is done the value generated through
the engine by traversing the option activation path is ignored and overwritten with the set value.
This is useful for testing output symbols separately.

At the top of the white areaAgentshows the name of the active Xabsl2 agent. Next theOption
Activation Pathis displayed. The first column shows all the activated options. The second column
shows the time how long these options are already activated. Then in the third column the active
state of each option, and in the fourth column the time how long the state is already active, are
displayed. If an activated option is parameterized its current parameter values are shown below.

Then theActive Basic Behaviorshows, which basic behavior is currently activated along
with its parameter values. Themotion requestshows the motion request that resulted from the
execution of the basic behavior.

164 APPENDIX D. ROBOTCONTROL USAGE

The Input Symbolssection shows the current values of the input symbols selected. The se-
lection, which symbols shall be displayed, can be done with the context menu of the dialog. The
same applies toOutput Symbols.

At last, in the context menu exists an entryReload Files. The dialog rereads the debugging
symbols and sends the intermediate code to the robot and to the local processes, where the engine
is newly created. That allows the testing of changes in the behavior without rebooting the robot
or restartingRobotControl.

D.5 Motion Related Tools

D.5.1 Motion Tester Dialog

a) b)

Figure D.17: The Motion Tester Dialog with a) walking and b) special actions

With theMotion Tester Dialog(cf. Fig.D.17) it is possible to sendMotionRequestsfrom Robot-
Control to the robot.

In the upper area of the dialog the different modes stand, getup, walk, or special action can
be chosen. In walk mode the velocities inx andy direction and the rotation speed can easily be
set by sliders. In special action mode the different special actions (i. e. kicks or funny actions)
can be chosen from the select box. In the lower area of the dialog the movement of the tail can
be set.

To send theMotionRequestto the robot, you have to push thesendbutton.

D.5.2 Head Motion Tester Dialog

The Head Motion Tester Dialog(cf. Fig. D.18) is handy to test the head control module. It is
possible to sendHeadMotionRequestsor to set theHeadControlModefrom RobotControl.

D.5. MOTION RELATED TOOLS 165

Figure D.18: The Head Motion Tester Dialog

The desiredHeadControlModeis selectable from a list of all available modes. Some modes
require additional parameters (i. e. the coordinates of a point to look at). These can be set in the
appearing input elements.

In HeadMotionRequestmode, the desired joint values can be set by sliders.

D.5.3 Mof Tester Dialog

TheMof Tester Dialog(cf. Fig.D.19) is used to write and test new motions. Motions are specified
in a description language (cf. Sect.5.4.1). Joint data lines from these descriptions may be entered
into the input field of the dialog and can be sent to the robot via the wireless network at runtime.

For this dialog to work it is necessary that the moduleDebugMotionControlis running on
the robot instead of the default motion control module. The debug module will not execute nor-
mal motion requests from behavior control but rather wait for debug messages sent from the
MofTesterdialog. It is activated on the robot by switching module solutions with theSettings
Dialog (cf. Sect.D.2.2).

Theexecutebutton parses the input field for lines containing joint data information and sends
the sequence to the robot. If theloop check box is activated when pressingexecutethe sequence
will be executed repeatedly.

Thestopbutton stops any sequence currently being executed.
The readbutton provides a very handy tool when creating new motions. It reads the robot’s

current joint angles from sensor data and puts them into a new line in the input field. This is
extremely useful in combination with the stay-as-forced motion mode theDebugMotionControl
module provides while not executing joint data sequences. In stay-as-forced mode all motors
are controlled with feedback from sensor input, and therefore they always maintain their current

166 APPENDIX D. ROBOTCONTROL USAGE

Figure D.19: The Mof Tester Dialog

position. In this mode joints may be moved manually and the resulting joint angles can be read
into theMof Tester Dialog.

D.5.4 Joystick Motion Tester Dialog

Figure D.20: The Joystick Motion Tester Dialog

TheJoystick Motion Tester Dialog(cf. Fig.D.20) is used to control a robot that is connected via
the wireless network to a joystick. Using such an analog input device is e. g. useful for testing
new walking engines or parameters or just walking stability. The primary aim is not a complete
remote control, but only moving the robot around (and optionally moving its head) while all
other modules keep running autonomously.

This dialog is only tested with an MS Sidewinder Precision 2 USB joystick, but should work
with any joystick providing three axes, an accelerator, and eight buttons. After the joystick has
been attached, theuse joystickbox has to be checked to start using this dialog. If no joystick
seems to be connected, the dialog will refuse to work.

D.6. SENSING AND DEBUGGING 167

The joystick controls the walking engine of a robot connected with RobotControl via the
wireless network. The direction the robot should move, according to the state of the joystick, is
visualized in the dialog. Red text inJoystick Motion Tester Dialogsignals that current changes
have not been executed yet, black text shows the actual states or commands, and gray text visu-
alizes states or commands that were sent last but are inactive at the moment.

The buttons 1 to 4 can be used for different kicks, button 7 to start thegetupmotion and button
5 to switch from walking control to head control. As long as button 5 is pressed, the joystick will
control the head instead of the walking. That will be visualized by the dialog, too.

To ease the use of the dialog for different people, different schemes for joystick control were
implemented. One is calledStickSpeed, in which the walking speed is completely controlled by
the three axes of the joystick, the accelerator is used to switch between head control modes, the
walking type can be changed with button 8, and all special actions can be generated by holding
button 6 pressed and moving the accelerator.

Another scheme forJoystick Motion Tester Dialogis calledAcceleratorSpeed: the accelerator
is used to control the forward walking speed, the axes are only used for sideways speed and
direction, and walk types can be changed with button 6.

Commands will only be sent via the wireless network if they differ from the previous com-
mand and at most every 300 ms, because the wlan throughput and especially the response times
do not allow much more. So whirling around the joystick will definitely not encourage the robot
to do the same.

D.6 Sensing and Debugging

D.6.1 Value History Dialog

Figure D.21: The Value History Dialog

168 APPENDIX D. ROBOTCONTROL USAGE

TheValue History Dialog(cf. Fig. D.21) allows displaying different values over time. This
helps, e. g., to check the stability of a ball modeling algorithm. The values that shall be traced
can be selected from the context menu. The time range that is displayed can be changed using
the slider at the top of the dialog.

D.6.2 Time Diagram Dialog

Figure D.22: The Time Diagram Dialog

The Time Diagram Dialog(cf. Fig. D.22) visualizes the times which different modules need
for their execution in terms of bars. The values next to each bar show the measured time in
milliseconds and the frequency (in times per second).

Times can be measured on the robot by selectingstop times on robot. If the simulator is used
(cf. Sect.D.7), the times can be measured on the computer by selectingstop times local. The
option view log filesdisplays the measured times of recorded log files. Since the times for the
execution of the modules can vary very much from one measurement to the next one, the motion
of the time-indicators can be smoothed by using average values. The average can be chosen
between 2 and 500 measurements. Clicking the right mouse button in the dialog opens a context
menu in which the modules of interest can be selected. This menu also offers the option to export
the values to a file in a comma-separated format.

The design of the dialog varies, depending on its size and the number of the selected modules.

D.6.3 Debug Message Generator Dialog

In addition to theTest Data Generator, the Debug Message Generator Dialog(cf. Fig. D.23)
can be used to generate less common debug messages for which no special dialog exists. The
Test Data Generatoris usually easier to use and offers more features. The need to use theDe-
bug Message Generator Dialogmight arise if more than 10 parameters of a module need to be
updated in one go. The combo box is used to select what type of debug message is generated.
When pressing thesendbutton a message will be generated by parsing the input in the text field.
The dialog may be extended easily by adding the code to parse the text input into a debug mes-
sage. Therefore it allows generating new debug messages withRobotControlwithout having to
create a new dialog. It is used, e. g., to send a new set of parameters to the walking engine. By

D.7. THE SIMULATOR 169

Figure D.23: The Debug Message Generator Dialog

this it is possible to change the walking style at runtime and therefore develop new walks very
quickly. Another application is to test playing acoustic messages on the robot by sending the
corresponding debug message.

D.7 The Simulator

The simulator is a very powerful extension for RobotControl. It is based on the previous version
of SimRobot(cf. Sect.5.1). The simulator offers a lot of possibilities to develop, test, and debug
new algorithms or alternative solutions for modules without using a robot.

Figure D.24: Toolbar of the Simulator

As shown in FigureD.25, all relevant objects for robot-soccer are included in the simulation:
the field (including landmarks, goals, lines, etc.), players, and the ball. Other objects (e. g. for
challenges) can be added with ease. The image created depends on the position of the robot and
also on the current angles of the head and the leg joints.

For developing modules which result in movement of the robots, e. g. behavior, the object
viewer (cf. Fig.D.25) shows the complete field with all simulated objects. It can be activated
by the buttonObject Viewerof the simulator toolbar (cf. Fig.D.24). The vantage point of the
observer is variable and can be changed by moving the bars under and beneath the scene dis-
played. The zooming level, detail level, and the perspective distortion can be adjusted by using
the appropriate buttons in the toolbar. Besides these options, the toolbar contains buttons to start
and reset the simulation, and to force a step-by-step mode. The touch sensors at the back and the
head of the robot can be “virtually pressed” by the buttons marked with an arrow at the according
position. One of those buttons pretends the robot to be fallen aside.

A very helpful feature of the simulator is the oracle. It lets the robot know everything of
its environment exactly. This can help to develop modules without being dependent on other
modules. For example a behavior can be implemented and tested without a self-locator. The
buttonsend oracleactivates this function.

170 APPENDIX D. ROBOTCONTROL USAGE

a) b)

Figure D.25: a) Simulated image and b) Object Viewer of the simulator

Up to four robots of one team can be simulated at the same time. To send commands or
receive information from a robot, connect to it by choosing it out of the list atRobotsin the
menu bar. This menu also includes the option to generate images for the connected robot or all
simulated robots. Be aware, that generating images for all robots needs a lot of computing power.
An entry in the status line of RobotControl shows the currently connected robot.

Appendix E

Extensible Agent Behavior Specification
Language

TheExtensible Agent Behavior Specification Language (XABSL)[38, 39] is an XML based lan-
guage for behavior engineering. It simplifies the process of specifying complex behaviors and
supports the design of both very reactive and long term oriented agent behaviors. It is not only a
behavior modeling or description language – instead, behaviors written inXABSLcan be trans-
formed automatically into an intermediate code which is executed directly on a target platform
using theXabslEngineclass library. Together with the interpreter and a variety of tools for visu-
alization and debugging, behavior developers get a complete system for behavior specification,
documentation, testing, execution, and debugging. The wholeXABSLsystem can be downloaded
for free from theXABSLweb site [37].

SectionE.1 describes hierarchical finite state machines for action selection as the behavior
control architecture behindXABSL. SectionE.2 gives an overview of theXABSLlanguage and
sectionE.3 provides a brief introduction to the language elements and the syntax. SectionE.4
deals with some technical issues related to the use of XML techniques and the tools that were
developed in conjunction withXABSL. SectionE.5 describes the runtime systemXabslEngine.
Finally, sectionE.6relates the architecture and the language to other approaches.

E.1 Hierarchies of Finite State Machines

In XABSL, behavior modules (options) that contain state machines for decision making are or-
dered in a hierarchy, theoption graph, with atomicbasic behaviorsat the leaves.

E.1.1 The Option Graph

An XABSLbehavior specification consists of a set of behavior modules calledoptionsand a set
of distinct simple actions (skills) calledbasic behaviors. Both options and basic behaviors can
have parameters. The options are ordered in a hierarchy – complex behaviors are composed from

171

172 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Figure E.1: An example for an option graph from the robot soccer domain (the ball handling part of the
GermanTeam’s soccer behaviors for the world championships 2004 in Lisbon). Boxes denote options,
ellipses denote basic behaviors. The edges show which other option or basic behavior can be activated
from within an option. The thick edges mark one of the many possible option activation paths. The internal
state machine of option“grab-ball-with-head” (marked with the dashed rectangle) is shown in figureE.2.

E.1. HIERARCHIES OF FINITE STATE MACHINES 173

simpler ones. Each option uses a set of other subordinated options and/or basic behaviors to
realize a certain behavior.

For example in figureE.1, the option“grab-ball-with-head” (a behavior for grabbing and
holding the ball between the front legs and the head of an Aibo robot) is composed of the option
“approach-ball” (a behavior for walking to the ball) and the basic behavior“walk” (a behavior
for blind walk). Each basic behavior and option can be used from more than one other option.
This allows reusing the same behaviors in different contexts. E.g. in figureE.1a few other options
than“grab-ball-with-head” use the option“approach-ball” . This helps behavior developers to
modularize their behaviors. In the example, only one behavior for ball approaching was devel-
oped and fine-tuned and then used by very different other options.

The option hierarchy can be seen as a rooted directed acyclic graph, called theoption graph.
The basic behaviors are the leaves (terminal nodes) of this graph. The “topmost” option (at the
root of the graph) is called theroot option. Note that inXABSLit is possible to specify option
graphs that contain loops (and are for this reason not acyclic). But the runtime system is able to
detect such loops at startup and denies work if the graph is not acyclic.

In the architecture, action selection means to activate, parameterize, and execute one of the
basic behaviors. Therefore, the root option (which is always active) activates and parameterizes
one of its subsequent options, this subsequent option again activates and parameterizes one of its
subsequent options or basic behaviors and so on until a basic behavior is activated, parameter-
ized, and executed. As the option graph is directed and acyclic, always exactly one of the basic
behaviors is reached and executed.

In XABSL, a subset (sub-graph) of the options and basic behaviors which is spanned by a
specially marked option, theroot option, is called anagent. (As the option graph does not need
to be connected completely, it is not possible to determine a single root option of the graph –
agentsmark the root options of different trees.)

E.1.2 State Machines

Within options, the activation of subordinated behaviors is done by finite state machines. Figure
E.2 shows an example of such a state machine. In each option, exactly one state is marked as
the initial state. This state gets activated when the option becomes newly activated. An arbitrary
number of states can be declared astarget states. This allows indicating that a behavior is finished
as higher options can query whether a subsequent option reached a target state. Each state is
connected to exactly one subsequent option or subsequent basic behavior. Note that more than
one state can be connected to the same subsequent option or basic behavior. Always exactly
one state of an option is active. This state determines, which of the subordinated behaviors is
activated and how its parameters are set.

Each state has adecision tree, which selects a transition to either another or the same state.
FigureE.3gives an example for such a decision tree. For the decisions, the following information
can be used: Parameters passed by higher options, the world state, other sensory information, and
messages from other agents. As timing is often important, it can also be taken into account how
long the state and the option are already active. In addition, the success of a subsequent option
can be tested by querying whether the subsequent option reached one of its target states.

174 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Figure E.2: An example for an option’s internal state machine (the option“grab-ball-with-head” from the
example in figureE.1). Circles denote states, the circle with the two horizontal lines denotes the initial
state, the double circle denotes a target state. An edge between two states indicates that there is at least
one transition from one state to the other. The dashed edges show which other option or basic behavior
becomes activated when the corresponding state is active. The decision tree of state“grab” (marked with
the dashed rectangle) is shown in figureE.3.

E.1. HIERARCHIES OF FINITE STATE MACHINES 175

Figure E.3: An example for a decision tree of a state (state“grab” of option “grab-ball-with-head” in
figureE.2). The leaves of the tree are transitions to other states. The dashed circle denotes a transition to
the same state. The pseudo code of that decision tree is shown in figureE.4.

As each state has its own decision tree, the decisions are made not only dependent on the
representation of environment’s state but also on the decisions that were done in the past. When
the active state is taken into account, hysteresis functions between states are possible. That means
if there is a transition from stateA to stateB for a certain condition, this condition can be different
than for the transition fromB to A. Thus, behaviors can be preferred once they were selected to
avoid oscillations.

In the robot soccer example from figureE.2, the option“grab-ball-with-head” is initially in
the state“approach-ball” . As long as the state is active, the subsequent option“approach-ball”
is activated with certain parameters, making the robot move towards the ball. As soon as the
ball gets closer than a threshold, the decision tree of state“approach-ball” selects a transition to
state“grab” . State“grab” becomes the active state and the subsequent basic behavior“walk”
is executed with parameters such that the robot walks onto the ball. If it somehow happens
that during that the ball gets farer away than another, the decision tree of state“grab” selects
a transition back to state“approach-ball” . Otherwise, after a certain time a transition to state
“continue-grab” is selected (cf. fig.E.4).

176 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Figure E.4: The pseudo code of the decision tree of state“grab” (cf. fig. E.3).

E.1.3 Interaction with the Environment

To access the information about the world that is needed for decision making, symbolic represen-
tations are used. The world model of the agent system is divided into simple and non-structured
information items, called theinput symbols. In the ball grabbing example, amongst others the
symbol“ball.seen.distance”is used to reference the distance to the seen ball in the world model.

The main actions of the agent system are controlled by the basic behaviors. It does not matter
whether these actions are generated completely reactively using closed sensor-actuator loops or
whether intermediate representations such as a world model are used in addition. In embodied
agents, the basic behaviors usually control the agent’s locomotion system. E.g. in the soccer
behaviors of theGermanTeam, the basic behaviors were used to control all leg movements of the
robots (walking and kicking).

Besides the execution of basic behaviors, the environment can be influenced by setting special
requests, theoutput symbols. Each state within an option can set such output symbols to certain
values to control perception processes or additional actuators. For instance, for the robots of the
GermanTeam, an important actuator independent from the leg movements is the head. The output
symbol“head-control-mode”is used to set a general mode how to move the head independent
from the selected basic behavior. This mode is then used by other parts of the software to control
the head movements. But also LED and sound output and messages to team mates are triggered
with output symbols.

E.1.4 The Execution of the Option Hierarchy

An XABSLbehavior implementation is always a part of a wider agent program. The surrounding
software has to process the sensor readings, build up (if necessary) a world model, manage the

E.2. BEHAVIOR SPECIFICATION IN XML 177

communication to other agents, control the actuators and so on. At some point in thissense-
think-act cycle, the program passes the control to theXABSLsystem to execute the option graph.
Before, all data needed for decision making have to be up-to-date. Afterwards, the actions gen-
erated by the basic behaviors and the additional requests set by the output symbols have to be
(processed and) sent to the actuators of the agent system.

Each time the option graph is executed, a basic behavior becomes selected and executed.
The XABSLsystem has to be executed as frequent as required for the reactivity of the action
system. Usually, it is called as often as new data can be obtained from the agent’s main sensor.
For instance on the Aibo robots of theGermanTeam, theXABSLbehaviors are always executed
after a newly perceived image was processed.

The execution of the option graph starts from the root option (cf. sect.E.1.1) of the agent.
The decision tree of the active state of the root option is executed to determine the next active
state, which can of course be the same as before. For the subsequent option of the active state,
again the decision tree of the active state is executed and so on until the subsequent behavior of
a state is a basic behavior.

Each time a decision tree activates another or the same state, the newly activated state sets
the parameters of the subsequent option or basic behavior and the state’s output symbols. Note
that output symbols that were set during this process can be overwritten by options lower in the
option graph. If an option was not active during the last execution of the option graph, the state
machine is reset (the initial state is activated).

Theoption activation path(cf. fig. E.1) follows the path from the root option to the currently
activated basic behavior through all active options. As each option activates only one subsequent
behavior at a time and as the graph is rooted, directed, and acyclic, such a path exists and contains
no branches. Thetime of option activationis the time, how long an option was consecutively
activated. This time is set to zero when an activated option was not active during the last execution
of the option graph. Accordingly, thestate execution timeis the time how long the active state
was consecutively activated.

The option activation path including the option activation time, active state, and state acti-
vation time for all of its options constitute the global state of anXABSLagent. The generated
actions of the system depend on this state, the perceptions and the world model (and, if the basic
behaviors have persistent states, on these states).

E.2 Behavior Specification in XML

Implementing such an architecture totally in C++ proved to be error prone and not very com-
fortable [10]. The source code became very large and it was quite hard to extend the behaviors.
Therefore, theExtensible Agent Behavior Specification Language(XABSL) was developed to
simplify the behavior engineering process.

TheXABSLlanguage and supporting tools are completely based on XML techniques. Figure
E.5shows an example of anXABSLXML notation. The reasons to use XML instead of defining
a new grammar from scratch were the big variety and quality of existing editing, validation, and
processing tools, the possibility of easy transformation from and to other languages as well as the

178 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Figure E.5: An example for anXABSLXML notation: a source code fragment for the state“grab” (cf.
fig. E.3) of option“grab-ball-with-head” (cf. fig. E.2).

E.2. BEHAVIOR SPECIFICATION IN XML 179

general flexibility of data represented in XML languages. The syntax and even all constraining
relations between the language elements are specified in XML schema, so no other compile or
validation tools than standard XSLT / XML processors are needed1. Many XML editors are able
to check whether anXABSLdocument is valid at runtime. A high validation and compile speed
results in short change-compile-test cycles.

Standard XSLT transformations are used to compileXABSLdocuments to an intermediate
code for the runtime system and to generate extensive documentations. Note that the figuresE.1,
E.2, E.3, andE.4were generated automatically from the XML source in figureE.5.

An aftereffect of this restriction to standard XML technologies and tools is that the language
had to be adapted to existing tools to some extend. For example, some constructs had to be
introduced only for the compatibility with the used XML editor. And, which is also not typical
for a programming language, there is a relatively strict distribution of language elements onto
different file types, which is required for efficient processing of the data (in previous versions
of XABSL, the complete specification of the behaviors was in only one file, which made editing
very slow).

Agent behavior specifications based on the architecture introduced in the previous section
can be completely described inXABSL. There are language elements for options, their states, and
their decision trees. Boolean logic (||, &&, !, ==, ! =, <, <=, >, and>=), simple arithmetic
operators (+, −, ∗, /, and%), and conditional decimal expressions (comparable to the ANSI
C question mark operator,a ? b : c) can be used for the specification of decision trees and
parameters of subsequent behaviors. Custom arithmetic functions (e.g.“distance-to(x,y)”) that
are not part of the language can be easily defined and used in instance documents.

Symbolsare defined inXABSLinstance documents to formalize the interaction with the soft-
ware environment. Interaction means access to input functions and variables (e.g. from the world
model) and to output functions (e.g. to set requests for other parts of the information processing).
For each variable or function that one wants to use in conditions, a symbol has to be defined. This
makes theXABSLframework independent from specific software environments and platforms.
An example:

<decimal-input-symbol name="ball.x" measure="mm"
description="The absolute x position on the field"/>

<decimal-input-symbol name="utility-for-dribbling" measure="0..1"
description="Utility for dribbling"/>

<boolean-input-symbol name="goalie-should-jump-right"
description="A ball rolls along to the right"/>

The first symbol”ball.x” simply refers to a variable in the world state of the agent system,
”utility-for-dribbling” stands for a member function of an utility analyzer and”goalie-should-
jump-right” represents a complex predicate function that determines whether a fast moving ball
is headed to the right portion of the own goal. In options, these symbols then can be referenced.

1The only exception is the check for loops in the option graph. This can not be done by validating documents
against XML Schema and is therefore checked by the runtime system at startup.

180 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

The developer may decide whether to express complex conditions inXABSLby combining
different input symbols with Boolean and decimal operators or by implementing the condition as
an analyzer function in C++ and referencing the function via a single input symbol.

As thebasic behaviorsare written in C++, prototypes and parameter definitions have to be
specified in anXABSLdocument so that states can reference them.

E.3 The XABSL Language

This section gives a brief introduction to the syntax and the semantics of theXABSLlanguage.
Thereby, the formal structure of the grammar is, as usual in the XML world, displayed with
syntax diagrams (e.g. fig.E.6) instead of textual representations such as EBNF or others. A
complete language reference can be found at theXABSLweb site [37].

E.3.1 Symbols, Basic Behaviors, and Option Definitions

Symbols, basic behaviors, and option definitions are referenced from inside options. In order that
it can be checked whether a referenced symbol (or option parameter etc.) exists, they all have to
be declared in definition files (comparable to header files in C++).

First, there are definition files for symbols. There can be many of them for grouping sym-
bols thematically. The element“symbols” is the root element of such a symbol file (cf. fig.E.6).
XABSLhas six different symbol types that can be declared in arbitrary order inside a symbols
element: A“boolean-input-symbol”represents a symbol for a Boolean, and a“decimal-input-
symbol” a symbol for a decimal variable or function (theXabslEngineuses the data type double
for decimal values). Besides the attribute“name” , which is the id of the symbol and which is ref-
erenced from inside options, it has additional attributes that are needed for the generation of the
HTML documentation. A“decimal-input-function” is a prototype for a parameterized decimal
function. Each parameter of a function is defined in a separate“parameter” child element. The
element“enumerated-input-symbol”represents a symbol for an enumerated variable or function.
Each enumerated item is defined in a single“enum-element”child element. Output symbols are
declared with“enumerated-output-symbol”, like the “enumerated-input-symbol”element with
“enum-element”child elements. The element“constant” defines a decimal constant.

Basic behaviors are written in C++. Nevertheless, in basic behavior files, a prototype has to
be declared for each of them. The element“basic-behaviors”(cf. fig. E.7) is the root element of
such a file and has to have at least one child element of the type“basic-behavior”, which defines
a prototype for a basic behavior. Optionally it has“parameter” child elements which declare a
parameter that can be passed to the corresponding basic behavior written in C++.

Every option is encapsulated in an own file. To be able to validate a single option (e. g. the
existence of a referenced subsequent option), there must be prototypes for all other options.
Therefore, in eachXABSLagent behavior specification a file named “options.xml” has to exist.
It has an“option-definitions” (cf. fig. E.7) root element. Inside,“option-definition” elements
define a prototype for an option. As the“basic-behavior” element, it can have“parameter”
child elements that specify parameters of an option.

E.3. THE XABSL LANGUAGE 181

Figure E.6: The syntax of the element“symbols”.

E.3.2 Options and States

The root element of an option file is the“option” element (cf. fig.E.7). Inside that, the files for
all referenced symbol definitions and basic behavior and option prototypes are included using a
DTD include mechanism (cf. sect.E.4).

After the included“symbols”, “basic-behaviors”, and“option-definitions” child elements,
a “common-decision-tree”child element can follow. This is a decision tree which is carried out
before the decision tree of the active state. If no condition of the common decision tree proves
to be true, the decision tree of the active state is carried out. This can be used to reduce the
complexity of implementation when the conditions for a transition are same in each state. If the
common decision tree uses expressions that are specific for a state (“time-of-state-activation”or
“subsequent-option-reached-target-state”), these expressions refer to the state that is currently
active. The child elements of a“common-decision-tree”are the same as in the normal decision
tree of a state, which is explained later in this section.

Followed by the optional“common-decision-tree”, each option has to have at least one
“state” child element, which represents a single state of an option’s state machine (cf. figE.8).
Its first child element is either a“subsequent-option”or a “subsequent-basic-behavior”, deter-
mining which subsequent behavior is executed when this state is active. If the referenced option

182 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Figure E.7: The syntax of the element“option” .

or basic behavior has parameters, these can be set with“set-parameter”child elements. If a state
does not set all parameters of a subsequent behavior, the execution engine sets the remaining
parameters to zero. The child element of the“set-parameter”element is a decimal expression,
which are described later in this section.

After the definition of the subsequent behavior, output symbols can be set by inserting“set-
output-symbol”child elements. Note that the state machine is carried out first and only the state
being active afterwards can set these symbols. It may happen that an option which becomes
activated lower in the option graph overwrites an output symbol. The output symbols are only
applied to the software environment when the option graph was executed completely.

Each state has a decision tree. The task of this decision tree is to determine a transition
to a following state (which can be the same state). Consequently, the leaves of a decision tree
are transitions to other states. The element“decision-tree” itself is of the type“statement” (cf.
fig. E.9). A “statement” can either be an if, else-if, else block, or a transition to a state. The
“transition-to-state” element represents a transition to another state.

An if, else-if, else block consists of an“if ” , optional“else-if” and an“else” element. The
“if ” and the“else-if” elements both have a“condition” child element and a statement which is
executed if the condition is true. The statement itself is again either a if/else-if/else block or a
transition to a state, which allows for complex nested expressions. The“condition” element has
a Boolean expression (cf. next section) as a child element.

E.3. THE XABSL LANGUAGE 183

Figure E.8: The syntax of the element“state” .

E.3.3 Boolean and Decimal Expressions

A “boolean-expression”can be one of the elements shown in figureE.10. A “boolean-
input-symbol-ref”references a Boolean input symbol. The element“enumerated-input-symbol-
comparison”compares the value of an enumerated input symbol with a given enumerated value.
The elements“and” and “or” represent the Boolean&& and || operators and have at least
two “boolean-expression”child elements. In contrast,“not” has only one“boolean-expression”
child element and represents the Boolean! operator.

The elements“equal-to” , “not-equal-to”, “less-than”, “less-than-or-equal-to”, “greater-
than”, and“greater-than-or-equal-to”are the==, ! =, <, <=, > and>= operators. They all
have two“decimal-expression”child elements, which are described below.

The expression“subsequent-option-reached-target-state”is true when the subsequent be-
havior of the state is an option and when the active state of the subsequent option is marked as a
target state. Otherwise this statement is false. It can be used to give a feed-back to higher options
that a behavior is finished.

Elements from the“decimal-expression”group (cf. fig. E.11) can be used inside some
Boolean expressions and for the parameterization of subsequent behaviors.

A “decimal-input-symbol-ref” references a decimal input symbol. A“decimal-input-
function-call” represents a call to a decimal input function. For each parameter of the function,
a “with-parameter” element must be inserted. If a parameter is not set, the executing engine sets
the parameter to zero.

The element“with-parameter” has a child element from the“decimal-expression”group.
A “constant-ref” references a constant which was defined in a“symbols” collection, a

“decimal-value” is a simple decimal value, e. g.“3.14” , and“option-parameter-ref”references
a parameter of the option.

The elements“plus” , “minus” , “multiply” , “divide” , and“mod” stand for the arithmetic+,
−, ∗, / and% operators. They all have two child elements from the“decimal-expression”group.

184 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Figure E.9: The syntax of the group“statement”. Amongst others, the element“decision-tree” is of this
type.

The element“time-of-state-execution”can be used to query how long the state has already
been active. This time is reset when the state was not active during the last execution of the
engine. Note that it may happen that the option activation path above the current option changes
without this time being reset (it is only important that the option and the state were active during
the last execution of the engine). Analogically, element“time-of-option-execution”represents
the time the option has already been active. This time is reset if the option was not active during
the last execution of the engine. It may also happen here that the option activation path above the
current option changes without this time being reset.

The statement“conditional-expression”works such as an ANSI C question mark operator.
A “condition” which has aboolean-expressionchild element is checked. If the condition is true,
the decimal expression“expression1”, otherwise“expression2” is returned. It is mainly used to
set parameters of subsequent behaviors (which have to be decimal) dependent on a condition.

E.3.4 Agents

The file “agents.xml” is the root document of anXABSLbehavior specification. It includes all the
options and defines agents. FigureE.12shows the structure of the“agent-collection” element. It
has“title” , “platform” , and“software-environment”elements that are only used for generating
the HTML documentation.

With an“agent” element, an agent is declared by referencing a root option from the set of all
options. After the definition of the agents and the included option prototypes, all options that are
used by the agents and all options that are referenced from other options used have to be included
inside the“options” element using XInclude.

E.3. THE XABSL LANGUAGE 185

Figure E.10: The syntax of the group“boolean-expression”. Elements from this group are used inside
conditions of decision trees.

186 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Figure E.11: The syntax of the group“decimal-expression”.

E.4. MECHANISMS AND TOOLS 187

Figure E.12: The syntax of the element“agent-collection”.

E.4 Mechanisms and Tools

XABSLis anXML 1.0[7] dialect that is specified inXML Schema[22]. Schemas are used instead
of DTDs as only they allow to specify complex identity constraints. For instance, for all decimal
input symbols there is akeydefined which guarantees that the names of the symbols are unique.
If inside an option such a decimal input symbol is referenced, akey referenceassures that the
referenced symbol exists in the key.

An XABSLagent behavior specification is distributed over many files, which helps the behav-
ior developers to keep an overview over larger agents and to work in parallel. The XML schemas
for all the different file types can be found at theXABSLweb site [37].

E.4.1 File Types and Inclusions

FigureE.13shows the different file types that are part of anXABSLagent behavior specification.
Symbol files contain the definitions of symbols, basic behavior files prototypes for basic behav-
iors and their parameters, and option files contain a single option. The file “options.xml” defines

188 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

options

basic

behaviors

symbols

“options.xml“

“agents.xml“

Inclusion using XInclude

Inclusion with external file entities

b

od

a

s

o

o

o

s

b

Figure E.13: Different file types of anXABSLspecification and include mechanisms.

prototypes for each option and its parameters. The file “agents.xml” includes all the option files
and defines the agents and their root options.

Two mechanisms for including one XML file into another are used. When usingExternal file
entities, a code block, e. g. the file “my-symbols.xml” is defined as an external file entity inside a
DTD. At the correct position in the code it is inserted by for instance&mySymbols;. Most XML
editors support this mechanism. It allows checking the validity of an option inside the XML
editor. The disadvantage is that no cascading inclusions are possible.

With XInclude[41] a file is directly included into another one with a statement such as this:
<xinclude href=”another-file.xml”/>. An XInclude processor later resolves these includes for
further processing. The disadvantage is that most XML editors do not resolve XInclude state-
ments for validation.

E.4.2 Document Processing

Standard XSLT [14] transformations are used to generate three types of documents fromXABSL
source documents: anintermediate codewhich is executed by theXabslEngine, debug symbols
containing the names of all named elements, and an extensive HTML-documentation containing
SVG-charts for each agent, option, and state.

The run-time systemXabslEngineuses an intermediate code instead of parsing theXABSL
XML files directly, thus no XML parser is needed. (On many embedded computing platforms
XML parsers are not available due to resource and portability constraints.)

The generated debug symbols contain the names of all options, basic behaviors, parameters,
and symbols. They make it possible to implement platform and application dependent debug-
ging tools for monitoring option and state activations as well as input and output symbols. For
instance, theXabsl2 Behavior Tester Dialog(cf. fig. E.16) was integrated into theRobotControl
application, the general debug tool of theGermanTeam.

E.5. THE XABSLENGINE CLASS LIBRARY 189

concatenation of all

behavior files:

“agents.xinclude-processed.xml“
“agents.xml“

debug

symbols

intermediate

code

HTML/ SVG

documentation

multiple behavior files

x

validation?

Figure E.14: Document generation inXABSL

The HTML documentation helps the developers to understand what their behaviors do. Al-
most all information specified in the XML files is clearly visualized; there are SVG charts for
each option graph, state machine, and decision tree. As it would have been nearly impossible
to generate these charts directly with native XSLT transformations (it is very difficult to place
nodes and edges such that there is little overlapping), the “dot” tool of the AT&T Graphviz [24, 3]
graph drawing suite was used. This program takes structural descriptions of the graphs as input
and renders charts from it, ensuring a good layout and little overlappings between objects. As
an XML wrapper for the input language of the “dot” tool, theDot Markup Language(DotML)
[36] was developed. Note that the figuresE.1, E.2, andE.3 were generated automatically from
XABSLdocuments with DotML and “dot”.

FigureE.14shows how all the different documents are generated. Because anXABSLagent
behavior specification is distributed over many XML files, firstly, all these files are concate-
nated into a single big file “agents.xinclude-processed.xml”. Then this file is validated against
theXABSLschema. If that was successful, the XSLT style sheet “generate-intermediate-code.xsl”
is applied to “agents.xinclude-processed.xml” to generate the intermediate code. The debug sym-
bols are created with “generate-debug-symbols.xsl”. Similar to theXABSLbehaviors, the gen-
erated documentation is also distributed over many files. To increase the compile speed, only
for the changedXABSLsource files the documentation pages are rebuilt. Therefore, 13 different
XSLT style sheets exist for the documentation generation.

For the correct call of all the different XSLT style sheets and DotML scripts, a complex
Makefile was developed, which is described in detail on theXABSLweb site [37].

E.5 The XabslEngine Class Library

TheXabsl2Engineis theXABSLruntime system. It is written in plain ANSI C++ [21] and does
not use any extensions such as the STL [44]. It is platform and application independent and can
easily be employed on any robotic platform. To run the engine in a specific software environment,
only two classes (for file access and error handling) have to be derived from abstract classes.

190 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

The engine parses and executes the intermediate code that was generated fromXABSLdoc-
uments. It links the symbols from the XML specification that are used in the options and states
to the variables and functions of the agent platform. Therefore, for each symbol used an entity
in the software environment has to be registered to the engine. While options and their states
are represented in XML, basic behaviors are written in C++. They have to be derived from a
common base class and to be registered at the engine. The engine provides extensive debugging
interfaces for monitoring the activation of options and states, the values of the symbols, and the
parameters of options and basic behaviors. Instead of executing the engine from the root option,
single options and basic behaviors can be tested separately.

A complete API documentation of the class library is available at theXABSLweb site [37].

E.5.1 Running the Xabsl2Engine on a Specific Target Platform

As the class library is application and platform independent, message and error handling func-
tions as well as file access routines have to be implemented externally.

First, one has to declare a message and error handling class that is derived from
Xabsl2ErrorHandler. This class has to implement theprintMessage()andprintError() function.
The engine uses that class to state errors and to raise error messages. The Boolean variable “er-
rorsOccurred” can be used to determine whether errors occurred during the creation or execution
of the engine.

Afterwards, a class that gives the engine read access to the intermediate code has to be derived
from Xabsl2InputSource. The code does not inevitably have to be read from a file, but can also
be read from a memory region or any other stream. The pure virtual functionsopen(), close(),
readValue(), andreadString()have to be implemented.

The intermediate code contains comments (//...) that have to be skipped by the read functions:

// multiply (6)
6
// decimal value (0): 52.5
0 52.5
// reference to decimal symbol (1) ball.y
1 13

The comments have to be treated as in C++ files (new line ends a comment). In the example
only “6 0 52.5 1 13” has to be read from the file.

Finally, a static function that returns the system time in milliseconds has to be defined, e.g.:
static unsigned long getSystemTime().

E.5.2 Registering Symbols and Basic Behaviors

After creating an instance of theXabsl2Engineby passing a reference to an error handler derivate
and a pointer to the time function as parameters, all the symbols and basic behaviors can be
registered at the engine. Note that this has to be done before the option graph is created.

E.5. THE XABSLENGINE CLASS LIBRARY 191

As the behaviors written inXABSLuse symbols to interact with the software environment
of the agent system, for each of these symbols the corresponding variable or function has to
be registered to the engine. The following example binds the variableaDoubleVariableto the
symbol ”a-decimal-symbol” which was defined in theXABSLagent behavior specification:

pMyEngine->registerDecimalInputSymbol("a-decimal-symbol",
&aDoubleVariable);

If the value of the symbol is not represented by a variable but by a function, this function has
to be registered at the engine. Moreover, this function has do be defined inside a class which is
derived fromXabsl2FunctionProvider:

class MySymbols : public Xabsl2FunctionProvider
{
public:

double doubleReturningFunction() { return 3.7; }
};
...
MySymbols mySymbols;

pMyEngine->registerDecimalInputSymbol("a-decimal-symbol",
&mySymbols, (double (Xabsl2FunctionProvider::*)())
&MySymbols::doubleReturningFunction);

The registration of all other symbol types works in a similar way.
All basic behaviors are derived from the classXabsl2BasicBehaviorand have to implement

the pure virtual functionexecute(). The name of the basic behavior has to be passed to the con-
structor of the base class. Furthermore, the parameters of the basic behavior have to be declared
as members of the class and have to be registered usingregisterParameter(..). Afterwards, an
instance has to be registered to the engine with theregisterBasicBehavior(..)function for each
basic behavior class.

E.5.3 Creating the Option Graph and Executing the Engine

After the registration of all symbols and basic behaviors, the intermediate code can be parsed
using thecreateOptionGraph(..)function.

If the engine detects an error during the execution of the option graph, the error handler is
invoked. This can happen if the intermediate code contains a symbol or a basic behavior that was
not registered before. By using theXabsl2ErrorHandlermember variableerrorsOccured, it can
be checked whether the option graph was created successfully or not.

If no errors occurred during the creation, the engine can be executed withexecute(). This
function executes the option graph once at a time. Starting from the selected root option, the
state machine of each option is carried out to determine the next active state. After that, the state
machine for the subsequent option of this state is carried out again and again until the subsequent

192 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Figure E.15: TheXabsl2 Profilerallows to analyze changes in the behaviors over time. Each line reports
a change in the state of theXABSLsystem. In the left column, a timestamp and the number of frames with
no change of state is displayed. The other columns show the corresponding option and state activations
on “levels” of the option graph (each option was automatically assigned to such a level for better visual-
ization). A red cell indicates that another option was activated on a certain level, yellow stands for a state
change, and green means that the parameters of a subsequent behavior changed.

behavior is a basic behavior, which is executed then, too. Finally, the output symbols that were
set during the execution of the option graph become applied to the software environment.

In the execute()function the execution starts from the selected root option, which in the
beginning is the root option of the first agent. The agent can be switched using the function
setSelectedAgent(..).

E.5.4 Debugging Interfaces

The engine provides rich debugging interfaces that can be used to develop monitoring and de-
bugging tools.

Instead of executing the option graph withexecute(), single basic behaviors or options can
be parameterized and executed separately. There is a number of functions to trace the current
state of the option graph, the option activation path, the option parameters, and the selected basic
behavior. For tracing the values of symbols, the engine provides access to the symbols stored.
Enumerated output symbols can also be set manually for testing purposes. Note that this has to be
done after the option graph was executed. The changes are applied to the software environment
by using the functionsetOutputSymbols().

Based on that interface, two debug tools were integrated into theRobotControl[49] applica-
tion, the general debug tool of theGermanTeam. First, theXabsl Behavior Tester(cf. fig. E.16)
allows tracing the option activation path, the parameters and execution times of options, states,

E.5. THE XABSLENGINE CLASS LIBRARY 193

Figure E.16: TheXabsl2 Behavior Tester, a part of theRobotControlapplication, makes use of the debug-
ging interfaces of theXabslEngine.

194 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

and basic behaviors, as well as the values of input and output symbols. Into the other direction,
single options or basic behaviors can be selected and parameterized manually for execution.

Second, theXabsl Profiler(cf. fig. E.15) can be used to analyze behaviors over time. For
that, log files containing the option activation path are recorded and visualized such that it can be
seen for how long states and options were active. This helps to detect state oscillations or unused
states.

E.6 Discussion

TheXABSLsystem is a tool that can be used for decision making in autonomous agents. Because
the language has no elements that are specific for a certain agent system and due to the inde-
pendence of the run-time systemXabslEnginefrom specific software platforms,XABSLcan be
applied in very different agent architectures and platforms.

That is why it depends on the chosen agent architecture and the implemented behaviors
whether anXABSLagent behavior specification is reactive or deliberative. If the criterion for that
distinction is that the environment is represented and modeled in persistent states, integrating
past information, then it depends on whether either the agent system directly passes the sensor
readings to theXABSLbehaviors or a world model is built up and made available. But as the state
based approach tends to continue once selected behaviors, there are persistent states of intention.
If seen from that perspective,XABSLis clearly deliberatively.

In the taxonomy of Russel and Norvig [52], XABSLagents aregoal based agents, although
there are no explicit goals. But implicitly the implemented behaviors (options) have goals, which
are decomposed into sub-goals (subsequent options). Previous goals and intentions (option and
state activations) are kept.

The architecture is hierarchical, as complex behaviors are composed from simpler ones. But
it is not layered, because although more long-term and deliberative behaviors reside in higher
levels of the hierarchy and more low-level and reactive behavior on lower levels, there is no
conceptual differentiation between different levels of the option graph.

XABSLdoes not contain a classical planning component in the meaning that plans are derived
automatically from the current world model or future simulations, but it is possible to add such
mechanisms to the agent system and to make the results available to theXABSLbehaviors through
input symbols.

TheXABSLarchitecture is behavior-based [2] as high-level behaviors are constructed from a
set of reactive basic behaviors. Thereby due to the use of finite state machines always only one
basic behavior is selected at the same time. But nevertheless, it is possible to combine different
behaviorscontinuously[1] inside the basic behaviors, for instance by using potential fields.

The system is used inside of existing agent architectures for decision making.XABSLcan
neither be used to model a complete agent system nor is it able to control the complete agent
program (instead, it is frequently called from the agent program). This is in contrast to many
other languages such as theBehavior Language[8], COLBERT[31], or CDL/ MissionLab[40],
which model complete agents including sensory and motor control capabilities.

E.6. DISCUSSION 195

Additionally and also in contrast to these systems,XABSLdoes not translate the behavior
specifications into the code of the native programming languages (such as C++) but directly in-
terprets an intermediate code. Thus, it is not necessary to recompile the programs if the behaviors
change, leading to a shorter change-compile-test cycle.

The language can be best compared with theConfiguration Description Language(CDL),
a part of theMissionLabsystem. As CDL,XABSLallows to completely specify agent behavior
based on hierarchies of finite state machines. ButXABSLhas a higher expressiveness in condi-
tions for state transitions so that CDL documents could be transformed intoXABSLdocuments,
but not vice versa.

196 APPENDIX E. EXTENSIBLE AGENT BEHAVIOR SPECIFICATION LANGUAGE

Appendix F

Processes, Senders, and Receivers

F.1 Motivation

In GT2001, there exist two kinds of communication between processes: on the one hand, Aperios
queues are used to communicate with the operating system, on the other hand, a shared memory
is employed to exchange data between the processes of the control program. In addition, Aperios
messages are used to distribute the address of the shared memory. All processes use a structure
that is predefined by Sony’s stub generator. This approach lacks of a simple concept how to
exchange data in a safe and coordinated way. The resulting code is confusing and much more
complicated then it should be.

However, the internal communication using a shared memory also has its drawbacks. First
of all, it is not compatible with the ability of Aperios to exchange data between processes via
the wireless network by using the TCPGateway. In addition, the locking mechanism employed
may waste a lot of computing power. However, the locking approach only guarantees consistence
during a single access, the entries in the shared memory can change from one access to another.
Therefore, an additional scheme has to be implemented, as, e. g., making copies of all entries in
the shared memory at the beginning of a certain calculation step to keep them consistent.

The communication scheme introduced in GT2002 addresses these issues. It uses Aperios
queues to communicate between processes, and therefore it also works via the wireless network.
In the approach, no difference exists between inter-process communication and exchanging data
with the operating system. Three lines of code are sufficient to establish a communication link.
A predefined scheme separates the processing time into two communication phases and a calcu-
lation phase.

F.2 Creating a Process

Any new process has to be part of a specialprocess layout. Process layouts group together differ-
ent processes that make up a robot control program, and they are stored in subdirectories under
GT2004\Src\Processes. Process layouts are named after the processes that exist in them, and in
fact, in 2003 and 2004 there was only one layout, namelyCMD that consists of the processes

197

198 APPENDIX F. PROCESSES, SENDERS, AND RECEIVERS

Cognit(ion), Motion, andDebug. An Aperios process is allowed to have a name with a maximum
length of eight characters. To create a new process, one has to think such a name up (in fact afull
nameand ashort name(up to eight characters)

• insert a new line intoGT2004\Src\Processes\processLayout\object.cfg, following the
format/MS/OPEN-R/APP/OBJS/shortName.bin,

• insert a line inGT2004\Src\Processes\processLayout\processLayout.ocf starting with#
objectmappingfollowed by theshort nameand thefull name,

• create a newobjectline in the same file using theshort name,

• create a.cppfile in GT2004\Src\Processes\processLayout with the full name,

• and, insert that source file in the GT2004 project both under
GT2004\Processes\processLayout andRobotControl\SharedCode\Processes\processLayout
in the Microsoft Developer Studio.

The new source file must include “Tools/Process.h”, derive a new class fromclass Process,
implement at least the functionProcess::main(), and must instantiate the new class with the
macroMAKE PROCESS. As an example, look at this little process1:

#include "Tools/Process.h"

class Example : public Process
{

public:
virtual int main()
{

printf("Hello World!\n");
return 0;

}
};

MAKE_PROCESS(Example);

The process will print “Hello World” once. If the functionmain()should be recalled after a
certain period of time, it must return the number of milliseconds to wait, e. g.

return 500;

to restartmain()after 500 ms. However, ifmain() itself requires 100 ms of processing time,
and then pauses for 500 ms before it is recalled, it will in fact be called every 600 ms. If this is
not desired,main()must return a negative number. For instance,

1Note that the examples given here will not compile, because the debugging support required byclass Process
is missing. One can derive fromclass PlatformProcessinstead, naming themain-functionprocessMain.

F.3. COMMUNICATION 199

return -500;

will ensure a cycle time of 500 ms, as long asmain() itself does not require more than this
amount of time.

Note that if main returns 0, it will only be recalled if there is at least one blocking receiver
or at least one active blocking receiver (cf. next section). Otherwise, the process will be inactive
until the robot will be rebooted.

F.3 Communication

The inter-object communication is performed bysenders andreceivers exchangingpackages.
Packages are normal C++ classes that must bestreamable(cf. the technical note on streams in
appendixG). A sender contains one instance of a package and will automatically transfer it to a
receiver after the receiver requested it and the sender’s member functionsend()was called. The
receiver also contains an instance of a package. Each data exchange will be performed after the
functionmain()of a process has terminated, or immediately when the functionsend()is called. A
receiver obtains a package before the functionmain()starts and will request for the next package
after main() was finished. Both senders and receivers can either be blocking or non-blocking
objects. The functionmain() will wait for all blocking objects before it starts, i. e. it waits for
blocking receivers to acquire new packages, and for blocking senders to be asked to send new
packages.2 main()will not wait for non-blocking objects, so it is possible that a receiver contains
the same package for more then one call ofmain().

F.3.1 Packages

A package is an instance of a class that is streamable, i. e. that implements the<< and>>
operators for the classesOut andIn, respectively. So, an example of a package is

class NumberPackage
{

public:
int number;
NumberPackage() {number = 0;}

};

Out& operator<<(Out& stream,const NumberPackage& package)
{

return stream << package.number;
}

In& operator>>(In& stream, NumberPackage& package)

2Note that under RobotControl, a process will be continued when a single blocking event occurs. This is currently
required to support debug queues.

200 APPENDIX F. PROCESSES, SENDERS, AND RECEIVERS

{
return stream >> package.number;

}

Note also that it is a good idea to provide a public default constructor.
A special case of packages are Open-R packages:

• Packages that are received from the operating system must provide a streaming opera-
tor that reads exactly the format as provided by Open-R. The packages are all defined in
<OPENR/ODataFormats.h>. However, the data types provided there do not reflect the
real size of the objects, they are only headers. Therefore, new types must be declared that
have the real size of the Open-R packages. This size can be determined from theirvector-
Info.totalSizemember variable. The size is constant for each type, but it may vary between
different versions of Open-R. Such data types are only required to implement the streaming
operators, they are not needed elsewhere.

• Packages that are sent to the operating system require special allocation operators. There-
fore, special senders (cf. next section) were implemented that allocate memory using the
appropriate methods, and then use these memory blocks for the communication with the
operating system.

F.3.2 Senders

Senders send packages to other processes. A process containing a sender forNumberPackage
could look like this:

#include "Tools/Process.h"

class Example1 : public Process
{

private:
SENDER(NumberPackage);

public:
Example1() :

INIT_SENDER(NumberPackage,false) {}

virtual int main()
{

++theNumberPackageSender.number;
theNumberPackageSender.send();
return 100;

}
};

F.3. COMMUNICATION 201

MAKE_PROCESS(Example1);

The macroSENDERdefines a sender for a package of typeNumberPackage. As the second
argument is false, it is a non-blocking sender. Macros asSENDERandRECEIVERwill always
create a variable that is derived from the provided type (in this caseNumberPackage) and that
has a name of the formtheTypeSenderor theTypeReceiver, respectively (e. g.theNumberPack-
ageSender).

Packages must always explicitly be sent by calling the member functionsend(). send()marks
the package as to be sent and will immediately send it to all receivers that have requested a
package. However, each time the functionmain()has terminated, the package will be sent to all
receivers that have requested it later and have not got it yet. Note that the package that will be
sent has not necessarily the state it had when callingsend(). As packages are not buffered, always
the actual content of a package will be transmitted, even if it changed since the last call tosend().

As the communication follows a real-time approach, it is possible that a receiver misses a
package if a new package is sent before the receiver has requested the previous one. The ap-
proach follows the idea that all receivers usually want to receive the most actual packages. The
only possibility to ensure that a receiver will get a package is to only send it, when it already has
been requested. This can be realized by either using a blocking sender, or by checking whether
the sender has been requested to send a new package:theNumberPackageSender.requestedNew()
provides this information. Note: a sender can provide a package to more than one receiver.re-
questedNew()returns true if at least one receiver requested a new package. This is different from
a blocking sender: a blocking sender will wait forall receivers to request a new package!

F.3.3 Receivers

Receivers receive packages sent by senders. A process that reads the package provided byEx-
ample1could look like this:

#include "Tools/Process.h"

class Example2 : public Process
{

private:
RECEIVER(NumberPackage);

public:
Example2() :

INIT_RECEIVER(NumberPackage,true) {}

virtual int main()
{

printf("Number %d\n",theNumberPackageReceiver.number);
return 0;

}

202 APPENDIX F. PROCESSES, SENDERS, AND RECEIVERS

};

MAKE_PROCESS(Example2);

Here, the functionmain()will wait for the RECEIVER(i. e. the second parameter istrue), so
it will always print out a new number.

However, one thing is missing: Aperios has to know which process wants to transfer packages
to which other process. Therefore, the fileconnect.cfghas to be extended by the following line:

Example1.Sender.NumberPackage.S Example2.Receiver.NumberPackage.O

If more than one receiver is used in a process, the non-blocking receivers shall be defined
first. Otherwise, the packages of the non-blocking receivers may be older than the packages of
the blocking receivers. To determine whether a non-blocking receiver got a new package, call its
member functionreceivedNew().

Appendix G

Streams

G.1 Motivation

In most applications, it is necessary that data can be serialized, i. e. transformed into a sequence
of bytes. While this is straightforward for data structures that already consist of a single block
of memory, it is a more complex task for dynamic structures, as e. g. lists, trees, or graphs. The
implementation presented in this document follows the ideas introduced by the C++ iostreams
library, i. e., the operators<< and>> are used to implement the process of serialization.

There are two reasons not to use the C++ iostreams library for this purpose: on the one hand,
it does not guarantee that the data is streamed in a way that it can be read back without any special
handling, especially when streaming into and from text files. On the other hand, the iostreams
library is not fully implemented on all platforms, namely not on Aperios.

Therefore, theStreamslibrary was implemented. As a convention, all classes that write data
into a stream have a name starting with “Out”, while classes that read data from a stream start
with “In”. In fact, all writing classes are derived from classOut, and all reading classes are
derivations of classIn.

All stream classes derived fromIn andOut are composed of two components: One for read-
ing/writing the data from/to a physical medium and one for formatting the data from/to a specific
format. Classes writing to physical media derive fromPhysicalOutStream, classes for reading
derive fromPhysicalInStream. Classes for formatted writing of data derive fromStreamWriter,
classes for reading derive fromStreamReader. The composition is done by theOutStreamand
InStreamclass templates.

G.2 The Classes Provided

Currently, the following classes are implemented:

PhysicalOutStream. Abstract class

OutFile. Writing into files

203

204 APPENDIX G. STREAMS

OutMemory. Writing into memory

OutSize. Determine memory size for storage

OutMessageQueue.Writing into a MessageQueue

StreamWriter. Abstract class

OutBinary. Formats data binary

OutText. Formats data as text

OutTextRaw. Formats data as raw text (same output as “cout”)

Out. Abstract class

OutStream<PhysicalOutStream,StreamWriter>. Abstract template class

OutBinaryFile. Writing into binary files

OutTextFile. Writing into text files

OutTextRawFile. Writing into raw text files

OutBinaryMemory. Writing binary into memory

OutTextMemory. Writing into memory as text

OutTextRawMemory. Writing into memory as raw text

OutBinarySize. Determine memory size for binary storage

OutTextSize. Determine memory size for text storage

OutTextRawSize. Determine memory size for raw text storage

OutBinaryMessage. Writing binary into a MessageQueue

OutTextMessage.Writing into a MessageQueue as text

OutTextRawMessage.Writing into a MessageQueue as raw text

PhysicalInStream. Abstract class

InFile. Reading from files

InMemory. Reading from memory

InMessageQueue.Reading from a MessageQueue

StreamReader. Abstract class

InBinary. Binary reading

InText. Reading data as text

InConfig. Reading configuration file data from streams

In. Abstract class

InStream<PhysicalInStream,StreamReader>. Abstract class template

G.3. STREAMING DATA 205

InBinaryFile. Reading from binary files

InTextFile. Reading from text files

InConfigFile. Reading from configuration files

InBinaryMemory. Reading binary data from memory

InTextMemory. Reading text data from memory

InConfigMemory. Reading config-file-style text data from memory

InBinaryMessage. Reading binary data from a MessageQueue

InTextMessage.Reading text data from a MessageQueue

InConfigMessage.Reading config-file-style text data from a MessageQueue

G.3 Streaming Data

To write data into a stream,Tools/Streams/OutStreams.hmust be included, a stream must be
constructed, and the data must be written into the stream. For example, to write data into a text
file, the following code would be appropriate:

#include "Tools/Streams/OutStreams.h"
// ...
OutTextFile stream("MyFile.txt");
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

The file will be written into the configuration directory, e. g.GT2004\Config\MyFile.txt on
the PC. It will look like this:

1 3.14000 Hello\ Dolly
42

As spaces are used to separate entries in text files, the space in the string “Hello Dolly” is
escaped. The data can be read back using the following code:

#include "Tools/Streams/InStreams.h"
// ...
InTextFile stream("MyFile.txt");
int a,d;
double b;
char c[12];
stream >> a >> b >> c >> d;

It is not necessary to read the symbolendlhere, although it would also work.
For writing to text streams without separation of entries and space escaping, for example

OutTextRawFilecan be used instead ofOutTextFile. It formats the data such as known from the
ANSI C++ coutstream. The example above is formated as following:

206 APPENDIX G. STREAMS

13.14000Hello Dolly
42

To make the streaming independent of the kind of the stream used, it could be encapsulated
in functions. In this case, only the abstract base classesIn andOutshould be used to pass streams
as parameters, because this generates the independence from the type of the streams:

#include "Tools/Streams/InOut.h"

void write(Out& stream)
{

stream << 1 << 3.14 << "Hello Dolly" << endl << 42;
}

void read(In& stream)
{

int a,d;
double b;
char c[12];
stream >> a >> b >> c >> d;

}
// ...
OutTextFile stream("MyFile.txt");
write(stream);
// ...
InTextFile stream("MyFile.txt");
read(stream);

G.4 Making Classes Streamable

Streaming is only useful if as many classes as possible are streamable, i. e. they implement the
streaming operators<< and>>. The purpose of these operators is to write the current state of
an object into a stream, or to reconstruct an object from a stream. As the current state of an object
is stored in its member variables, these have to be written and restored, respectively. This task is
simple if the member variables themselves are already streamable.

G.4.1 Streaming Operators

As the operators<< and>> cannot be members of the class that shall be streamed (because
their first parameter must be a stream), it must be distinguished between two different cases:
In the first case, all relevant member variables of the class are public. Then, implementing the
streaming operators is straightforward:

G.4. MAKING CLASSES STREAMABLE 207

#include "Tools/Streams/InOut.h"

class Sample
{

public:
int a,b,c,d;

};

Out& operator<<(Out& stream,const Sample& sample)
{

return stream << sample.a << sample.b
<< sample.c << sample.d;

}

In& operator>>(In& stream,Sample& sample)
{

return stream >> sample.a >> sample.b
>> sample.c >> sample.d;

}

However, if the member variables are private, the streaming operators must be friends of the
class. This can be a little bit complicated, because some compilers require the function prototypes
to be already declared when they parse thefriend declarations:

class Sample;
Out& operator<<(Out&,const Sample&);
In& operator>>(In&,Sample&);

class Sample
{

private:
int a,b,c,d;

friend Out& operator<<(Out&,const Sample&);
friend In& operator>>(In&,Sample&);

};
// ...

Another possibility to avoid these additional declarations would be to define public member
functions that perform the streaming and that are called from the streaming operators. However,
this would not be shorter.

If dynamic data should be streamed, the implementation of the operator>> requires a little
bit more attention, because it always has to replace the data already stored in an object, and thus
if this is dynamic, it has to be freed to avoid memory leaks.

class Sample

208 APPENDIX G. STREAMS

{
public:

char* string;
Sample() {string = 0;}

};

Out& operator<<(Out& stream,const Sample& sample)
{

if(sample.string)
return stream << strlen(sample.string) << sample.string;

else
return stream << 0;

}

In& operator>>(In& stream,Sample& sample)
{

if(sample.string)
delete[] sample.string;

int len;
stream >> len;
if(len)
{

sample.string = new char[len+1];
return stream >> sample.string;

}
else
{

sample.string = 0;
return stream;

}
}

G.4.2 Streaming usingread()and write()

There also is a second possibility to stream an object, i. e. using the functions Out::write() and
In::read() that write a memory block into, or extract one from a stream, respectively:

class Sample
{

public:
int a,b,c,d;

};

Out& operator<<(Out& stream,const Sample& sample)

G.5. IMPLEMENTING NEW STREAMS 209

{
stream.write(sample,sizeof(Sample));
return stream;

}

In& operator>>(In& stream,Sample& sample)
{

stream.read(sample,sizeof(Sample));
return stream;

}

This approach has its pros and cons. On the one hand, the implementations of the streaming
operators need not to be changed if member variables in the streamed class are added or removed.
On the other hand, this approach does not work for dynamic members. It will corrupt pointers to
virtual method tables if classes or their base classes contain virtual functions. Last but not least,
the structure of an object is lost (not the data) when it is streamed to a text file, because in the
file, it will look like a memory dump, which is not well readable for humans.

G.5 Implementing New Streams

Implementing a new stream is simple. If needed, a new medium can be defined by deriving
new classes fromPhysicalInStreamandPhysicalOutStream. A new format can be introduced by
deriving fromStreamWriterandStreamReader. Streams that store data must be derived from
classOutStream, giving aPhysicalOutStreamand aStreamWriterderivate as template parame-
ters, reading streams have to be derived from classInStream, giving aPhysicalInStreamand a
StreamReaderderivate as template parameters.

As a simple example, the implementation ofOutBinarySizeis given here. The purpose of this
stream is to determine the number of bytes that would be necessary to store the data inserted
in binary format, instead of actually writing the data somewhere. For the sake of shortness, the
comments are removed here.

class OutSize : public PhysicalOutStream
{

private:
unsigned size;

public:
void reset() {size = 0;}
OutSize() {reset();}
unsigned getSize() const {return size;}

protected:
virtual void writeToStream(const void*,int s) {size += s;}

};

class OutBinary : public StreamWriter

210 APPENDIX G. STREAMS

{
protected:

virtual void writeChar(char d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeUChar(unsigned char d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeShort(short d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeUShort(unsigned short d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeInt(int d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeUInt(unsigned int d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeLong(long d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeULong(unsigned long d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeFloat(float d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeDouble(double d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeString(const char *d,
PhysicalOutStream& stream)

{
int size = strlen(d);
stream.writeToStream(&size,sizeof(size));
stream.writeToStream(d,size);

}

G.5. IMPLEMENTING NEW STREAMS 211

virtual void writeEndL(PhysicalOutStream& stream) {};

virtual void writeData(const void* p,int size,
PhysicalOutStream& stream)

{stream.writeToStream(p,size);}
};

class OutBinarySize : public OutStream<OutSize,OutBinary>
{

public:
OutBinarySize() {}

};

212 APPENDIX G. STREAMS

Appendix H

Debugging Mechanisms

Debugging mechanisms are an integral part of theGermanTeam’s system architecture. This chap-
ter describes the basic structures and components, mainly for transmitting messages.

H.1 Exchanging Messages Between Robots and PC

Besides the package-oriented inter-object communication with senders and receivers,message
queuesare used for the transport of debug messages between processes, platforms, and applica-
tions. They consist of a list ofmessages, which are stored and read using streams.Debug keys
are used to request certain messages.

H.1.1 Message Queues

The classMessageQueue 1 allows to store and transmit a sequence of type safe and time-
stamped messages. On the Windows platform, it is implemented as a dynamic list2. In Open-R,
where dynamic memory allocations are expensive, a static memory area is used, whose size must
be defined in advance. These two different methods are implemented in the platform dependent
classMessageQueueBase 3, which is used byMessageQueue to store messages.

With myQueue.setSize(size) the maximum size of a message queue (all messages +
overhead) is defined. On the Open-R platform, a memory area of that size is allocated once. If it
is full, further messages are discarded without notification. On all other platforms,setSize()
is ignored.

As almost all data types have streaming operators, it is very easy to store them in message
queues. ClassMessageQueue provides different write streams for different formats: Mes-

1Definition and implementation inSrc/Tools/MessageQueue.hand.cpp.
2Based on classList , definition and implementation inSrc/Tools/List.hand.cpp.
3Included platform independent viaSrc/Platform/MessageQueueBase.h, definition and implementation for

Aperios/Open-R inSrc/Platform/Aperios1.3.2/MessageQueueBase.hand .cpp , for Windows and Linux in
Src/Platform/Win32Linux/MessageQueueBase.hand.cpp.

213

214 APPENDIX H. DEBUGGING MECHANISMS

sages that are stored throughout.bin are formatted binary. The streamout.text formats
data as text andout.textRaw as raw text.

After that all data of a message was written to the queue, it must be finished with
out.finishMessage(id) . The ID4 specifies the type of the message and is used to dis-
tribute the message later on. Additionally,MessageQueue automatically stores the system
time when the message was written, the team color and robot number of the sending robot, and
a flag indicating whether the message was sent from a physical or a simulated robot.

Some examples for writing into aMessageQueue :

Image myImage;
myMessageQueue.out.bin << myImage;
myMessageQueue.out.finishMessage(idImage);

int i = 3;
myMessageQueue.out.text << "a b" << i << " c"
MyMessageQueue.out.finishMessage(idText);

myMessageQueue.out.textRaw << "a b" << i << " c"
MyMessageQueue.out.finishMessage(idText);

int a, b, c, d;
myMessageQueue.out.bin << a << b;
myMessageQueue.out.bin << c << d;
myMessageQueue.out.bin.finishMessage(id4FunnyNumbers);

In the first example an image is streamed in binary format to the message queue
myMessageQueue. The type of the message isidImage . Then a simple text message (format
text , ID idText) is written. The result is:

a\ b 3 \ c

The third example is the same as the one before except that the streamout.textRaw is
used:

a b3 c

In the fourth example, four integer numbers are written binary with the ID
id4FunnyNumbers .

The following functions transmit data between different message queues:
copyAllMessages(otherQueue) copies all messages into another queue and

4All IDs are defined inSrc/Tools/MessageQueue/MessageIDs.h.

H.1. EXCHANGING MESSAGES BETWEEN ROBOTS AND PC 215

moveAllMessages(otherQueue) moves all messages there. Withclear() all
messages are deleted.

Message queues are exchanged between processes such as all other packages by streaming
them through the debug senders and receivers. These streaming mechanisms can also be used to
stream a message queue into a file or to transmit debug data via the Wireless Network. Note that
log files (see the end of sectionJ.2.1) are simply streamed-into-file message queues.

To declare a new message type, an ID for the message must be added to
the enum messageID 5. Additionally, a string for the type is added to function
getMessageIDName(MessageID id) 6. Note that new message IDs have to be added at
the end of enummessageIDs as otherwise old logfiles would not work anymore.

H.1.2 Distribution of Debug Messages

As all messages can be written in any order into a queue, a special mechanism for distributing the
message is needed. For each message, withmyQueue.handleAllMessages(handler)
amessage handleris invoked.

All message handling classes are derived from classMessageHandler 7 and have over-
written the virtual functionhandleMessage(InMessage& message) :

class MyMessageHandler : public MessageHandler
{

virtual bool handleMessage(InMessage& message)
{

switch (message.getMessageID())
{
case idImage:

message.bin >> myImage;
return true;

case idXY:
message >> otherQueue;
return true;

case idZ:
return otherMessageHandler.handleMessage(message);

default:
return false;

}
}

};

5In Src/Tools/MessageQueue/MessageIDs.h.
6In same file.
7Definition inSrc/Tools/MessageQueue/InMessage.h.

216 APPENDIX H. DEBUGGING MECHANISMS

Messages are read from aMessageQueue via streams. Thereto,message.bin pro-
vides a binary formatted stream,message.text a text stream andmessage.config
a text stream that skips comments. In the example above, all messages of the
type idImage are streamed binary formatted into the local variablemyImage . With
message >> otherQueue a message is copied completely into anotherMessageQueue .
With otherMessageHandler.handleMessage(message) another class derived from
MessageHandler is called to handle the message. To read a message a second time, the read
position of the stream is reset before withmessage.resetReadPotition() .

Function handleMessage(..) has to return whether the message was
handled. An interface to the message is given in parametermessage 8. The
ID of the message can be queried withmessage.getMessageID() and
message.getTimeStamp() returns the time when the message was put into a queue9.
The team color of the sending robot is returned bymessage.getTeamColor()
and the robot number bymessage.getPlayerNumber() . Finally, the function
getMessageWasSentFromAPhysicalRobot() determines whether the message
was sent from a physical or simulated robot.

H.1.3 Requesting Messages With Debug Keys

There is a wide range of messages that can be sent from physical or simulated robots to the PC.
As it is not possible to send all the messages at once,debug keysare used to toggle the output
of these messages. They are also transmitted to the robot using message queues. The keys are
defined and stored in classDebugKeyTable 10. Each key can have one of following states:

Disabled. No output is sent.

Send always.The output is always sent.

Send n times.The output is sent a total of n times (n cycles of the sending process).

Send every n times.Every n-th output is actually being sent.

Send every n ms.The output is sent every n milliseconds.

TheDebugKeystool bar ofRobotControl(cf. fig. H.1) can be used to send debug key tables
to the robots.

Each process contains an instance ofDebugKeyTable 11. With the static function
getDebugKeyTable() 12 this instance can be accessed from any piece of code running on the

8Instance of classInMessage , definition and implementation inSrc/Tools/MessageQueue/InMessage.hand
.cpp.

9Copying messages between queues does not change the time.
10Definition and implementation inSrc/Tools/Debugging/DebugKeyTable.hand.cpp.
11SeeSrc/Tools/Process.h.
12Definition and implementation inSrc/Tools/Debugging/Debugging.hand.cpp.

H.1. EXCHANGING MESSAGES BETWEEN ROBOTS AND PC 217

Figure H.1: TheDebugKeystool bar inRobotControl.

robot. TheDebugKeyTable - memberisDebugKeyActive(key) determines whether a
message shall be sent dependent on the state of a given key:

if (myDebugKeyTable.isDebugKeyActive(
DebugKeyTable::sendImages))

{
myQueue.out.bin << image;
myQueue.out.finishMessage(idImage);

}

A new debug key is declared by adding an ID for the key to the enumdebugKeyID and a
name togetDebugKeyName(debugKeyID aID) (in classDebugKeyTable).

H.1.4 Debug Macros

To simplify the access to outgoing message queues and to the appropriate debug key table, three
macros are defined13:

• OUTPUT(type, format, data); storesdata in a certainformat and a cer-
tain message type in the outgoing queue of the process.

• INFO(key, type, format, data); works similar toOUTPUT, but only, when
the debug keykey is active.

• WATCH(key, type, format, data); works asOUTPUTon the Windows plat-
form and asINFO on Open-R.

For example

OUTPUT(idText, text, "Could not load file " << filename);

outputs an text message independent from any debug keys. The statement

INFO(sendFunnyNumbers, idFunnyNumbers, text,
"i: " << i << ", j: " << j);

sends two variables as a text message of the typeidFunnyNumbers when the debug key
sendFunnyNumbers is active. Finally,

13In /Src/Tools/Debugging/Debugging.h.

218 APPENDIX H. DEBUGGING MECHANISMS

WATCH(sendImages,idImage,bin,theImageReceiver);

sends images binary formatted with the message typeidImage . On the physical robots,
this message is only sent when the debug keysendImages is active. On the simulated robots
on the Windows platform this message is sent automatically.

To safe processing time, the macros are ignored in theReleaseconfiguration.

H.2 Message Queues and Processes

Each process14 has two message queues:debugOut for outgoing anddebugIn for incom-
ing messges. Debug messages are transmitted between processes such as normal packages.
Thereto, with the macroDEBUGGING15 the receivertheDebugReceiver for and the sender
theDebugSender are defined fordebugIn anddebugOut .

The static functiongetDebugOut() 16 is used by the debugging macros to access
debugOut from an arbitrary position in the source code.

H.2.1 Message Handling

Before the execution ofProcess::main() , the handleMessage(..) of each
process is called for every message in debugIn . For example in the
Cognition process incoming messages are distributed such:

bool Cognition::handleMessage(InMessage& message)
{

switch (message.getMessageID())
{
case idSensorData:

message.bin >> theSensorDataBufferReceiver;
processSensorData = true;
return true;

case idLinesSelfLocatorParameters:
pSelfLocator->handleMessage(message);
return true;

...
default:

return Process::handleMessage(message);

14ClassProcess , definition and implementation inSrc/Tools/Process.hand.cpp.
15Definition inSrc/Tools/Process.h.
16Definition and implementation inSrc/Tools/Debugging/Debugging.hand.cpp.

H.2. MESSAGE QUEUES AND PROCESSES 219

Image SensorDataBuffer

Cognition

debugOut debugIn

JointDataBuffer SoundData

Motion

debugOut debugIn

Debug

debugOut debugIn

OVirtualRobotComm

WLAN Memory
Stick

... ...

???

Figure H.2: Data flow between processes in the CMD process layout.

}
}

Some messages are directly streamed into representations. For exampleidSensorData
messages are written into the variabletheSensorDataBufferReceiver . Other messages
are handled by modules and their solutions respectively. For example messages with the ID
idLinesSelfLocatorParameters are passed to thehandleMessage(..) function
of the SelfLocatorSelector (cf. sect.I.2.4), which calls thehandleMessage(..)
method of the currently selected solution.

All messages that were not handled inCognition::handleMessage(..) are passed
to Process::handleMessage(..) . This function processes common messages such as
idDebugKeyTable andidSolutionRequest . For the remaining messages, all modules
are queried automatically whether they want to handle the message. If not, an error message is
displayed.

H.2.2 The Process Debug

The processDebug17 manages the communication of the robot programs with the tools on the
PC. For each of the other processes (in the CMD layout:Cognition andMotion) it has a
sender and receiver for message exchange (cf. fig.H.2).

Messages that arrive via the WLAN from the PC are stored indebugIn . Additionally it
is also possible to transmit messages to a physical robot with the MemoryStick. Thereto, one
writes the content of the outgoing message queue ofRobotControlinto the file requests.dat
on the MemoryStick (cf. sect.J.2.1). The Debug process reads this file at startup and puts

17Definition and implementation inSrc/Processes/CMD/Debug.hand.cpp.

220 APPENDIX H. DEBUGGING MECHANISMS

all the containing messages intodebugIn . With this mechanism, it is possible to trans-
mit data and requests to physical robots without a working WLAN connection. Function
Debug::handleMessage(..) distributes all messages indebugIn to the other pro-
cesses.

All messages fromCognition andMotion are stored indebugOut . If a WLAN con-
nection was established, they are sent from there to the PC. To avoid communication jams, it
is possible to send aQueueFillRequest 18 to the Debug process (for example with the
DebugKeystool bar of RobotControl, cf. fig. H.1). It specifies how to process messages in
debugOut :

• immediateReadWrite (send everything): All messages in the queuedebugOut are
transmitted. Note that this can result in jams.

• overwriteOlder (real-time mode): For each message type, only the newest message
is transmitted. This prevents the queue from getting bigger and bigger if the WLAN is not
fast enough. It is the standard setting inRobotControl.

• rejectAll : The queuedebugOut is cleared.

• collectNSeconds : Breaks the WLAN traffic for n seconds. This can be used to collect
data without the slowing down impact of the WLAN. After the time, all data are sent at
once.

• toStickImmediately : All messages are appended to the fileLogfile.logon the Mem-
oryStick instead of transmitting them via the WLAN. Together with requests inre-
quests.dat(see above), this can be used to get data from a phyical robot without a working
WLAN connection.

• toStickNSeconds : Same as above, but the messages are written only after n seconds.
As writing to a memorystick slows down the system very much, this is useful when big
amounts of data (for instance images) shall be collected and written.

H.3 Common Debug Mechanisms

Based on message queues, debug keys, and message handlers, theGermanTeamdeveloped a
rich variety of module-specific debugging mechanisms. Two common high-level debug tools are
introduced in this section.

H.3.1 Debug Drawings

Debug drawings can be sent from every piece of code that runs on the robot. There exist two
types of drawings:imageDrawingsare in pixel coordinates and will be displayed on images,

18Definition and implementation inSrc/Tools/Debugging/QueueFillRequest.hund.cpp.

H.3. COMMON DEBUG MECHANISMS 221

whereasfieldDrawingsare in the system of coordinates of the field and will be shown in field
and radar viewers.

Debug drawings are requested with debug keys and are transmitted to the PC as messages
of the typeidDebugDrawing . In RobotControl, the debug drawing managerautomatically
sends the debug keys for the drawings that shall be displayed (that were selected in the context
menu of the drawing papers).

To use these mechanisms, one first has to declare an ID for a drawing
in class Drawings 19. For field drawings, an element is added to the enum
FieldDrawing and a description string (used by the context menu ofRobot-
Control) is added to Drawings::getDrawingName(fieldDrawing) . Im-
ages drawings are added to enumImageDrawing and labeled in function
Drawings::getDrawingName(fieldDrawing) .

Drawings are requested with debug keys. Thereto, for each drawing ID a cor-
responding key must be added to classDebugKeyTable (see sectionH.1.3). For
automated processing with macros, the debug key ID should be composed such:
send {drawing-id } drawing . For example for the drawingsketch , the corresponding
debug key must besend sketch drawing . Finally, the debug key is assigned to a drawing
ID in Drawing::getDebugKeyID(..) .

To draw and send drawings from inside any peace of source code, there exist a variety of
macros for geometric primitives20:

• LINE(id, x1, y1, x2, y2, penWidth, penStyle, penColor) draws
and sends a line. Parameterid is the id of the drawing,penWidth the thickness of the
line in pixels. These values can be set forpenStyle : ps solid , ps dash , ps dot ,
andps null (invisible). Colors can bered , green , blue , yellow , orange , pink ,
skyblue , white , light gray , gray , dark gray , black , or yellowOrange .

• RECTANGLE(id, x1, y1, x2, y2, penWidth, penStyle, penColor)
draws a rectangle.

• CIRCLE(id, center x, center y, radius, penWidth, penStyle,
penColor) draws a circle.

• DOT(id, x, y, penColor, fillColor) draws a dot.

Macros for some more shapes can be found inSrc/Tools/Debugging/DebugDrawing.h.
A drawing can be composed from many different shapes. To notify that a drawing is finished,

after the last shapeDEBUGDRAWINGFINISHED(id) is stated. The following examples il-
lustrates the macros:

19Definition inSrc/Tools/Debugging/DebugDrawings.h.
20For that, includeSrc/Tools/Debugging/DebugDrawings.h.

222 APPENDIX H. DEBUGGING MECHANISMS

// paint to the drawing
CIRCLE(sketch, 100, 100, 50, 2,

Drawings::ps_solid, Drawings::red);
LINE(sketch, 50, 50, 150, 150, 2,

Drawings::ps_dashed, Drawings::blue);
DOT(sketch, 100, 100, Drawings::black, Drawings::black);

// finish the debug drawing
DEBUG_DRAWING_FINISHED(sketch);

A red circle, a blue line, and a black dot are sent with the drawing IDsketch , provided that
the debug keysend sketch drawing is active.DEBUGDRAWINGFINISHED(sketch)
notifies the visualization mechanisms on the PC that all parts of the drawing arrived and that it
can be displayed.

Note that if messages are requested inreal-timemode (standard setting inRobotControl, cf.
sect.H.2.2), only the last shape arrives on the PC, as all others are deleted from the outgoing
message queue of the robot.

To save processing time, these macros are ignored in build configurationsReleaseandDebug
no DebugDrawings.

H.3.2 Stopwatch

To track down waste of time in the code, there are two macros for measuring execution-time of
source code fragments21:

• STOPTIME(expression) measures the system time before and after the execution
of expression and outputs the difference as a text.

• STOPTIME ONREQUEST(eventID, expression) measures the execution time
of expression , provided that the measurement for theenventID was requested with
a debug key. The message is sent with the IDidStopwatch to the PC.

For example

STOP_TIME(
for(int i = 0; i < 1000000; i++)
{

double x = sqrt(i);
x *= x;

}
);

21In Src/Tools/Debugging/Stopwatch.h.

H.3. COMMON DEBUG MECHANISMS 223

measures and outputs as text the execution time of the loop statement. Instead,

STOP_TIME_ON_REQUEST(imageProcessor,
pImageProcessor->execute(););

measures the execution time of the whole moduleImageProcessor .
New event IDs are declared by adding an element to enumStopWatchEventID of

class Stopwatch , a corresponding debug key toDebugKeyTable , and a assignment
from the id to a debug key (inStopwatch::getDebugKeyID(..)) and to a name (in
Stopwatch::getStopwatchEventIDName(..)).

224 APPENDIX H. DEBUGGING MECHANISMS

Appendix I

Mechanisms for Modules and Solutions

The members of theGermanTeamoften work on the same problems in parallel to follow their
own research interests and to compete as separate teams in national RoboCup competitions. In
order to keep different approaches integrated into a common source code repository, themodule
architecturewas developed.

I.1 Division of Information Processing into Tasks

In this architecture, the complete information processing of the robot programs is divided into
single “tasks” such as images processing or LED control. This distribution together with well
defined interfaces was defined by theGermanTeamin a meeting in 2001 and did not change
much since then (cf. fig.I.1).

Modules. Each single task is encapsulated in amodule. It exchanges data with other modules as
well as sensors and actuators only through externalrepresentations. This means that if a module
is executed, it reads its input from external data structures and stores the results of computation
in other external representations. Modules do not call each other (and even do not “know” each
other)1.

Representations. Representationsare data structures that are exchanged between modules.
They are defined in separate classes in directorySrc/Representations/2.

To be able to develop different solutions for modules, these representations should be as
common and general as possible. In order that developers of different modules and solutions
interpret the data in the same way, they should be well documented and have clear semantics. All
representations have streaming operators so that they can be easily transmitted between processes
and between robot and PC.

1The only exception is moduleMotionControl. This internally executes one of the modulesWalkingEngine,
GetupEngineandSpecialActions.

2This directory is exclusively for data structures that are exchanged between modules, all others should be placed
in Src/Tools/.

225

226 APPENDIX I. MECHANISMS FOR MODULES AND SOLUTIONS

Object
Modeling

RobotStateDetector ObstaclesLocator SelfLocator BallLocator PlayersLocator

Perception

Behavior
Control

BehaviorControl

Motion
Control

ImageSensorDataBuffer

CollisionDetector SensorDataProcessor ImageProcessorCameraMatrix

CollisionPercept BodyPercept BallPerceptLandmarksPereptLinesPerceptObstaclesPerceptPSDPercept PlayersPercept

JointDataBufferSoundData LEDValue

SoundControl LEDControl HeadControl MotionControlHeadMotionRequest

SoundRequest MotionRequestHeadControlModeLEDRequest

RobotState ObstaclesModel PlayerPoseCollectionBallPositionRobotPose

Figure I.1: Simplified graph of theGermanTeam’s modules (boxes) and representations (ellipses).

Special representations are those that are exchanged between the robot operating system and
the control programs (images, sensor data, sound, and motor commands). They reimplement the
Open-R data types and have platform dependent streaming operators in order to make the module
architecture independent from any platform.

For example classImage3 encapsulates the image data as they are received from the robot
system. The only platform depending part ofImage is the streaming operator that reads an
image from a stream4. By that, the image processing module (as all other modules) runs both on
physical robots and on the PC in a simulated robot.

Solutions. For each module it is defined, which representations it can access for reading and
which representations it can write to. Thanks to these fixed interfaces, it is possible to develop
differentsolutionsfor a module in parallel in the same source code basis. Solutions can be ex-

3Definition and implementation inSrc/Representations/Perception/Image.hand.cpp.
4The reading streaming operator for the Open-R platform is implemented in

Src/Platform/Aperios1.3.2/Sensors.cpp. It reads the data as they are sent from Open-R. In
Src/Platform/Win32/Sensors.cppthe streaming operator for the Windows platform is defined. It
reads the data as they were written by theImage writing streaming operator (implementation in
Src/Representations/Perception/Image.cpp) .

I.2. DEFINING MODULES AND SOLUTIONS 227

Figure I.2: The class hierarchy of moduleBallLocator (as in January 2004).

changed at runtime without affecting the overall system. Additionally, for some debugging sce-
narios it is important to switch off single modules completely.

With that, new approaches to a problem can be added to the existing code without changing
recent developments. It is possible to compare solutions by switching them at runtime. And it
makes it possible that the four members of theGermanTeamwork all the time on the same code
repository but can compete against each other at national RoboCup competitions.

I.2 Defining Modules and Solutions

Each module together with its solutions resides in a separate directory inSrc/Modules/. For
example the files for the moduleBallLocator reside inSrc/Modules/BallLocator/.

The class hierarchy for a module and its solutions looks a bit complex (cf. fig.I.2), but this
section will show that this structure is needful.

I.2.1 Class Module

Each module is derived from classModule 5:

class Module : public MessageHandler
{
public:

virtual void execute() = 0;

virtual bool handleMessage(InMessage& message)
{ return false; }

virtual ˜Module() {};
};

5Definition inSrc/Tools/Module/Module.h.

228 APPENDIX I. MECHANISMS FOR MODULES AND SOLUTIONS

It allows to execute all modules in the same way through the parameterlessexecute()
function (the interfaces of a module are passed to it as references to external representations at
startup). AsModule is derived fromMessageHandler (cf. sect.H.1.2), it is possible to
overwrite thehandleMessage(..) function and to receive messages in a solution.

I.2.2 Interface Classes

If the interfaces of a module would be passed separately to the constructor of a module, changing
the interfaces would be very time consuming as the constructors of all derived solutions would
need to be changed too. That’s why the interfaces of each module are defined in a separate class.
For theBallLocatormodule this interface class is calledBallLocatorInterfaces 6.

In January 2004 it looked such:

class BallLocatorInterfaces
{
public:

BallLocatorInterfaces(
const OdometryData& odometryData,
const CameraMatrix& cameraMatrix,
const BallPercept& ballPercept,
const RobotPose& robotPose,
SeenBallPosition& seenBallPosition,
PropagatedBallPosition& propagatedBallPosition,
unsigned long &time
)
:

odometryData(odometryData),
cameraMatrix(cameraMatrix),
ballPercept(ballPercept),
robotPose(robotPose),
seenBallPosition(seenBallPosition),
propagatedBallPosition(propagatedBallPosition),
timeOfImageProcessing(time)

{}

const OdometryData& odometryData;
const CameraMatrix& cameraMatrix;
const BallPercept& ballPercept;
const RobotPose& robotPose;

SeenBallPosition& seenBallPosition;

6Definition inSrc/Modules/BallLocator/BallLocator.h.

I.2. DEFINING MODULES AND SOLUTIONS 229

PropagatedBallPosition& propagatedBallPosition;
unsigned long &timeOfImageProcessing;

};

Thus the class contains references to all representations that are accessed by a module. Those
representations which are the input are stored withconst references, as the module is not
allowed to change them. All references are initialized in the constructor.

I.2.3 Base Classes For Modules

Each solution of a module is derived from a common base class which is derived fromModule
and the interface class of the module (cf.. fig.I.2). It is called such as the module, for example
BallLocator 7:

class BallLocator : public Module,
public BallLocatorInterfaces

{
public:

BallLocator(BallLocatorInterfaces& interfaces)
: BallLocatorInterfaces(interfaces)

{}

virtual ˜BallLocator() {}
};

In the constructor, an instance ofBallLocatorInterfaces is used to initialize base
classBallLocatorInterfaces . It is surprising that this works, but it is the main trick of
the module/ solution mechanisms. As all derived solutions only have to pass an instance of their
interface class to their base class, only one file (in the exampleBallLocatorInterfaces.h) must be
edited when the interface of a module changes.

All solutions of a module should reside in separate subdirectories and are derived from the
common module base class. For example the solutionATH2004BallLocator 8 is derived
from BallLocator :

class ATH2004BallLocator : public BallLocator
{
public:

ATH2004BallLocator(BallLocatorInterfaces& interfaces);

7Definition inSrc/Modules/BallLocator/BallLocator.h.
8Not in the 2004 code release, definition and implementation inSrc/Modules/BallLocator/ATH2004BallLocator/ATH2004BallLocator.h

and.cpp.

230 APPENDIX I. MECHANISMS FOR MODULES AND SOLUTIONS

virtual void execute();

private:
... // own class variables and class functions

};

The virtualexecute() function must be implemented and the constructor of the base class
is initialized with an instance of the interface class:

ATH2004BallLocator::ATH2004BallLocator(
BallLocatorInterfaces& interfaces)

: BallLocator(interfaces)
{

..
}

I.2.4 Selecting Solutions

For switching module solutions at run-time, it must be known which solutions exist for each
module. Thereto, classSolutionRequest 9 contains enumerations for all modules and all
solutions. A new module can be defined there by adding an ID to enumModuleID and by
specifying a string for the ID ingetModuleName(id) . For a new solution, an ID is added to
enumModuleSolutionID and a name togetModuleSolutionName(id) .

The classSolutionRequest is used to represent, which solution shall be selected for
which module. For example it is sent from theSettingsdialog bar inRobotControl(cf. fig. I.3)
to the robots.

A standard configuration is loaded from the filemodules.cfgat startup. With theSettings
dialog bar it is possible to save a standard configuration in this file.

All solutions of a module are encapsulated by a solutionselectorclass. This class instead
of single solutions is embedded into the process that uses the module. All these classes are de-
rived fromModuleSelector 10. To save memory, only the selected solution is created. When
switching solutions, the previous one is deleted withdelete before the new one is created.

Thereto, each selector class has the functioncreateSolution(id) , which creates a
new instance of a solution for a given ID. Theexecute() method automatically calls the
execute() function of the selected solution (same withhandleMessage(..)).

9Definition and implementation inSrc/Tools/Module/SolutionRequest.hand.cpp.
10Definition and implementation inSrc/Tools/Module/ModuleSelector.hand.cpp.

I.2. DEFINING MODULES AND SOLUTIONS 231

Figure I.3: With theSettingsdialog bar ofRobotControlit is possible to select between different module
solutions or to switch off a module completely. On the left side are the selected solutions for physical, on
the right for simulated robots.

The solution selector classes should be called such as the module +Selector . Thus, for
theBallLocatormodule the class name should BeBallLocatorSelector 11:

class BallLocatorSelector : public ModuleSelector,
public BallLocatorInterfaces

{
public:

BallLocatorSelector(ModuleHandler &handler,
BallLocatorInterfaces& interfaces)

: ModuleSelector(SolutionRequest::ballLocator),
BallLocatorInterfaces(interfaces)

11Definition inSrc/Modules/BallLocator/BallLocatorSelector.h.

232 APPENDIX I. MECHANISMS FOR MODULES AND SOLUTIONS

{
handler.setModuleSelector(

SolutionRequest::ballLocator, this);
}

virtual Module* createSolution(
SolutionRequest::ModuleSolutionID id)

{
switch(id)
{
case SolutionRequest::pidSmoothedBallLocator:

return new PIDSmoothedBallLocator(*this);

case SolutionRequest::ath2004BallLocator:
return new ATH2004BallLocator(*this);

case ...:
...

default:
return 0;

}
}

};

The interfaces of the module as well as a reference to aModuleHandler
(see below) are passed to the constructor ofBallLocatorSelector . The con-
structor of base classModuleSelector is initialized with the ID of the module
(SolutionRequest::ballLocator) and the interfaces are passed to base class
BallLocatorInterfaces . The module selector is registered at the module handler of the
process withmoduleHandler.setModuleSelector(id, this) . A newBallLocator-
solution is created increateSolution dependent on the requested solution ID.

I.2.5 Administration of Modules

Class ModuleHandler 12 is the interface between the module selector classes and the
processes. Each process has an instance of aModuleHandler that handles incoming
SolutionRequest messages and selects solutions according to this. Thereto, all module
selectors register themselves at the module handler of their process.

12Definition and implementation inSrc/Tools/Module/ModuleHandler.hand.cpp.

I.3. MODULES AND PROCESSES 233

I.3 Modules and Processes

As already mentioned, modules “do not know each other”. They communicate only via represen-
tations and the processes that embed the modules have to assure that all prerequisite representa-
tions are updated when a module is executed. A distribution of modules onto processes is called
a process layout. Over the years, theCMD-layout (three processes:Cognition , Motion , and
Debug) proved to be the best. The processes of such a layout reside in separate directories in
Src/Processes/, thus for example inSrc/Processes/CMD. In the remainder of this section, only
theCMD layout is discussed.

I.3.1 Embedding Modules into Processes

For each module that is embedded into a process, a pointer to the module selector class is added
as a member variable to the process. For example in classCognition 13 there is this member
variable:

BallLocatorSelector* pBallLocator;

In the constructor of the process, for each module the interface class and the module itself
is created. For example in the constructor ofCognition the BallLocatorSelector is created
such:

BallLocatorInterfaces ballLocatorInterfaces(
theOdometryDataReceiver,
cameraMatrix, ballPercept,
thePackageCognitionMotionSender.robotPose,
thePackageCognitionMotionSender.ballPosition,
timeOfImageProcessing);

pBallLocator = new BallLocatorSelector(moduleHandler,
ballLocatorInterfaces);

All representations that are accessed by theBallLocatormodule are passed to the constructor
of BallLocatorInterfaces . Thereto, there must be an instance of each representation in
the processes (see below).

Finally, the modules are executed in themain() method of the process:

pBallLocator->execute();

The order of execution results from their interfaces. All modules that produce input for a
module have to be executed before that module.

13Definition and implementation inSrc/Processes/CMD/Cognition.hand.cpp.

234 APPENDIX I. MECHANISMS FOR MODULES AND SOLUTIONS

I.3.2 Representations in Processes

For all representations that are used by the modules of a process there must be instances in the
process. References to them are passed to the module interface classes. In the normal case, these
instances are simple member variables in the class of the processes.

For those representations that are exchanged with the robot operating system (Image ,
MotorCommands , etc.) there are already instances in the senders and receivers of this type.
For example images are accessed through the variabletheImageReceiver (declared with
the macroRECEIVER(Image)).

Another exception are those representations that are used by modules in different pro-
cesses. For example in theCognition process the moduleBehaviorControl 14 writes
its output into the representationMotionRequest 15, which is used in theMotion
process by the moduleMotionControl 16. Such representations must be transmitted
between the processes via senders/ receivers. All representations that are sent from
Cognition to Motion are combined in classPackageCognitionMotion 17. Through
theSENDER(PackageCognitionMotion); the package is sent toCognition .

As members of these packages are real instances, they are accessed by the modules for ex-
ample throughthePackageCognitionMotionSender.motionRequest .

14Definition inSrc/Modules/BehaviorControl/BehaviorControl.h.
15Definition and implementation inSrc/Representations/MotionRequest.hand.cpp.
16Definition inSrc/Modules/MotionControl/MotionControl.h.
17Definition and implementation inSrc/Processes/CMD/PackageCognitionMotion.hand.cpp.

Appendix J

Programming RobotControl

RobotControlruns exclusively under Windows and is compiled with the Microsoft Visual C++
compilers1. It uses the Microsoft Foundation Classes (MFC) and some other libraries for the
graphical user interface.

J.1 General Structure

RobotControlhas a strict modular structure. The main components are encapsulated each in
separate classes so that it is easy to replace single components by others.

The different components exchange data almost only via message queues – the main pro-
gram logic is defined by the message distribution mechanisms. Visualization components do not
access shared representations but are notified on the arrival of certain messages. Thus many syn-
chronization problems do not appear as the data arrive in the right order in message queues. This
message based approach also ensures economical use of processing resources. InRobotControl
components are only invoked when new data arrive for it or on user input.

It was emphasized to keep the dependencies between source code files low – small local
changes should force only a few files to recompile.

J.2 Message Queues and Message Distribution

A variety of message queues (cf. sect.H.1.1) form the backbone ofRobotControl. The most
important ones2 are combined in classCRobotControlQueues 3. Through the global defined
functiongetQueues() 4 one can access these queues.

1Visual C++ 6.0 and Visual C++ .Net
2As messages can be exchanged only in a synchronized way between threads, there are some more in the inter-

faces to the simulated and physical robots.
3Definition and implementation inSrc/RobotContol/RobotControlQueues.hand .cpp, Instantiation in

CRobotControlApp (Src/RobotContol/RobotControl.h) .
4Definition inSrc/RobotContol/RobotControlQueues.h.

235

236 APPENDIX J. PROGRAMMING ROBOTCONTROL

to physical robot from physical robot

to simulated robot

to GUI

from simulated robot

physical
robots

simulated
robots

log player

dialogs &
tool bars

RobotControl

Figure J.1: The main components and message queues ofRobotControl.

J.2.1 Sending Messages to Robots

For both the simulated and physical robots there are message queues to a specific robot (0 . . . 7),
theselectedrobot, and all robots.

Developers of dialog bars and tool bars access messages queues as follows:

getQueues().toSimulated.selectedRobot. ..
Messages to the selected simulated robot.

getQueues().toSimulated.allRobots. ..
Messages to all simulated robots.

getQueues().toSimulated.robot[n]. ..
Messages to a specific simulated robot (n..0-7).

getQueues().toPhysical.selectedRobot. ..
Messages to the selected physical robot.

J.2. MESSAGE QUEUES AND MESSAGE DISTRIBUTION 237

getQueues().toPhysical.allRobots. ..
Messages to all physical robots.

getQueues().toPhysical.robot[n]. ..
Messages to a specific physical robot (n..0-7).

For example with

getQueues().toPhysical.selectedRobot.out
.bin << motionRequest;

getQueues().toPhysical.selectedRobot.out
.finishMessage(idMotionRequest);

theMotionTesterdialog bar5 sends aMotionRequest 6 to the selected physical robot. With

getQueues().toSimulated.allRobots.out
.bin << forSimulatedRobots;

getQueues().toSimulated.allRobots.out
.finishMessage(idDebugKeyTable);

the central debug key table ofRobotControl(cf. sect.J.6.1) is sent to all simulated robots.
Attention! The functiongetQueues() may only be called from the context of the graphical
user interface as the message queues are accessed unsynchronized (see also sectionJ.7.2).

The classCRobotControlSimulatedRobots (cf. sect.J.4.3) is responsible for trans-
mitting the messages to the simulated robots. If a message was put into the queue to a not active
robot, it is discarded.

In CRobotControlPhysicalRobots (cf. sect.J.3) the messages to the physical robots
are transmitted. In contrast to the simulated robots, messages to not connected physical robots
are kept until the robot is connected (orRobotControlcloses).

This allows to communicate with a physical robot without WLAN. With theRobotControl
menu entry “Extras” – “Save message queue to physical robots” one can save the message queue
to the selected physical robot on a memory stick.

To receive images from the robot despite a not functioning WLAN, one first sends to all
simulated robots a debug key table that requests for instance every 10th image (using the De-
bugKeys tool bar, cf. sect.H.1.3). Additional, with the same tool bar, aQueueFillRequest
(cf. sect.H.2.2) is sent, specifying that all messages on the physical robot shall be written to
the memory stick after 30 seconds. After saving the message queue to the physical robot as

5Definition and implementation inSrc/RobotControl/Bars/MotionTesterDlgBar.hand .cpp, instantiation in
CRobotControlMainFrame (Src/RobotControl/RobotControlMainFrame.h).

6Definition and implementation inSrc/Representations/Motion/MotionRequest.hand .cpp, instances mainly in
the robot processes.

238 APPENDIX J. PROGRAMMING ROBOTCONTROL

Figure J.2: TheLog Playertool bar allows to record and play log files.

described above and after booting a robot with it, theDebug process on the robot reads these
messages and distributes them to the other processes. After 30 seconds, the collected images
are written by theDebug process into a log file on the memory stick, which can be opened
and played inRobotControlwith the log player (see next section). Note that these mechanisms
only work if the source code for the robot is compiled with the configuration “Debug no WLAN”.

The communication between the physical robots andRobotControltakes place optionally
with WLAN or the memory stick, whereas the further processing is identical in both methods.

J.2.2 Log-Player

A special type of message queues is the classLogPlayer 7. Its instancelogPlayer
in CRobotControlQueues can record and save the data of the message queue
fromPhysicalRobots (see next section). These log files as well as log files recorded on
physical robots later can be played again, whereas the time intervals between the messages are
kept.

All messages played bylogPlayer are put into the queuefromPhysicalRobots –
there is no difference for the further processing whether the messages come from a log file or
directly via WLAN from a physical robot.

TheLog Playertool bar8 is the graphical user interface to thelogPlayer (cf. fig. J.2).

J.2.3 Distribution of Incoming Messages

In the message queuetoGUI 9 arrive those messages from simulated and physical robots that
shall be displayed or processed by the graphical user interface. But also dialog bars and tool bars
use this queue to place text messages in theMessageViewerdialog bar10:

getQueues().toGUI.out.text << "Error in dialog xy";
getQueues().toGUI.out.finishMessage(idText);

7Derived from classMessageQueue , definition and implementation inSrc/Tools/MessageQueue/LogPlayer.h
and.cpp.

8Definition and implementation inSrc/RobotControl/Bars/LogPlayerToolBar.hand .cpp, instantiation in
CRobotControlMainFrame (Src/RobotControl/RobotControlMainFrame.h).

9As fromSimulatedRobots and fromPhysicalRobots member of class
CRobotControlQueues .

10Definition and implementation inSrc/RobotControl/Bars/MessageViewerDlgBar.hand .cpp, instantiation in
CRobotControlMainFrame (Src/RobotControl/RobotControlMainFrame.h).

J.2. MESSAGE QUEUES AND MESSAGE DISTRIBUTION 239

Messages from all physical robots and messages from log files at first arrive in
the queue fromPhysicalRobots , messages from all simulated robots arrive in
fromSimulatedRobots . These both message queues may be only accessed in a syn-
chronized way, asRobotControlotherwise crashes (cf. sect.J.7.2).

The message distribution of these three queues is done in three classes derived from
MessageHandler 11:

CMessageHandlerForQueueFromPhysicalRobots ,
CMessageHandlerForQueueFromSimulatedRobots , and
CMessageHandlerForQueueToGUI . All three are defined together in a common

file12.

The CMessageHandlerForQueueFromSimulatedRobots distributes the mes-
sages from the queuefromSimulatedRobots . At the moment, it is programmed such:

bool CMessageHandlerForQueueFromSimulatedRobots
::handleMessage(InMessage& message)

{
message >> getQueues().toGUI;
return true;

}

All messages from the simulated robots are directly put into the queue to the graphical user
interface.

The CMessageHandlerForQueueFromPhysicalRobots distributes the messages
from physical robots and log files (queuefromPhysicalRobots). First, for each message
from that queue thelogPlayer is notified. If this is recording at the moment, it appends the
message to its internal queue.

As the simulated robots process sensor data both from physical robots as well as the simu-
lator, some messages fromfromPhysicalRobots are sent to the selected simulated robot.
This happens only if a simulated robot is active. Additionally, it is possible to switch off the
simulated robots with the button “Disable simulated robots” on theSimulatortool bar (cf. fig.
J.6) so that all messages fromfromPhysicalRobots are directly put intotoGUI .

All messages that are not sent to a simulated robot are also put intotoGUI :

bool CMessageHandlerForQueueFromPhysicalRobots
::handleMessage(InMessage& message)

{
getQueues().logPlayer.handleMessage(message);

11Definition inSrc/Tools/MessageQueue/InMessage.h, see sectionH.1.2.
12Src/RobotControl/RobotControlMessageHandler.hand.cpp.

240 APPENDIX J. PROGRAMMING ROBOTCONTROL

if (getSimulatedRobots().getSelectedRobot() == -1
|| getSimulatedRobots().getSimulatedRobotsAreDisabled())
{

message >> getQueues().toGUI;
return true;

}
else
{

switch(message.getMessageID())
{
case idImage:
case idWorldState:
case idPercepts:
case idSpecialPercept:
case idJPEGImage:
case idOdometryData:

message >> getQueues().toSimulated.selectedRobot;
return true;

default:
message >> getQueues().toGUI;
return true;

}
}

}

The CMessageHandlerForQueueToGUI finally distributes all messages that shall be
displayed in the user interface. For each single data type it is specified, which dialog bars are
notified on the message.

With mainFrame.handleMessageInDialog(id,message) , with id as the ID
of the dialog bar13, a specific dialog bar is notified on a message. To notify a second
dialog bar on the same message, the read position of the message must be reset with
message.resetReadPosition() .

The queue toGUI has to handle messages of up to eight simulated and
physical robots. On the other hand, most dialog bars are able to display
data from a single robot only. Thus, the message queue can be queried with
getQueues().isFromSelectedOrUndefinedRobot(message) , whether a mes-
sage originates from the selected physical or simulated robot.

This example shows, how in theCMessageHandlerForQueueToGUI messages of the
type idJointData are distributed to the dialog bars:

bool CMessageHandlerForQueueToGUI
::handleMessage(InMessage& message)

13Defined inSrc/RobotControl/resource.h.

J.2. MESSAGE QUEUES AND MESSAGE DISTRIBUTION 241

{
MessageID messageID = message.getMessageID();

switch(messageID)
{
...

case idJointData:
if (getQueues().

isFromSelectedOrUndefinedRobot(message))
{

mainFrame.handleMessageInDialog(
IDD_DIALOG_BAR_JOINT_VIEWER,message);

message.resetReadPosition();
mainFrame.handleMessageInDialog(

IDD_DIALOG_BAR_RADAR_VIEWER_3D,message);
}
return true;

...
}
return false;

}

The message is first sent to theJoint Viewerdialog bar14. Then the read position is reset and
the Radar Viever 3Ddialog bar15 also the message. All that only happens when the message
comes from the selected robot, as both dialog bars can only process messages from one robot at
the same time.

J.2.4 Example

To illustrate the mechanisms of the last section, we explain, how an images is transfered from a
physical robot to the graphical user interface ofRobotControl.

After connecting to a physical robot via WLAN, images are requested using theDebug
Keys tool bar (cf. fig H.1). The modifiedDebugKeyTable is put into the message queue
toAllPhysicalRobots . The classCRobotControlPhysicalRobots (cf. sect.J.3)
sends the message to all connected physical robots. The message arrives in theDebug process

14Definition and implementation inSrc/RobotControl/Bars/JointViewerDlgBar.hand .cpp, instantiation in
CRobotControlMainFrame (Src/RobotControl/RobotControlMainFrame.h).

15Definition and implementation inSrc/RobotControl/Bars/RadarViewer3DDlgBar.hand .cpp, instantiation in
CRobotControlMainFrame (Src/RobotControl/RobotControlMainFrame.h).

242 APPENDIX J. PROGRAMMING ROBOTCONTROL

Figure J.3: The WLAN tool bar is the graphical user interface to class
CRobotControlPhysicalRobots .

of the robot. As it has the IDidDebugKeyTable , it is both sent to theCognition and
Motion process.

According to the request, in themain() method ofCognition images are put into
debugOut , from where it is sent to theDebug process. This manages the transmission of
the data back to the PC.

In RobotControl the images arrive in the message queuefromPhysicalRobots . If
the simulated robots are not disabled and if at least one of them is active, the image is put
into toSimulated.selectedRobot (if not, it is directly sent to the GUI). Shortly af-
ter that, the classCRobotControlSimulatedRobots passes the message to the process
OVirtualRobotComm (cf. sect.J.4.1) of the selected simulated robot. Through theDebug
process the image reaches the processCognition of the simulated robot.

In Cognition all modules are executed as on the physical robot. The image as
well as calculated percepts, the world model, and several drawings are automatically put
one after each other intodebugOut and sent viaDebug and OVirtualRobotComm
back to CRobotControlSimulatedRobots . From there the messages get through
fromSimulatedRobot to the message queuetoGUI . Finally, the image is passed to several
dialog bars and visualization components, which display it together with the generated percepts,
world states, and drawings.

J.3 Physical Robots

ClassCRobotControlPhysicalRobots 16 encapsulates the WLAN communication with
the physical robots. It has 8 members of the typeCRobotControlDebugConnection 17,
which implements a direct TCP connection to a physical robot.

Amongst the connected robots, the variableselectedRobot specifies the number of the
“selected” robot. Dialog bars that can only process data from one robot at the same time are
notified only for messages from this robot. Furthermore only this robot gets the messages from
toPhysical.selectedRobot . Counting starts from 0 (red 1) and ends at 7 (blue 4).

The number of the selected robot is queried withgetSelectedRobot() . If no robot
is connected,−1 is returned. WithsetSelectedRobot(int robot) a physical robot is
selected. To avoid selecting not connected robots, it can be queried withisConnected(int
robot) whether the specified robot is connected.

16Definition and implementation inSrc/RobotControl/RobotControlPhysicalRobots.hand .cpp, instantiation in
CRobotControlApp (Src/RobotControl/RobotControl.h).

17Definition and implementation inSrc/RobotControl/RobotControlDebugConnection.handcpp.

J.4. SIMULATED ROBOTS 243

On connect(CRobotControlWLANConfiguration&) , the class builds up
connections to all robots given in aCRobotControlWLANConfiguration 18. With
disconnect() all these connections are disconnected again.

TheWLAN tool bar (cf. fig.J.3) uses all these functions. With it a user can edit and connect
WLAN configurations and define one of the robots as the selected robot. Through the glob-
ally defined functiongetPhysicalRobots() the WLAN tool bar accesses the instance of
CRobotControlPhysicalRobots in RobotControl.

J.4 Simulated Robots

As already mentioned, the complete programs for the robots are also compiled and linked to
RobotControl. This is possible because in the GT architecture all platform specific functionality
was encapsulated in platform independent wrapper classes which were implemented for both the
Open-R and Windows platform. For the robot programs there is no difference whether they run
on a physical robot or on the PC. This allows to test and debug a method first inRobotControl,
before it is compiled for the physical robots and tested on the field.

J.4.1 Replication of The Robot Operating System

To let the robot programs run on insideRobotControl as on a physical robot, all used
functionality of the Open-R operating system had to be reimplemented for the Windows
platform. The biggest difference is in the implementation of the system processes. Whereas
for Aperios/ Open-R only the functionality of the Open-R API was encapsulated, the process
framework on the Windows/VC platform is a complete reimplementation of the Open-R
processes and its inter-process communication19. Processes are implemented using threads,
that’s whyRobotControlruns only very unstable on systems such as Windows 95 or Windows 98.

On the Open-R platform the system processOVirtualRobotComm, which is only provided
as a binary, manages the control of the sensors and actuators. (cf. fig.H.2). It feeds theCogni-
tion process with images and other sensor data and receives motor commands from theMotion
process. In order to have the same connections between processes on the physical robots and in
RobotControl, the functionality of the Open-R processOVirtualRobotCommwas reimplemented
in classOVirtualRobotComm 20.

18Definition and implementation inSrc/RobotControl/RobotControlPhysicalRobots.hand .cpp, instantiation in
CWLANToolBar (Src/RobotControl/Bars/WLANToolBar.h).

19See classPlatformProcess and templateProcessBase in Src/Platform/Win32/ProcessFramework.h
and.cpp.

20Definition and implementation inSrc/Platform/Win32/ForRobotControl/OVirtualRobotComm.hand .cpp, in-
stantiation at start and reset of SimRobot.

244 APPENDIX J. PROGRAMMING ROBOTCONTROL

Image SensorDataBuffer

Cognition

debugOut debugIn

JointDataBuffer SoundData

Motion

debugOut debugIn

Debug

debugOut debugIn

OVirtualRobotComm

... ...

debugOut debugInController

to simulated robot from simulated robotRobotControl main thread SimRobot

Figure J.4: The main data streams in simulated robots in the CMD process layout (see also fig.H.2.)

Like on the Open-R platform, this process is responsible for feeding the robot programs with
sensor readings and receive the generated actions (cf. fig.J.4). Additionally, it transmits debug
messages between theDebug process andRobotControl.

J.4.2 Integration of SimRobot

Additionally, the classOVirtualRobotComm is an interface between the simulated robots
and the simulatorSimRobot. This is actually an independent program with an own graphical
user interface, but a small part of (the simulation and a visualization of the world, see fig.J.5)
was integrated intoRobotControl21. As there is already a newer version ofSimRobot, which will
possibly be integrated intoRobotControl, this section only focuses on some general mechanisms.

At the start ofRobotControl, the world description fileConfig/Scenes/RobotControl.scnis
parsed. Different from nativeSimRobot, the number of robots to be used is not specified in the
scene file but can be set from withinRobotControl. The classCSimRobotDocument holds
the world and is responsible for the simulation. TheSimulator Object Viewerdialog bar22 (cf.
fig. J.5) is used to display the current state of the world.

21The files for the simulation part ofSimRobotare inSrc/SimRob95/SimRobot. They are compiled into the opti-
mized librarySimRobotForRobotControl.liband linked withRobotControl. In directorySrc/RobotControl/SimRobot
are the files needed for the integration intoRobotControl.

22Definition and implementation inSrc/RobotControl/Bars/SimulatorObjectViewerDlgBar.hand.cpp, instantia-
tion in CRobotControlMainFrame (Src/RobotControl/RobotControlMainFrame.h).

J.4. SIMULATED ROBOTS 245

Figure J.5: With theSimulator Object Viewerdialog bar the state of the simulation can be viewed and
objects can be moved with the mouse.

Figure J.6: The Simulator toolbar is the graphical user interface to the class
CRobotControlSimulatedRobots .

In functionOVirtualRobotComm::update() the motor commands calculated by the
motor control programs are passed to the simulation and the calculation of simulated images
and sensor data is requested. InOVirtualRobotComm::main() these data together with
debug information are sent to the robot processes.

As the calculation of simulated images lasts very long, it is possible to switch the image
simulation off. Instead, for example to test only the behaviors, the true world model can be
sent to the robot processes, which is calculated by classOracle 23 based on the state of the
simulation.

J.4.3 Interface to RobotControl

The classCRobotControlSimulatedRobots 24 embeds the simulated robots and the sim-
ulation into inRobotControl.

OnSimStart() starts and stops the simulation.OnSimStep performs a single simu-
lation step.OnSimReset() resets everything – all simulated robots are deconstructed and
newly created.

23Definition and implementation inSrc/Platform/Win32/Oracle.hand .cpp . No instantiation, all members are
static.

24Definition and implementation inSrc/RobotControl/RobotControlSimulatedRobots.hand.cpp, instantiation in
CRobotControlApp (Src/RobotControl/RobotControl.h).

246 APPENDIX J. PROGRAMMING ROBOTCONTROL

The user can use the (cf. fig.J.6) to define which robots shall be simulated how. This con-
figuration is stored in variablestate[8] of classCRobotControlSimulatedRobots .
There are these states:

• disabled : The robot is neither simulated nor displayed on the field.

• passive : The robot is on the soccer field but is not simulated.

• activeWithoutImages : The robot is simulated, but no images and joint angles are
calculated. Instead the robot directly receives a world state calculated by theOracle
(see previous section).

• activeWithImages : The robot is simulated completely.

If a user changes this configuration, the simulation is stopped and must be restarted manually
(reset). As the connections between the robots are set up at the start of the processes, it is not
possible to add or remove robots dynamically.

The variableselectedRobot defines, which of the active simulated robots is the “se-
lected” robot. This means that messages from the queuetoSimulated.selectedRobot
are sent only to this robot and dialogs which can only process data from one robot are only
notified on data from this robot. Numbering again is from 0 (red1) to 7 (blue4).

The class CRobotControlSimulatedRobots also manages the instantiation
of the simulation and the message exchange between the simulated robots andRobot-
Control. As already mentioned, it is possible to switch of the simulated robots all
at once with setSimulatedRobotsAreDisabled(true) to route data from
physical robots directly to the GUI (cf. sect.J.2.3). Thereby the simulated robots are
not deconstructed. They just are not triggered until they are switched on again with
setSimulatedRobotsAreDisabled(false) .

With the globally defined functiongetSimulatedRobots() 25 the graphical user inter-
face (particularly theSimulatortool bar) accesses the simulated robots.

J.4.4 Processing Data from Physical Robots

The simulated robots work not only on data calculated by the simulator but can also be fed
with data from physical robots or log files. This for example helps to test algorithms for images
processing or ball modeling without a physical robot but on real data.

Images, joint angles, percepts, and even world models are sent via message queues to the
Cognition 26 process of the selected simulated robot. There the instances of the representations
are overwritten with the data from the messages.

25Definition inSrc/RobotControl/RoboControlSimulatedRobots.h.
26Definition and implementation inSrc/Processes/CMD/Cognition.hand.cpp.

J.5. GRAPHICAL USER INTERFACE 247

Some efforts were made to avoid the need for manual settings for different debug scenar-
ios. Particularly switching off modules is not required. Normally, for example one would need
to switch off the moduleImageProcessor in order to test the moduleBallLocator
(cf. fig. I.1) with ball percepts from a log file. Otherwise, in themain() method of the
Cognition process theImageProzessor would overwrite again the previously received
BallPercept before of theBallLocator is called.

Therefore, there are these Boolean variables in theCognition process:
processSensorData , processImage , and processPercepts . All three are set
at the end ofCognition::main() to false .

If new sensor data were received either throughtheSensorDataBufferReceiver
or through a message with the IDidSensorData , processSensorData is set to
true . And only if processSensorData is true, the modulesSensorDataProcessor ,
CollisionDetector , andRobotStateDetector are executed.

Similar in the image processing. If an image is received through thetheImageReceiver
or a idImage -message,processImage gets true and the modulesImageProcessor
andSpecialVision are executed.

The world modeling modules are only executed whenprocessPercepts is true. This
happens when either the image processing modules were executed before or when a message
with the ID idPercepts was received.

If messages with IDidWorldState arrive in the process (also from theOracle), none
of the three variables getstrue and only the moduleBehaviorControl is executed.

These mechanisms ensure that only those modules are executed for that new data are existent.

J.5 Graphical User Interface

The graphical user interfaceRobotControl(cf. fig. 5.3) is also strongly modularized: dialog bars
and tool bars are programmed in separate files independent from each other. Removing one of
them has no side effects on others.

J.5.1 The Main Window

The main window ofRobotControlis defined in classCRobotControlMainFrame 27 and
appears after the start of the program. It embeds all dialog bars and tool bars. Furthermore, it has
a menu, a status bar, and a single child window.

To be able to embed the tool bars which are not directly based on MFC (cf. sect.J.5.3),
CRobotControlMainFrame is not derived from the standard MFC classCMDIFrameWnd,
but from CMDIFrameWndEx28 of the used code library for tool bars. By that it is possible to

27Definition and implementation inSrc/RobotControl/RobotControlMainFrame.hand .cpp, instantiation in
CRobotControlApp (Src/RobotControl/RobotControl.h).

28Definition and implementation inSrc/RobotControl/MfcTools/IEStyleToolBars/FrameWndEx.hand.cpp.

248 APPENDIX J. PROGRAMMING ROBOTCONTROL

Figure J.7: The menu ofRobotControlis as all other tool bars movable and size varying.

position the tool bars on a variable number ofbandson the upper border of the main window. Ad-
ditionally, the menuIDR ROBOTCONTROLis automatically displayed as dynamically movable
tool bar29 (cf. fig. J.7).

CRobotControlMainFrame embeds all dialog bars and tool bars. For the purpose of
automatic administration, there are no member variables for them. Instead, instances are stored
in maps and arrays. WithdialogBarMap[id] a dialog bar can be accessed through its ID.
The dialogBarArray[pos] can be accessed through the position in the array (order of
instantiation). Analogous to that there is thetoolBarMap and thetoolBarArray in class
CRobotControlMainFrame .

The macroCREATEDIALOG BAR(..) creates a dialog bar, embeds it into the main
window, and inserts it into the map and the array (cf. sect.K.1.4). Similarly, tool bars are created
and embedded withCREATETOOLBAR(..) (cf. sect.L.1.6).

The Windows API sends messages for each single interaction of the user with win-
dows and controls. For dialog bars, these messages are automatically sent to the corre-
sponding class. But messages for interactions with the menu or with a tool bar arrive in
CRobotControlMainFrame . Some of them (for instance requests for opening/ closing dia-
log bar or tool bar) are handled by the class itself. For all other events inOnCmdMsg(..) and
OnCommand(..) first all tool bars and then all dialog bars are queried whether they want to
handle the message. Thereto these have to overwrite some virtual functions of their base classes
(see sectionK.2.5andL.2.3).

Additionally, CRobotControlMainFrame is responsible for the update of all
controls of RobotControl. The Windows-API frequently calls the member function
OnUpdateCmdUI(CCmdUI* pCmdUI) for all visible controls. It is possible to acti-
vate/ deactivate controls, to exchange images on buttons, or to display buttons checked/
unchecked. By default, all controls are enabled inCRobotControlMainFrame using
pCmdUI->Enable(true) . If a programmer wants to deactivate a control dynamically,
he overwrites in the class of the dialog bar or tool bar the virtual base class function
updateUI(..) and calls it for the according control IDs from theOnUpdateCmdUI(..)
method of the main window (cf. sect.K.2.3andL.2.2).

The only child window ofRobotControl, theField Viewwindow30 (see in the center of figure
5.3) fills all the space of the main window that is not occupied by tool bars and dialog bars. It is
used by theDebug Drawing Managerto display a field and a variety of visualizations on it.

29This functionality is provided by class CMenuBar. Definition and implementation in
Src/RobotControl/MfcTools/IEStyleToolBars/MenuBar.hand.cpp.

30Definition and implementation inSrc/RobotControl/RobotControlFieldView.hand .cpp, instantiation in
CRobotControlApp (Src/RobotControl/RobotControl.h).

J.6. ADDITIONAL MECHANISMS 249

J.5.2 Dialog Bars

As theMicrosoft Foundation Classesdo not support resizing and dockable dialogs, the external
code libraryResizable Control Bars31 by Christie Posea was used. This contains classes for resiz-
ing dialogs32 and mechanisms for embedding these dialogs into dynamic dockable windows33.

Normally, developers do not get in contact with these classes as all relevant functionality is
encapsulated in classCRobotControlDialogBar 34. The classes of all dialog bars derive
from it and it has a variety of virtual functions that ensure the automatic integration into the main
window (cf. chapterK).

J.5.3 Tool Bars

For the tool bars ofRobotControl, the code libraryIEStyle ToolBars35 by Nikolay Denisov was
used. It contains classCToolBarEx 36, from which derivesCRobotControlToolBar 37, the
base class for all tool bars inRobotControl.

CRobotControlToolBar extends the functionality of the library by the possibility to
add drop-down-lists, edit controls, and sliders on a tool bar. And it also enables the automatic
administration of tool bars by providing some virtual functions (cf. chapterL).

J.6 Additional Mechanisms

Despite all the already introduced components, there are some other general mechanisms, which
are described in this section.

J.6.1 Central Debug Key Tables

Many dialog bars automatically request via debug keys messages from the robots. As it would be
disadvantageous when different dialog bars would send different debug key tables, there are two

31The used and adapted version is in directorySrc/RobotControl/MfcTools/DockingControlBars/, current versions
can be found athttp://www.datamekanix.com. Attention! The version used inRobotControlwas changed such that
it can not be exchanged by a newer version without modifications.

32Such dialogs derive from class CDynamicDialog , definition and implementation in
Src/RobotControl/MfcTools/DockingControlBars/DynamicDialog.hand.cpp.

33The class CDynamicBar allows it to dock windows dynamically into the main window, def-
inition and implementation in Src/RobotControl/MfcTools/DockingControlBars/DynamicBar.hand
.cpp. Dialogs are embedded in such dockable windows with the templateCDynamicBarT
(Src/RobotControl/MfcTools/DockingControlBars/DynamicBar.h).

34Definition and implementation inSrc/RobotControl/RobotControlDialogBar.hand.cpp.
35The used adapted version can be found in directorySrc/RobotControl/MfcTools/IEStyleToolBars/, current ver-

sions athttp://www.codeproject.com/docking/sizablerebar.asp.
36Definition and implementation inSrc/RobotControl/MfcTools/IEStyleToolBars/ToolBarEx.hand.cpp.
37Definition and implementation inSrc/RobotControl/RobotControlToolBar.hand.cpp.

250 APPENDIX J. PROGRAMMING ROBOTCONTROL

central instances in in the classCRobotControlDebugKeyTables 38, one for all physical
robots and one for all simulated.

It can be accessed via the globally defined functiongetDebugKeyTables 39. With for
example

getDebugKeyTables().forPhysicalRobots.set(
DebugKeyTable::sendImage,DebugKey::always)

the debug key table for the physical robots can be modified. Analogous, with
getDebugKeyTables().forSimulatedRobots the debug key table for the sim-
ulated robots can be accessed.

With getDebugKeyTables().sendForPhysicalRobots() and
getDebugKeyTables().sendForSimulatedRobots() the changes are sent to
the physical and simulated robots.

J.6.2 Configuration Manager

Developers should make sure that settings made by the user are stored in the Windows registry
and that they are re-read from there whenRobotControlstarts the next time. Besides that, there
is the possibility to store the complete screen layout ofRobotControlin differentconfigurations
in the registry and to switch between them at runtime. A configuration contains the visibility and
positions of dialog bars and tool bars as well as settings of single dialog bars that are dependent
on the window layout.

These configurations are managed by the classCRobotControlConfigurationManager 40.
The configurations can be created, saved, deleted, and switched through the menu ofRobotCon-
trol.

For each configuration a separate key is stored in the registry in
...\RobotControl\Configurations. The respective settings a stored below this key.

In order to save settings of single dialog bars together with configurations, their classes must
overwrite the virtual functionsOnConfigurationLoad(CString sectionName) and
OnConfigurationSave(CString sectionName) 41.

OnConfigurationLoad(..) is called automatically at the start ofRobotControland
when the configuration changes. The parametersectionName is the name of the registry
key from where the settings shall be read. InOnConfigurationSave(..) the settings are
written to the registry below the passed section name. See also sectionK.3.2.

38Definition and implementation inSrc/RobotControl/RobotControlDebugKeyTables.hand.cpp, instantiation in
CRobotControlApp (Src/RobotControl/RobotControl.h).

39Definition inSrc/RobotControl/RobotControlDebugKeyTables.h.
40Definition and implementation inSrc/RobotControl/RobotControlConfigurationManager.hand.cpp, instantia-

tion in CRobotControlApp (Src/RobotControl/RobotControl.h).
41Definition in base classCRobotControlDialogBar (Src/RobotControl/RobotControlDialogBar.h).

J.7. MAIN PROGRAM 251

J.7 Main Program

All main components ofRobotControlare combined in classCRobotControApp 42. This class
is responsible for the start ofRobotControl, the instantiation of the single components, and the
exchange of messages between the components. Thanks due to the good modularization this
class looks very concise:

class CRobotControlApp : public CWinAppEx
{
public:

DECLARE_SYNC;

CRobotControlApp();
˜CRobotControlApp();

CRobotControlQueues queues;
CRobotControlDebugKeyTables debugKeyTables;
CRobotControlConfigurationManager configurationManager;
CRobotControlSimulatedRobots simulatedRobots;
CRobotControlPhysicalRobots physicalRobots;
CRobotControlMainFrame* pMainFrame;

CMDIChildWnd* pChildWnd;

virtual BOOL InitInstance();
virtual BOOL OnIdle(LONG lCount);

};

CRobotControlApp& getRobotControlApp();

CRobotControlApp contains instances of all main components. With
getRobotControlApp() one can access the instance of this class and by that the in-
stances of the components. ButRobotControl.hshould be included only rarely into other files to
keep the dependencies between the sources low.

J.7.1 Start of RobotControl

At the start ofRobotControl, with CRobotControlApp theApp; 43 a static instance of
CRobotControlApp is created. During that the constructors of the main components are
invoked. Note that from these constructors other components must not be accessed, particularly
not the message queues.

42Definition and implementation inSrc/RobotControl/RobotControl.hand.cpp, instantiation at the start ofRobot-
Control, see sect.J.7.1.

43At the beginning ofSrc/RobotControl/RobotControl.cpp.

252 APPENDIX J. PROGRAMMING ROBOTCONTROL

Next, inCRobotControlApp::InitInstance() the components are initialized. Af-
ter a few MFC-specific settings, a splash screen44 is created and shown (the start ofRobotControl
usually takes a long time). Then with

configurationManager.init();

the configuration manager is initialized. It reads the list of available configurations from the
registry. Thereafter, the main window and the child window for theField Vieware created:

pMainFrame = new CRobotControlMainFrame();
pMainFrame->LoadFrame(..);
..
pChildWnd = pMainFrame->CreateNewChild(..);

Both are not displayed yet, as the docking of dialog bars is faster when the main window is
not visible. Afterwards the simulated robots are created:

simulatedRobots.create();

The scene for the simulator is loaded and for each active simulated robot the robot processes
are created and connected. This can last a very long time depending on the number of simulated
robots. Only in the end with

pMainFrame->createDialogBarsAndToolBars();

the dialog bars and tool bars are created whileRobotControlis still invisible. At the end of
createDialogBarsAndToolBars() the last configuration is loaded, the main window is
displayed, and the splash screen is closed.

J.7.2 Synchronisation

The main message queues, the simulator, the graphical user interface, and the WLAN communi-
cation run in the thread of the main application. The simulated robots run in independent threads.
To avoid crashes, the exchange of data (from message queues) must be synchronized. That means
that it must be ensured that critical resources are always accessed by only one thread at the same
time.

Objects are declared synchronizable withDECLARESYNC45. The macro
SYNCWITH(obj) is used to synchronize with such an object. It is inserted in the code
before the critical resource is accessed. The control remains as long in the statement as no other
object accesses the requested resource.

For example the simulated robots write messages into the queuefromSimulatedRobots
only after synchronization with the main thread:

44Definition and implementation inSrc/RobotControl/Dialogs/SplashScreenDlg.hand.cpp.
45The macrosDECLARESYNC, SYNC, andSYNCWITH are defined inSrc/Platform/Win32/Thread.h.

J.7. MAIN PROGRAM 253

bool OVirtualRobotComm::handleMessage(InMessage& message)
{

SYNC_WITH(getRobotControlApp());
message >> getQueues().fromSimulatedRobots;

return true;
}

Into the other direction,CRobotControlSimulatedRobots::onIdle() synchro-
nizes with the processOVirtualRobotComm .

The functionCRobotControlApp::OnIdle() is always called when all events for
the GUI were processed, all controls were updated, and when there is free processing time. This
makesOnIdle() to a good function for accessing the shared message queues from the main
thread. First, one step of the simulation is executed. Then messages are exchanged with the
simulated and physical robots. After that the message handlers are invoked for the main queues.

254 APPENDIX J. PROGRAMMING ROBOTCONTROL

Appendix K

Adding a Dialog Bar to RobotControl

This chapter describes how to add a dialog bar (cf. sect.J.5.2) to RobotControl. Although it
is of course possible just to copy and adapt an existing dialog bar, following this instructions
might be easier and less error-prone. In single steps it is explained how to create a dialog bar,
how to embed it into the main window, and how to program it. The already existingMofTester
dialog bar1 serves as an example (cf. figK.4). The appearance of the dialog bar has changed in
meantime – but the general principles and procedures are still the same.

The creation of dialog bars is identical in Visual C++ 6.0 and Visual C++ 2003 .Net. There is
no difference in the appearance afterwards and each step is identical in both environments. Only
the user interfaces of Visual Studio vary. In this description the figuresK.2 andK.1 were created
with Visual C++ 2003 .Net. In sectionK.4 the corresponding screen shots for für Visual C++ 6.0
can be found.

K.1 Creation of a new Dialog Bar

Dialog bars are created similar to normal modal dialogs. The difference is how they are displayed
and embedded into the main window.

Before, a good name has to be found. It should be as common as possible but it should also
say something about that the dialog bar does.

K.1.1 Creation of a dialog resource

First, a resource for the dialog bar has to be created. Therefore, one opens the “resource view” of
Visual Studio, right-clicks the entry “dialog”, and selects “add resource” in the appearing context
menu. One chooses “dialog” in the appearing dialog and clicks on “new”.

Then, one right-clicks into the new dialog bar and selects “properties” in the context menu.
In the appearing dialog, theID of the dialog bar must be changed fromIDD DIALOG1 to

1Definition and implementation inSrc/RobotControl/Bars/MofTesterDlgBar.hand .cpp, instantiation in
CRobotControlMainFrame (Src/RobotControl/RobotControlMainFrame.h).

255

256 APPENDIX K. ADDING A DIALOG BAR TO ROBOTCONTROL

Figure K.1: TheMofTesterdialog bar in the resource view of Visual Studio. New dialog bars should be
arranged as compact as this one, as dialog bars are resizable and the user specifies its real size (cf. fig.
K.4). This editor looks different in Visual C++ 6.0 (cf. fig.K.5a).

IDD DIALOG BARMYDIALOG, for example toIDD DIALOG BARMOFTESTER. All other
settings have to be made such that they completely match those in figureK.2.

After deleting the both existing buttons, new controls can be added. The layout should be as
compact and small as possible (cf. fig.K.1), as the size specified in the resource is the minimum
size of the resizing dialog bar. The user should choose how big to display it.

For each control an ID has to be specified. As an convention, these should start
with IDC MYDIALOG... , in the example withIDC MOFTESTER... . A button with
the ID IDC STOPBUTTONcan potentially be part of many dialog bars, that’s why
IDC MOFTESTERSTOPBUTTONshould be used.

K.1.2 Changes in Resource.h

After that, theResource.h2 must be edited manually. Therefore, one saves and closes all resource
windows and opensResource.h. The id for the new dialog bar is changed such that it is between
IDD DIALOG BARFIRST andIDD DIALOG BARLAST. This is needed to manage the dia-
log bars automatically.

In the example, the begin ofResource.hshould look like this:

...
#define IDD_DIALOG_BAR_FIRST 183
...
#define IDD_DIALOG_BAR_MOFTESTER 190
...
#define IDD_DIALOG_BAR_LAST 270
...

2Src/RobotControl/resource.h.

K.1. CREATION OF A NEW DIALOG BAR 257

Figure K.2: Exactly this settings have to be done for a new dialog bar. The property dialog looks different
in Visual C++ 6.0 (cf. fig.K.5b).

258 APPENDIX K. ADDING A DIALOG BAR TO ROBOTCONTROL

Then, the IDs for the controls are changed. As the IDs of all dialog bars and tool bars are
defined together in one single file, they should be grouped. In order to be able to add further
controls to existing dialog bars, there should be a gap of at least 10 to the previous group:

...
#define IDC_STATUS_BAR_LOGPLAYER_FILENAME 1465
#define IDC_MOFTESTER_LOOP 1475
#define IDC_MOFTESTER_EXECUTE_BUTTON 1476
#define IDC_MOFTESTER_READ_BUTTON 1477
#define IDC_MOFTESTER_STOP_BUTTON 1478
#define IDC_MOFTESTER_MIRROR_BUTTON 1479
#define IDC_MOFTESTER_MOF_EDIT 1480
#define IDC_MOFTESTER_LINES 1481
#define IDC_MOFTESTER_STATIC1 1482
...

At the end ofResource.h, the value that shall be used for the next added control has to be set
(value of the last control + 10):

#define _APS_NEXT_CONTROL_VALUE 1495

K.1.3 Creating a Class for the Dialog Bar

For each dialog bar, a single class (in the exampleCMofTesterDlgBar) is created in a single
.h and .cpp file3. Thereto, one does not use the class assistant but the templatestemplate-for-
new-dialog-bar.h.txtandtemplate-for-new-dialog-bar.cpp.txt4. They are copied and renamed to
e.g.MofTesterDlgBar.hand .cpp. The templates contain detailed instructions how to use them
(mainly by search and replace).

At last the both files are added to the project.

K.1.4 Embedding a Dialog Bar into the Main Window

Every dialog bar is embedded into the main window5. Therefore, inRobotControlMain-
Frame.cppthe header file of the dialog bar has to be included:

#include "Bars/MofTesterDlgBar.h"

3Directory for all dialog bars:Src/RobotControl/Bars/.
4In the same directory.
5Class CRobotControlMainFrame , definition and implementation in

Src/RobotControl/RobotControlMainFrame.hand.cpp.

K.1. CREATION OF A NEW DIALOG BAR 259

Figure K.3: TheMofTesterdialog bar without resizing mechanisms.

Then, in functioncreateDialogBarsAndToolBars() the dialog bar is created and
embedded using the macroCREATEDIALOG BAR6:

CREATE_DIALOG_BAR(CMofTesterDlgBar,"MofTester",
IDD_DIALOG_BAR_MOFTESTER);

The first parameter is the class name, the second the window title and the third the ID of the
dialog bar.

In order to be able to open the dialog bar, an entry in the “View” menu ofRobotControlhas
to be created. Thereto, one opens the menuIDR RobotControl in the resource editor and
adds below “View” a new entry for the dialog bar. As ID for the menu entry the ID of the dialog
bar is chosen, in the exampleIDD DIALOG BARMOFTESTER.

Then the “String-Table” is opened in the resource editor. For the ID of the dialog bar a
explanatory text is added. This text is shown in the status bar when the mouse moves over the
menu entry. Separated by\n, a short text for of the menu command is added. For example:

“Open the Mof tester dialog\nMof Tester”

At last, the tool barIDB MENUBUTTONSis opened in the resource editor. A suitable
icon for the menu entry is selected from the existing ones or newly drawn. At the end of
function CRobotControlMainFrame::createDialogBarsAndToolBars() every
menu entry is assigned to an icon. For example

mapIDToImage[IDD_DIALOG_BAR_MOFTESTER] = 6;

assigns the menu entry for theMofTester dialog bar to the seventh7 icon from
IDB MENUBUTTONS.

After all the steps until here it should be possible to display the dialog bar. Provided
that the ID of the dialog bar really was defined betweenIDD DIALOG BARFIRST and

6Definition inSrc/RobotControl/RobotControlDialogBar.h.
7Counting starts from 0.

260 APPENDIX K. ADDING A DIALOG BAR TO ROBOTCONTROL

IDD DIALOG BARLAST, the classCRobotControlMainFrame automatically opens the
dialog bar when a user selects the corresponding menu point. The result should look as in fig.
K.3.

In some cases one gets a crash when trying to open the newly created dialog bar. This is
caused by a resource compilation problem in Visual Studio and normally can be solved by a
recompile all.

K.2 Programming a Dialog Bar

With the steps described in the last section, it is possible to create a passive dialog bar. This
section deals with the actual programming.

K.2.1 Member Variables for Control

For each control that shall be used by the program logic or that shall automatically adapt to the
size of the window, a member variable must be added to the class of the dialog bar.

Visual Studio and MFC experts use the class assistant for this, paying attention not to de-
stroy anything. The safer (and mostly also faster) way is the manual creation of variables. They
are declared in the header file of the dialog bar between the lines//AFX DATA(..) and
//AFX DATA:

//{{AFX_DATA(CMofTesterDlgBar)
enum { IDD = IDD_DIALOG_BAR_MOFTESTER };
CStatic m_lines;
CStatic m_static1;
CButton m_stopButton;
CEdit m_mofEdit;
CButton m_readButton;
CButton m_loopCheck;
CButton m_executeButton;
CButton m_mirrorButton;
//}}AFX_DATA

As an convention, the variables should begin withm and end with the ID of the
control. In the example, the variable for the controlIDC MOFTESTERSTOPBUTTON is
mstopButton . The type of the variable depends on the type of the control:

• CButton : for Buttons, checkboxes and radio buttons

• CEdit : for text controls

• CStatic : for not editable text elements

• CSliderCtrl : for sliders

K.2. PROGRAMMING A DIALOG BAR 261

• CListBox : for list boxes

• CComboBox: for combo boxes

• CScrollBar : for scroll bars

These variables are then assigned to the IDs of the corresponding controls in the.cpp - file
of the dialog bar (functionDoDataExchange(..)):

void CMofTesterDlgBar::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CMofTesterDlgBar)
DDX_Control(pDX, IDC_MOFTESTER_LINES, m_lines);
DDX_Control(pDX, IDC_MOFTESTER_STATIC1, m_static1);
DDX_Control(pDX, IDC_MOFTESTER_STOP_BUTTON,

m_stopButton);
DDX_Control(pDX, IDC_MOFTESTER_MOF_EDIT, m_mofEdit);
DDX_Control(pDX, IDC_MOFTESTER_READ_BUTTON,

m_readButton);
DDX_Control(pDX, IDC_MOFTESTER_LOOP, m_loopCheck);
DDX_Control(pDX, IDC_MOFTESTER_EXECUTE_BUTTON,

m_executeButton);
DDX_Control(pDX, IDC_MOFTESTER_MIRROR_BUTTON,

m_mirrorButton);
//}}AFX_DATA_MAP

}

The first parameter of the macroDDXControl is alwayspDX. The second is the ID and
the third the variable of the corresponding control.

After all variables were added, the controls can be accessed from within the class.
For example withmstatic1.SetWindowText(..); one can change the text of the
IDC MOFTESTERSTATIC1 control.

K.2.2 Dynamic Resizing

For docking the dialog bars into the main window, these must be able to resize dynamically (cf.
fig. K.4).

In functionOnInitDialog() , for each control it is defined how it behaves when the win-
dow resizes:

BOOL CMofTesterDlgBar::OnInitDialog()
{

CDynamicBarDlg::OnInitDialog();

262 APPENDIX K. ADDING A DIALOG BAR TO ROBOTCONTROL

Figure K.4: TheMofTesterdialog bar inRobotControlcan adapt its size dynamically to the size of the
embedding window.

AddSzControl(m_mofEdit,mdResize,mdResize);
AddSzControl(m_loopCheck,mdNone,mdRepos);
AddSzControl(m_lines,mdNone,mdRepos);
AddSzControl(m_static1,mdNone,mdRepos);
AddSzControl(m_readButton,mdRepos,mdRepos);
AddSzControl(m_stopButton,mdRepos,mdRepos);
AddSzControl(m_executeButton,mdRepos,mdRepos);
AddSzControl(m_mirrorButton,mdRepos,mdRepos);
return TRUE;

}

The first parameter is the variable of the control. Parameter 2 and 3 specify the behavior for
horizontal and vertical changes in window size:

• mdNone: The control stays at the horizontal/ vertical position that was specified in the
resource and keeps its size.

• mdResize : The control stays at the horizontal/ vertical position that was specified in the
resource and is resized proportionally to the horizontal/ vertical change of window size.
(The distance to the left/upper and right/lower border of the window remains as specified
in the resource.)

K.2. PROGRAMMING A DIALOG BAR 263

• mdRepos: The control keeps its size and is moved horizontal/ vertical relative to the
change of window size. (The distance to the left/upper and right/lower border of the win-
dow remains as specified in the resource.)

In the example, for theStop-buttonmdRepos andmdRepos was set. So the position of
the control keeps constant to the right lower corner of the window. For the main text field
(mmofEdit), mdResize and mdResize was specified – it keeps its distance to all bor-
ders constant. For theLoop-checkboxmdNone andmdRepos was set – keeps its horizontal
position constant and is always at the lower border of the dialog bar.

K.2.3 Activating and Deactivating Controls

It is not possible to activate or deactivate a control from within a dialog bar (the main window is
responsible for that , cf. sect.J.5.1). By standard, all controls are activated by the main window.
To activate or deactivate a control dependent on some states of a dialog bar, one first overwrites
the virtual functionupdateUI(..) 8:

/**
* Enables the controls in the dialog bar.
* This function is called from the main window.
* @param pCmdUI An interface to the control that allows
* enabling/disabling, checking etc.
*/
virtual void updateUI(CCmdUI* pCmdUI);

Then this function is implemented in the.cpp file. The ID of the control can be accessed
with pCmdUI->m nID . A control is disabled withpCmdUI->Enable(false) and enabled
with pCmdUI->Enable(true) :

void CMofTesterDlgBar::updateUI(CCmdUI* pCmdUI)
{

switch(pCmdUI->m_nID)
{
case IDC_MOFTESTER_EXECUTE_BUTTON:
case IDC_MOFTESTER_LOOP:

{
CString input;
m_mofEdit.GetWindowText(input);
pCmdUI->Enable(input.GetLength()==0? false: true);

}
break;

default:

8Defined in the base classCRobotControlDialogBar .

264 APPENDIX K. ADDING A DIALOG BAR TO ROBOTCONTROL

pCmdUI->Enable(true);
}

}

In the example theLoop-checkbox and theExecute-button are only activated when the main
text field contains text.

Finally, OnUpdateCmdUI(..) must be called from theupdateUI(..) function of
the main window9 for the desired controls:

void CRobotControlMainFrame::OnUpdateCmdUI(CCmdUI* pCmdUI)
{

switch(pCmdUI->m_nID)
{
...
case IDC_MOFTESTER_EXECUTE_BUTTON:
case IDC_MOFTESTER_LOOP:

dialogBarMap[IDD_DIALOG_BAR_MOFTESTER]
->updateUI(pCmdUI);

break;
...
}

}

K.2.4 Handling Window Messages

For every interaction of the user with a dialog bar the Windows-API sends certain messages that
can be handled or not. For example if a button was pressed, Windows sends aWMCOMMAND
message. There are also messages for releasing a mouse button, double-clicking an control, and
so on.

For every control/ event pair that shall be handled, a member function must be added to the
class of the dialog. Experienced MFC programmers can do this with the class assistant. But also
in this case it is safer and faster to do this manually.

For each control/ event pair in the header file of the dialog bar a member function is declared
between the lines//AFX MSG(..) and//AFX MSG:

//{{AFX_MSG(CMofTesterDlgBar)
virtual BOOL OnInitDialog();
afx_msg void OnExecuteButton();
afx_msg void OnReadButton();
afx_msg void OnStopButton();

9In Src/RobotControl/RobotControlMainFrame.cpp.

K.2. PROGRAMMING A DIALOG BAR 265

afx_msg void OnMirrorButton();
//}}AFX_MSG

Each function name should start withOn.. and should be similar to the name of the handled
control. “Message map” macros in the.cpp file of the dialog bar map the functions to controls
and events:

BEGIN_MESSAGE_MAP(CMofTesterDlgBar, CDynamicBarDlg)
//{{AFX_MSG_MAP(CMofTesterDlgBar)
ON_BN_CLICKED(IDC_MOFTESTER_EXECUTE_BUTTON,OnExecuteButton)
ON_BN_CLICKED(IDC_MOFTESTER_READ_BUTTON,OnReadButton)
ON_BN_CLICKED(IDC_MOFTESTER_STOP_BUTTON,OnStopButton)
ON_BN_CLICKED(IDC_MOFTESTER_MIRROR_BUTTON,OnMirrorButton)
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

Finally, the event handling function must be implemented, for example:

void CMofTesterDlgBar::OnExecuteButton()
{

generateJointDataSequence();
sendSequence();

}

This function is always called when the user the clicks on theExecute-button.

For the handling of other message types, see the MSDN documentation or existing dialog
bars.

K.2.5 Handling External Window Messages

Messages for controls outside the dialog bar are handled differently. This can be messages from
the main menu ofRobotControlor from tool bars.

For this, one first overwrites the virtual functionhandleCommand(..) :

/**
* Handles control notifications which
* arrived in the main frame.
* @param command The id of the control,
* menu, accelerator etc.
* @return If the command was handled.
*/

266 APPENDIX K. ADDING A DIALOG BAR TO ROBOTCONTROL

virtual bool handleCommand(UINT command);

Then this function is implemented in the.cpp file. Parametercommand tells which menu
entry or button on a tool bar was pressed:

bool CMofTesterDlgBar::handleCommand(UINT command)
{

if (command == IDC_SEND_MOTION_NET)
{

// Behandlung der Nachricht
...
return true;

}
else return false;

}

If the message given withcommand was handled,true must be returned, otherwise
false .

The main window calls this function automatically. For each message first all tool bars
and then all dialog bars are queried whether they want to handle the event. As soon as
one of them returns false, this procedure is interrupted. For all dialog bars that do not want
to handle external messages, the virtualhandleCommand(..) function of the base class
CRobotControlDialogBar automatically returnsfalse .

K.3 Integration into the Overall Application

As already discussed in sectionJ.1, all dialog bars only communicate via message queues with
the physical and simulated robots as well as other components ofRobotControl.

K.3.1 Using Message Queues

To receive messages from physical or simulated robots, one overwrites the virtual function
handleMessage(..) :

/**
* Is called for incoming debug messages.
* @param message The message to handle.
* @return If the message was handled.
*/
virtual bool handleMessage(InMessage& message);

K.3. INTEGRATION INTO THE OVERALL APPLICATION 267

In the implementation one decides dependent onmessage.getMessageID() , whether
the message shall be handled and, if so, reads the message from the queue (cf. sect.H.1.2):

bool CMofTesterDlgBar::handleMessage(InMessage& message)
{

if (message.getMessageID() == idSensorData)
{

SensorDataBuffer sensorDataBuffer;
message.bin >> sensorDataBuffer;
...
return true;

}
return false;

}

In theMessageHandlerForQueueToGUI (cf. sect.J.2.3) one specifies, which message
types shall be handled by the dialog bar.

The message queues to the physical and simulated robots can be accessed with the global
functiongetQueues() 10 (cf. sect.J.2.1).

With getDebugKeyTables() 11, the global debug key tables ofRobotControlcan be ac-
cessed, modified, and sent to the robots to request certain messages that are needed by the dialog
bar (cf. sect.J.6.1).

K.3.2 Storing Settings in the Registry

Developers are urged on storing settings of a dialog bar in the registry whenRobotCon-
trol closes and to read them from there if it starts again. InOnInitDialog() with
AfxGetApp()->GetProfileInt(..) or GetProfileString(..) settings can be
read:

BOOL CTimeDiagramDlgBar::OnInitDialog()
{

..
averageRange = AfxGetApp()->GetProfileInt("TimeDiagram",

"average range",10);
..
return TRUE;

}

10Definition inSrc/RobotControl/RobotControlQueues.h.
11Definition inSrc/RobotControl/RobotControlDebugKeyTables.h.

268 APPENDIX K. ADDING A DIALOG BAR TO ROBOTCONTROL

In this example theTime Diagramdialog bar12 reads the range, over that values shall be
averaged, from the registry. If there was nothing stored (after first start), the default value10
is read. Normally, the section name in the registry is the name of the dialog, in the example
“TimeDiagram”.

On every change made by the user, but latest whenRobotControlcloses (in the constructor
of the dialog bar), these settings must be stored to the registry:

AfxGetApp()->WriteProfileInt("TimeDiagram",
"average range",averageRange);

Additionally, it is possible to associate settings of a dialog bar with “configurations” (cf. sect.
J.6.2). This allows the user to store different settings of a dialog bar in different configurations
and to switch between them.

For this, one overwrites the virtual functionsOnConfigurationLoad(..) and
OnConfigurationSave(..) and implements them as described in sectionJ.6.2.

K.4 Creating Dialog Bars With Visual C++ 6.0

The procedure for creating and programming dialog bars is independent from whether Visual
C++ 6.0 or Visual C++ 2003 .Net is used. Only the resource editors vary (cf. fig.K.5).

12ClassCTimeDiagramDlgBar , Definition and Implementation inSrc/RobotControl/Bars/TimeDiagramDlgBar.h
and.cpp.

K.4. CREATING DIALOG BARS WITH VISUAL C++ 6.0 269

a)

b)

Figure K.5: a) The resource editor from fig.K.1 in Visual C++ 6.0 . b) The dialog fromK.2 in Visual C++
6.0 .

270 APPENDIX K. ADDING A DIALOG BAR TO ROBOTCONTROL

Appendix L

Adding a Tool Bar to RobotControl

This chapter describes how to add a tool bar (cf. sect.J.5.3) to RobotControl. There are some
similarities to adding dialog bars (see previous chapter). Again, it is possible just to copy an
existing tool bar, but following this instructions reduces the potential errors. And despite the
different user interfaces of the resource editors, the procedure is the same in Visual C++ 6.0 and
Visual C++ 2003 .Net

As an example for all steps serves the existingLog Playertool bar1 (cf. fig. J.2).

L.1 Creating a Tool Bar

After finding an expressive name for the tool bar, the images for the buttons are created and
drawn.

L.1.1 Creating images for the buttons

For each button (strictly speaking, for each control) in the tool bar there are two images: one
for the normal view (cold view) and one for an activated view (when the mouse moves over the
button or when the button is checked). All images are 16×16 pixel wide and have 16 colors.
All images for the cold view and all for the active view are stored in a single bitmap-file each
(in Src/RobotControl/RES). The file names should be similar to the name of the tool bar and the
images for the normal view should get the suffixCold . In the example of theLog Playertool
bar the files should be calledLogPlayerCold.bmp andLogPlayer.bmp (cf. fig. L.1).

The easiest way to create these bitmaps is to copy and rename existing files. After that
one imports the bitmaps to the resources by right-clicking the entry “Bitmap” and then “Im-
port”. The imported resources get the IDsIDB BITMAP1 and IDB BITMAP2, which should
to be renamed according to the file names. In the example it isIDB LOGPLAYERCOLD and
IDB LOGPLAYER.

1ClassCLogPlayerToolBar , definition and implementation inSrc/RobotControl/Bars/LogPlayerToolBar.h
and.cpp, instantiation inCRobotControlMainFrame (Src/RobotControl/RobotControlMainFrame.h).

271

272 APPENDIX L. ADDING A TOOL BAR TO ROBOTCONTROL

Figure L.1: Button images for theLog Player tool bar. Left: LogPlayer.bmp , right:
LogPlayerCold.bmp .

Then the images can be opened. With the “Image” – “Tool Bar Editor” menu they can be
edited more comfortable. The background of the images has to be pink (cf. FigL.1). This color
is then automatically replaced by the color that was selected by the user for dialog backgrounds
(usually gray). As a convention, the images for the normal (cold) view should only use the colors
white, light gray, dark gray, and black. Note that the resource editor of Visual C++ can only
handle images with 16 colors. If the bitmaps are edited with another program and if more than
16 colors are used, it is not possible to reopen them in Visual C++.

L.1.2 Creating IDs for Controls

Next, for the tool bar itself and for each control on it an ID has to be defined. For that, the file
“Resource.h”2 Is edited manually. BetweenID TOOLBARFIRST and ID TOOLBARLAST
eine ID an ID for the tool bar is defined:

#define ID_TOOLBAR_FIRST 104
#define ID_TOOLBAR_LOGPLAYER 104
..
#define ID_TOOLBAR_LAST 116

After that for each control an ID is defined. As convention, these should start with the name
of the tool bar, for exampleIDC LOGPLAYER... .

#define IDC_LOGPLAYER_NEW 1038
#define IDC_LOGPLAYER_OPEN 1039
#define IDC_LOGPLAYER_PLAY 1040
#define IDC_LOGPLAYER_STOP 1041
#define IDC_LOGPLAYER_PAUSE 1042
#define IDC_LOGPLAYER_STEP_FORWARD 1043
#define IDC_LOGPLAYER_STEP_BACKWARD 1044
#define IDC_LOGPLAYER_RECORD 1045
#define IDC_LOGPLAYER_SAVE 1046
#define IDC_LOGPLAYER_PLAY_SPEED 1047
...

At the end ofResource.h, the value that shall be used for the next added control has to be set
(value of the last control + 10):

2Src/RobotControl/Resource.h

L.1. CREATING A TOOL BAR 273

#define _APS_NEXT_CONTROL_VALUE 1460

L.1.3 Labels and Help Texts

For each control of a tool bar, an help text and a short description has to be defined. The first
appears in the status bar ofRobotControlwhen the user moves the mouse over the control. The
short text is displayed either beside the button or as a tool tip.

The texts are edited through the “String Table” in the resource editor of Visual Stu-
dio. For each control, both texts are added together, separated by a\n, for example for
IDC LOGPLAYERSTEP FORWARD:

Play the log file one step forward\nStep Forward

Attention!RobotControlcrashes if these both texts are not defined.

L.1.4 Creating a Class for the Tool Bar

For each tool bar a separate class (in the exampleCLogPlayerToolBar) is created in a sep-
arate.h and .cppfile3. Thereto, the templatestemplate-for-new-tool-bar.h.txtand template-for-
new-tool-bar.cpp.txt4 are copied and renamed to e.g.LogPlayerToolBar.hand.cpp. The templates
contain detailed instructions how to use them (mainly by search and replace).

At last, the new files are added to the project.

L.1.5 Arranging Controls on a Tool Bar

Different from dialog bars, the layout of a tool bar is not defined in the resource but manually in
the corresponding class of the tool bar. In theInit() function (already created by the template
described in the previous section) a two-dimensional arraytbButtons is defined:

void CLogPlayerToolBar::Init()
{

static TBBUTTONEX tbButtons[] =
{

{{0, IDC_LOGPLAYER_NEW, TBSTATE_ENABLED,
TBSTYLE_BUTTON, 0, 0 }, true },

{{1, IDC_LOGPLAYER_OPEN, TBSTATE_ENABLED,
TBSTYLE_BUTTON, 0, 0 }, true },

{{0, 0, 0, TBSTYLE_SEP, 0,0 }, true },
...

3Directory for all tool bars:Src/RobotControl/Bars/.
4In the same directory.

274 APPENDIX L. ADDING A TOOL BAR TO ROBOTCONTROL

};
...

}

The first field of each line is the position of the corresponding image in the bitmap5.
The second is the ID of the control. Third is the state of the control, which should be
always TBSTATEENABLED6. The fourth is the style of the control, which is normally
TBSTYLEBUTTON . TBSTYLESEP creates a vertical separator line.TBSTYLECHECK
creates a check-button7. The next three fields are always set to0, 0, andtrue .

After the definition of the control field the button images are set with:

SetBitmaps(IDB_LOGPLAYER, IDB_LOGPLAYER_COLD);

The first parameter is the ID of the bitmap for the activated view and the second for the
normal view (cf. sect.L.1.1).

With

SetButtons(sizeof(tbButtons) / sizeof(tbButtons[0]),
tbButtons);

the controls of the tool bar are initialized.

During that, the functionhasButtonText(..) is called for each control. It has to return,
whether the short description text shall be displayed besides the button or not:

bool CLogPlayerToolBar::HasButtonText(UINT nID)
{

switch (nID)
{
case IDC_LOGPLAYER_PLAY_SPEED: return true;
default: return false;
}

}

5Counting starts at 0
6The state of a button such as active/ inactive or checked/ unchecked is set in theupdateUI method (cf. sect.

L.2.2.).
7This should also better be done in theupdateUI() method.

L.2. PROGRAMMING TOOL BARS 275

Figure L.2: TheLogPlayer-tool. Left at full width, right at restricted width and after clicking on the
chevron.

L.1.6 Embedding a Tool Bar into the Main Window

Each tool bar is embedded into the main window8. Thereto, the header file of the tool bar is
included intoRobotControlMainFrame.cpp:

#include "Bars/LogPlayerToolBar.h"

Then, the tool bar is created using the macroCREATETOOLBAR9 in the function
CRobotControlMainFrame::createDialogBarsAndToolBars() :

CREATE_TOOLBAR(CLogPlayerToolBar,ID_TOOLBAR_LOGPLAYER,
"Log Player","&Log Player");

The first parameter is the class name of the tool bar, the second the ID. The third parameter
defines, which text is displayed at the left border of the tool bar. The fourth specifies the text for
the entry in the context menu for opening and closing tool bars. With& single letters can be
underlined.

After all the steps up to here, the tool bar should be displayed inRobotControl(It can be
switched on/ off with the context menu in the tool bar and menu area). TheLogPlayer-tool bar
looks after the previous steps as in figureL.2.

L.2 Programming Tool Bars

Programming Tool Bars is very similar to programming dialog bars (see previous chapter). That’s
why in this section only differences are described.

8Class CRobotControlMainFrame , definition and implementation in
Src/RobotControl/RobotControlMainFrame.hand.cpp.

9Definition inSrc/RobotControl/RobotControlToolBar.h.

276 APPENDIX L. ADDING A TOOL BAR TO ROBOTCONTROL

L.2.1 Adding Drop-Down-Lists, Edit Controls and Sliders

The used tool bar library was extended by the possibility to place drop-down-lists, edit controls,
and sliders on a tool bar. For all of these three control types, at first a normal button must be
added to the tool bar (see previous section).

For example in theLogPlayer-tool bar there is a drop-down-list for the playing
speed. For this, an image for the control was added to button bitmap (at 10th position
in fig. L.1), the image was assigned inCLogPlayerToolBar::Init() to the ID
IDC LOGPLAYERPLAY SPEED, a button was added at the third position of the tool bar, the
short text “Speed” was specified, andhasButtonText() returned true for the ID of the
control (cf. fig.L.2).

After adding a button for the control, a member variable of the typeCComboBox is added
to the tool bar, for example:

/** A combo box for the play speed */
CComboBox speedCombo;

At the end of theInit() function the control is added withAddCombo(..) to the tool
bar:

AddCombo(&speedCombo, IDC_LOGPLAYER_PLAY_SPEED, 60);

The first parameter is the address of the member variable of the drop-down-list, the second is
the ID of the control. The third defines the width of the control in pixels (Attention! The width
should similar to the width of the image + short text10). After that the tool bar looks as in figure
J.2.

The embedding of edit controls and sliders is very similar. For edit controls, a member vari-
able of the typeCEdit and one of the typeCComboBox is created. In theInit() method
the edit control is added withAddEdit(..) . Parameter 1 is the address of theCEdit -variable,
parameter 2 defines the ID of the control, parameter 3 the width and parameter 4 die address of
the CComboBox-variable. An example for that can be found in theDebugKeys-tool bar11 (cf.
fig. H.1).

For a slider control, a variable of the typeCSliderCtrl is created. It is embedded in
Init() with AddSlider(address, ID, width) . An example for that can be found in the
Game-tool bar12.

10This can be seen as a hack.
11ClassCDebugKeysToolBar , definition and implementation inSrc/RobotControl/Bars/DebugKeysToolBar.h

and.cpp.
12ClassCGameToolBar , definition and implementation inSrc/RobotControl/Bars/GameToolBar.hand.cpp.

L.2. PROGRAMMING TOOL BARS 277

L.2.2 Changing the State of Controls

It is not possible to activate/ deactivate or check/ uncheck controls from within the tool bar. The
main window is responsible for that (see sectionJ.5.1). By default, all controls ofRobotControl
are activated there. To activate or deactivate a control dependent on some states of a tool bar, one
first overwrites the virtual functionupdateUI(..) 13:

/**
* Enables the controls in the tool bar.
* This function is called from the main window.
* @param pCmdUI An interface to the control that allows
* enabling/disabling, checking etc.
*/
virtual void updateUI(CCmdUI* pCmdUI);

Then this function is implemented in the.cpp file. The ID of the control can be accessed
with pCmdUI->m nID . A control is disabled withpCmdUI->Enable(false) and enabled
with pCmdUI->Enable(true) . With pCmdUI->SetCheck(true) a button can be
checked.

Thereto,OnUpdateCmdUI(..) must be called from theupdateUI(..) function of
the main window14 for the desired controls:

void CRobotControlMainFrame::OnUpdateCmdUI(CCmdUI* pCmdUI)
{

switch(pCmdUI->m_nID)
{
...
case IDC_LOGPLAYER_NEW:
case IDC_LOGPLAYER_OPEN:
...
case IDC_STATUS_BAR_LOGPLAYER_FILENAME:

toolBarMap[ID_TOOLBAR_LOGPLAYER]->updateUI(pCmdUI);
break;
break;

...
}

}

The class of the tool bar is accessed withtoolBarMap[id] (id is the ID of the dialog
bar).

13Defined in the base classCRobotControlToolBar .
14In Src/RobotControl/RobotControlMainFrame.cpp.

278 APPENDIX L. ADDING A TOOL BAR TO ROBOTCONTROL

L.2.3 Handling Window Messages

Different from dialog bars, messages about the interaction of a user with the tool bars are not
handled in the corresponding class but in the main window. This automatically asks all tool bars
whether they want to handle the message.

For this, one overwrites the virtual functionhandleCommand(..) :

/**
* Handles control notifications which arrived in the main frame
* @param command The id of the control, menu, accelerator etc.
* @return If the command was handled.
*/
virtual bool handleCommand(UINT command);

In the implementation of the functiontrue is returned when the message was handled,
otherwisefalse :

bool CLogPlayerToolBar::handleCommand(UINT command)
{

switch(command)
{
case IDC_LOGPLAYER_NEW:

logPlayer._new();
fileName="new log file";
return true;

...
default:

return false;
}

}

Analogous to that, selection changes in drop-down-lists are handled with
handleSelChange(UINT nID) and changes in edit controls are handled with
handleEditChange(UINT nID) :

/**
* Handles selection change events for combo boxes.
* That function is automatically called from the
* main frame window for all combo boxes of the toolbar.
* @param nID the command id of the combo box
* @return if the message was handled
*/
virtual bool handleSelChange(UINT nID);

L.3. INTEGRATION INTO THE OVERALL APPLICATION 279

/**
* Handles change events for edit controls.
* That function is called automatically from the
* main frame window for all edit controls of the toolbar.
* @param nID the command id of the edit control
* @return if the message was handled
*/
virtual bool handleEditChange(UINT nID);

L.3 Integration into the Overall Application

These mechanisms are identical to those in dialog bars, see sectionK.3.

280 APPENDIX L. ADDING A TOOL BAR TO ROBOTCONTROL

References

[1] Ronald C. Arkin. Motor schema-based mobile robot navigation.The International Journal
of Robotics Research, 8(4), 1989.

[2] Ronald C. Arkin.Behavior-Based Robotics. The MIT Press, 1998.

[3] AT&T. GraphViz homepage, 2000. http://www.research.att.com/sw/tools/graphviz/.

[4] Hynek Bakstein. A complete dlt-based camera calibration, including a virtual 3d calibration
object. Master’s thesis, Charles University, Prague, 1999.

[5] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies – A comprehensive in-
troduction.Natural Computing, 1(1):3–52, 2002.

[6] Jean-Yves Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguetj/calibdoc/.

[7] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. W3C rec-
ommendation: Extensible markup language (XML) 1.0 (second edition), 2000.
http://www.w3.org/TR/REC-xml.

[8] Rodney A. Brooks. The behavior language; user’s guide. Technical Report AIM-1127,
1990.

[9] R. Brunn, U. D̈uffert, M. J̈ungel, T. Laue, M. L̈otzsch, S. Petters, M. Risler, T. Röfer,
K. Spiess, and A. Sztybryc. Germanteam 2001. InRoboCup 2001, number 2377 in Lecture
Notes in Artificial Intelligence, pages 705–708. Springer, 2002.

[10] R. Brunn, U. D̈uffert, M. J̈ungel, T. Laue, M. L̈otzsch, S. Petters, M. Risler, Th.
Röfer, and A. Sztybryc. GermanTeam 2001. InRoboCup 2001 Robot Soccer
World Cup V, A. Birk, S. Coradeschi, S. Tadokoro (Eds.), number 2377 in Lec-
ture Notes in Computer Science, pages 705–708. Springer, 2001. More detailed in:
http://www.tzi.de/kogrob/papers/GermanTeam2001report.pdf.

[11] Jared Bunting, Stephan Chalup, Michaela Freeston, Will McMahan, Rick Middleton, Craig
Murch, Michael Quinlan, Christopher Seysener, and Graham Shanks. Return of the nubots!
- the 2003 nubots team report. Technical report, 2003.

281

282 REFERENCES

[12] H.-D. Burkhard, U. D̈uffert, J. Hoffmann, M. J̈ungel, M. L̈otzsch, R. Brunn, M. Kallnik,
N. Kuntze, M. Kunz, S. Petters, M. Risler, O. v. Stryk, N. Koschmieder, T. Laue, T. Röfer,
K. Spiess, A. Cesarz, I. Dahm, M. Hebbel, W. Nowak, and J. Ziegler. GermanTeam 2002,
2002. Only available online: http://www.tzi.de/kogrob/papers/GermanTeam2002.pdf.

[13] H.D. Burkhard, J. Bach, R. Berger, B. Brunswieck, and M. Gollin. Mental models for robot
control. In M. Beetz et al., editor,Plan Based Control of Robotic Agents, number 2466 in
Lecture Notes in Artificial Intelligence. Springer, 2002.

[14] James Clark. W3C recommendation: XSL transformations (XSLT) version 1.0, 1999.
http://www.w3.org/TR/XSLT.

[15] Sony Corporation. Open-r documentation - open-r internet protocol version 4. Technical
report, 2004. Available online: http://openr.aibo.com/openr/eng/index.php4.

[16] I. Dahm, D. Deom, M. Hebbel, M. Ḧulsbusch, J. Kerdels, T. Kindler, H. Koh, T. Lohmann,
M. Neubach, W. Nistico, C. Richter, C. Rink, A. Rossbacher, F. Roßdeutscher, B. Schmidt,
C. Schumann, P. Serwe, and Dr. J. Ziegler. Project group 442 - final report. Technical
report, 2004.

[17] Ingo Dahm and Jens Ziegler. Adaptive methods to improve self-localization in robot soccer.
In RoboCup Symposium Fukuoka, 2002.

[18] Nick Barnes Daniel Cameron. Knowledge-based autonomous dynamic colour calibration.
In 7th International Workshop on RoboCup 2003 (Robot World Cup Soccer Games and
Conferences), Lecture Notes in Artificial Intelligence. Springer, 2004. to appear.

[19] Uwe Düffert. Vierbeiniges Laufen - Modellierung und Optimierung von Roboterbewe-
gungen - diploma thesis. http://www.uwe-dueffert.de/publication/dueffert04diploma.pdf,
2004.

[20] F. Dylla, A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer, F. Stolzenburg, U. Visser,
and T. Wagner. Towards a league-independent qualitative soccer theory for robocup. In8th
International Workshop on RoboCup 2004 (Robot World Cup Soccer Games and Confer-
ences), Lecture Notes in Artificial Intelligence. Springer, 2005. to appear.

[21] Margaret A. Ellis and Bjarne Stroustrup.The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[22] David C. Fallside. W3C recommendation: XML schema part 0: Primer, 2001.
http://www.w3.org/TR/xmlschema-0/.

[23] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo localization: Efficient position
estimation for mobile robots. InProc. of the National Conference on Artificial Intelligence,
1999.

REFERENCES 283

[24] Emden R. Gansner and Stephen C. North. An open graph visualization system and its
applications to software engineering.Software Practice and Experience, 30(11):1203–
1233, 1999.

[25] J. Heikkilä and O. Silv́en. A four-step camera calibration procedure with implicit image
correction. InIEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’97), pages 1106–1112, 1997.

[26] Jan Hoffmann and Daniel G̈ohring. Sensor-Actuator-Comparison as a Basis for Colli-
sion Detection for a Quadruped Robot. In8th International Workshop on RoboCup 2004
(Robot World Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelligence.
Springer, 2005. to appear.

[27] Jan Hoffmann, Matthias Jüngel, and Martin L̈otzsch. A vision based system for goal-
directed obstacle avoidance used in the RC 03 obstacle avoidance challenge. In8th Inter-
national Workshop on RoboCup 2004 (Robot World Cup Soccer Games and Conferences),
Lecture Notes in Artificial Intelligence. Springer, 2005. to appear.

[28] V. Jagannathan, R. Dodhiawala, and L. Baum.Blackboard Architectures and Applications.
Academic Press, Inc., 1989.

[29] Matthias J̈ungel. Using layered color precision for a self-calibrating vision system. In8th
International Workshop on RoboCup 2004 (Robot World Cup Soccer Games and Confer-
ences), Lecture Notes in Artificial Intelligence. Springer, 2005.

[30] Matthias J̈ungel, Jan Hoffmann, and Martin Lötzsch. A real-time auto-adjusting vision
system for robotic soccer. In7th International Workshop on RoboCup 2003 (Robot World
Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelligence. Springer,
2004.

[31] Kurt Konolige. COLBERT: A language for reactive control in Sapphira. InKI-97: Ad-
vances in Artificial Intelligence – Proceedings of the 21st Annual German Conference on
Artificial Intelligence, G. Brewka, C. Habel, and B. Nebel (Eds.), number 1303 in Lecture
Notes in Artificial Intelligence, pages 31–52. Springer, 1997.

[32] Cody Kwok and Dieter Fox. Map-based multiple model tracking of a moving object. In
8th International Workshop on RoboCup 2004 (Robot World Cup Soccer Games and Con-
ferences), Lecture Notes in Artificial Intelligence. Springer, 2005.

[33] Tim Laue and Thomas R̈ofer. A behavior architecture for autonomous mobile robots based
on potential fields. In8th International Workshop on RoboCup 2004 (Robot World Cup
Soccer Games and Conferences), Lecture Notes in Artificial Intelligence. Springer, 2005.
to appear.

[34] S. Lenser and M. Veloso. Sensor resetting localization for poorly modeled mobile robots.
In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2002.

284 REFERENCES

[35] Scott Lenser, James Bruce, and Manuela Veloso. Vision - the lower lev-
els. Carnegie Mellon University Lecture Notes, October 2003. http://www-
2.cs.cmu.edu/ robosoccer/cmrobobits/lectures/vision-low-level-lec/vision.pdf.

[36] Martin Lötzsch. DotML Documentation, 2003. http://www.martin-loetzsch.de/DOTML.

[37] Martin Lötzsch. XABSL web site, 2003. http://www.ki.informatik.hu-berlin.de/XABSL.

[38] Martin Lötzsch. XABSL - a behavior engineering system for autonomous agents. Diploma
thesis. Humboldt Universität zu Berlin, 2004. Available online: http://www.martin-
loetzsch.de/papers/diploma-thesis.pdf.

[39] Martin Lötzsch, Joscha Bach, Hans-Dieter Burkhard, and Matthias Jüngel. Designing agent
behavior with the extensible agent behavior specification language XABSL. In7th Inter-
national Workshop on RoboCup 2003 (Robot World Cup Soccer Games and Conferences),
Lecture Notes in Artificial Intelligence. Springer, 2004. to appear.

[40] D. MacKenzie, R. Arkin, and J. Cameron. Multiagent mission specification and execution.
Autonomous Robots, 4(1):29–52, 1997.

[41] Jonathan Marsh and David Orchard. W3C candidate recommendation: XML inclusions
(XInclude) version 1.0, 2002. http://www.w3.org/TR/xinclude/.

[42] R. Mohr and B. Triggs. Projective geometry for image analysis, 1996.

[43] M. Munkres. Algorithms for the assignment and transportation problems.Journal of the
Society of Industrial and Applied Mathematics, 5(1):32–38, March 1957.

[44] David Musser and Atul Saini.STL Tutorial and Reference Guide: C++ Programming with
the Standard Template Library. Addison-Wesley, 1996.

[45] T. Röfer. Strategies for using a simulation in the development of the Bremen Autonomous
Wheelchair. In R. Zobel and D. Moeller, editors,Simulation-Past, Present and Future,
pages 460–464. Society for Computer Simulation International, 1998.

[46] Th. Röfer, H.-D. Burkhard, U. D̈uffert, J. Hoffmann, D. G̈ohring, M. J̈ungel,
M. Lötzsch, O. v. Stryk, R. Brunn, M. Kallnik, M. Kunz, S. Petters, M. Risler,
M. Stelzer, I. Dahm, M. Wachter, K. Engel, A. Osterhues, C. Schumann, and
J. Ziegler. GermanTeam RoboCup 2003. Technical report, 2003. Available online:
http://www.robocup.de/germanteam/GT2003.pdf.

[47] Thomas R̈ofer. Quality of ers-7 camera images. http://blechkopf.informatik.uni-
bremen.de/pubwiki/bin/view/Bbyters/CameraERS210-ERS7.

[48] Thomas R̈ofer. Simrobot homepage. http://www.tzi.de/simrobot.

REFERENCES 285

[49] Thomas R̈ofer. An architecture for a national robocup team. InRoboCup 2002 Robot
Soccer World Cup VI, Gal A. Kaminka, Pedro U. Lima, Raul Rojas (Eds.), number 2752 in
Lecture Notes in Artificial Intelligence, pages 417–425. Springer, 2003.

[50] Thomas R̈ofer. Evolutionary gait-optimization using a fitness function based on proprio-
ception. In8th International Workshop on RoboCup 2004 (Robot World Cup Soccer Games
and Conferences), Lecture Notes in Artificial Intelligence. Springer, 2005. to appear.

[51] L.G. Roberts. Machine perception of three dimensional solids.Optical and Electro-Optical
Information Processing, pages 159–197, 1968.

[52] S. Russel and P. Norvig.Artificial Intelligence, a Modern Approach. Prentice Hall, 1995.

[53] D. Schulz and D. Fox. Bayesian color estimation for adaptive vision-based robot localiza-
tion. In Proceedings of IROS, 2004.

[54] Edwin Hsing-Mean Sha and Kenneth Steiglitz. Maintaining bipartite matchings in the
presence of failures. InInternational Parallel Processing Symposium, pages 57–64, 1993.

[55] Stephen M. Smith and J. Michael Brady. SUSAN - A New Approach to Low Level Image
Processing.Int. Journal Computer Vision, 23(1):45–78, 1997.

[56] S. Thrun, D. Fox, and W. Burgard. Monte carlo localization with mixture proposal dis-
tribution. In Proc. of the National Conference on Artificial Intelligence, pages 859–865,
2000.

[57] A. H. Timmer and J. A. G. Jess. Exact scheduling strategies based on bipartite graph
matching. pages 42–47.

[58] Thomas Wagner and Kai Ḧubner. An egocentric qualitative spatial knowledge represen-
tation based on ordering information for physical robot navigation. In8th International
Workshop on RoboCup 2004 (Robot World Cup Soccer Games and Conferences), Lecture
Notes in Artificial Intelligence. Springer, 2005. to appear.

[59] Dirk Wilking and Thomas R̈ofer. Real-time object recognition using decision tree learning.
In 8th International Workshop on RoboCup 2004 (Robot World Cup Soccer Games and
Conferences), Lecture Notes in Artificial Intelligence. Springer, 2005. to appear.

	1 Introduction
	1.1 History
	1.2 Scientific Goals
	1.2.1 Humboldt-Universität zu Berlin
	1.2.2 Technische Universität Darmstadt
	1.2.3 Universität Bremen
	1.2.4 Universität Dortmund

	1.3 Contributing Team Members
	1.3.1 Aibo Team Humboldt (Humboldt-Universität zu Berlin)
	1.3.2 Darmstadt Dribbling Dackels (Technische Universität Darmstadt)
	1.3.3 Bremen Byters (Universität Bremen)
	1.3.4 Microsoft Hellhounds (Universität Dortmund)

	1.4 Structure of this Document
	1.5 Innovations in 2004

	2 Architecture
	2.1 Platform-Independence
	2.1.1 Motivation
	2.1.2 Realization
	2.1.3 Supported Platforms
	2.1.4 Math Library
	2.1.4.1 Provided Data Types

	2.2 Multiple Team Support
	2.2.1 Tasks
	2.2.2 Debugging Support
	2.2.3 Process-Layouts
	2.2.3.1 Communication between Processes
	2.2.3.2 Team Communication
	2.2.3.3 Different Layouts

	2.2.4 Make Engine
	2.2.4.1 Dependencies
	2.2.4.2 Realization
	2.2.4.3 Debugging and Optimization
	2.2.4.4 Automation and Integration

	3 Modules in GT2004
	3.1 Body Sensor Processing
	3.2 Vision
	3.2.1 Using a Horizon-Aligned Grid
	3.2.2 Color Table Generalization
	3.2.3 Camera Calibration
	3.2.4 Detecting Points on Edges
	3.2.5 Detecting the Ball
	3.2.6 Detecting Beacons
	3.2.7 Detecting Goals
	3.2.8 Detecting Robots
	3.2.9 Detecting Obstacles
	3.2.10 Motion Compensation

	3.3 Self-Localization
	3.3.1 Motion Model
	3.3.2 Observation Model
	3.3.2.1 Flags
	3.3.2.2 Goals
	3.3.2.3 Edge Points
	3.3.2.4 Probabilities for Flags and Goals
	3.3.2.5 Probabilities for Edge Points
	3.3.2.6 Overall Probability

	3.3.3 Resampling
	3.3.3.1 Importance Resampling
	3.3.3.2 Drawing from Observations
	3.3.3.3 Probabilistic Search

	3.3.4 Estimating the Pose of the Robot
	3.3.4.1 Finding the Largest Cluster
	3.3.4.2 Calculating the Average
	3.3.4.3 Certainty

	3.3.5 Results

	3.4 Ball Modeling
	3.4.1 Ball Position and Ball Speed
	3.4.2 Kalman Filtering of Ball Percepts
	3.4.3 Communicated Information about the Ball

	3.5 Obstacle Model
	3.5.1 Updating the Model with new Sensor Data
	3.5.2 Updating the Model Using Odometry

	3.6 Collision Detector
	3.7 Player Modeling
	3.8 Behavior Control
	3.8.1 Ball Handling
	3.8.1.1 Approaching
	3.8.1.2 Dribbling
	3.8.1.3 Grabbing and Pushing Backward
	3.8.1.4 Kicking
	3.8.1.5 Zones for Ball Handling
	3.8.1.6 Transitions Between Ball Handling Behaviors

	3.8.2 Navigation and Obstacle Avoidance
	3.8.2.1 Walking to a Position
	3.8.2.2 Walking to a Far Away Ball
	3.8.2.3 Positioning

	3.8.3 Player Roles
	3.8.3.1 Striker
	3.8.3.2 Supporters
	3.8.3.3 Goalie
	3.8.3.4 Dynamic Role Assignments

	3.8.4 Game Control
	3.8.5 Cheering and Artistry

	3.9 Motion
	3.9.1 Walking
	3.9.1.1 Approach
	3.9.1.2 Parameters
	3.9.1.3 Combining several optimized parameter sets
	3.9.1.4 Odometry correction
	3.9.1.5 Inverse kinematics
	3.9.1.6 Gait Evolution

	3.9.2 Special Actions
	3.9.3 Head Motion Control
	3.9.3.1 Geometric Considerations
	3.9.3.2 Head Path Planner
	3.9.3.3 Landmark State
	3.9.3.4 State Machine
	3.9.3.5 Basic Behaviors

	4 Open Challenge
	4.1 Classification
	4.2 Matching
	4.3 Estimation
	4.4 Arbitration
	4.5 Conclusion

	5 Tools
	5.1 Simulator
	5.1.1 Simulation Kernel
	5.1.2 User Interface
	5.1.3 Controller

	5.2 RobotControl
	5.3 MakeStick
	5.3.1 Installation
	5.3.2 Usage
	5.3.2.1 Actions
	5.3.2.2 Copy Options
	5.3.2.3 Player Role
	5.3.2.4 Team
	5.3.2.5 WLAN

	5.4 Universal Resource Compiler
	5.4.1 Motion Description Language

	5.5 Depend
	5.6 Emon Log Parser

	6 Conclusions and Outlook
	6.1 The Competitions in Lisbon
	6.2 Future Work
	6.2.1 Humboldt-Universität zu Berlin
	6.2.2 Technische Universität Darmstadt
	6.2.3 Universität Bremen
	6.2.4 Universität Dortmund

	7 Acknowledgments
	A Installation
	A.1 Required Software
	A.2 Source Code
	A.2.1 Robot Code
	A.2.2 Tools Code

	A.3 The Developer Studio Workspace GT2004.dsw/.sln

	B Getting Started
	B.1 Configuration Files
	B.1.1 location.cfg
	B.1.2 coltable.cfg
	B.1.3 camera.cfg
	B.1.4 player.cfg
	B.1.5 robot.cfg
	B.1.6 wlanconf.txt
	B.1.7 coeff.c{u,v,y}

	C Simulator Usage
	C.1 Introduction
	C.2 Getting Started
	C.3 Scene View
	C.4 Information Views
	C.4.1 Image Views
	C.4.2 Field Views
	C.4.3 Xabsl Views
	C.4.4 Sensor Data View
	C.4.5 Timing View

	C.5 Scene Description Files
	C.6 Console Commands
	C.6.1 Initialization Commands
	C.6.2 Global Commands
	C.6.3 Robot Commands

	C.7 Examples
	C.7.1 Recording a Log File
	C.7.2 Replaying a Log File
	C.7.3 Remote Control

	D RobotControl Usage
	D.1 Starting RobotControl
	D.2 Application Framework
	D.2.1 The Debug Keys Toolbar
	D.2.2 The Settings Dialog
	D.2.3 The Log Player Toolbar
	D.2.4 WLan Toolbar
	D.2.5 Game Toolbar

	D.3 Vision Related Tools
	D.3.1 Image Viewer and Large Image Viewer
	D.3.2 Field View and Radar Viewer
	D.3.3 Radar Viewer 3D
	D.3.4 Color Space Dialog
	D.3.5 The Color Table Dialog
	D.3.6 HSI Tool Dialog
	D.3.7 The TSL Color Segmentation Dialog
	D.3.8 Camera Toolbar

	D.4 Behavior Related Tools
	D.4.1 Xabsl2 Behavior Tester

	D.5 Motion Related Tools
	D.5.1 Motion Tester Dialog
	D.5.2 Head Motion Tester Dialog
	D.5.3 Mof Tester Dialog
	D.5.4 Joystick Motion Tester Dialog

	D.6 Sensing and Debugging
	D.6.1 Value History Dialog
	D.6.2 Time Diagram Dialog
	D.6.3 Debug Message Generator Dialog

	D.7 The Simulator

	E Extensible Agent Behavior Specification Language
	E.1 Hierarchies of Finite State Machines
	E.1.1 The Option Graph
	E.1.2 State Machines
	E.1.3 Interaction with the Environment
	E.1.4 The Execution of the Option Hierarchy

	E.2 Behavior Specification in XML
	E.3 The XABSL Language
	E.3.1 Symbols, Basic Behaviors, and Option Definitions
	E.3.2 Options and States
	E.3.3 Boolean and Decimal Expressions
	E.3.4 Agents

	E.4 Mechanisms and Tools
	E.4.1 File Types and Inclusions
	E.4.2 Document Processing

	E.5 The XabslEngine Class Library
	E.5.1 Running the Xabsl2Engine on a Specific Target Platform
	E.5.2 Registering Symbols and Basic Behaviors
	E.5.3 Creating the Option Graph and Executing the Engine
	E.5.4 Debugging Interfaces

	E.6 Discussion

	F Processes, Senders, and Receivers
	F.1 Motivation
	F.2 Creating a Process
	F.3 Communication
	F.3.1 Packages
	F.3.2 Senders
	F.3.3 Receivers

	G Streams
	G.1 Motivation
	G.2 The Classes Provided
	G.3 Streaming Data
	G.4 Making Classes Streamable
	G.4.1 Streaming Operators
	G.4.2 Streaming using read() and write()

	G.5 Implementing New Streams

	H Debugging Mechanisms
	H.1 Exchanging Messages Between Robots and PC
	H.1.1 Message Queues
	H.1.2 Distribution of Debug Messages
	H.1.3 Requesting Messages With Debug Keys
	H.1.4 Debug Macros

	H.2 Message Queues and Processes
	H.2.1 Message Handling
	H.2.2 The Process Debug

	H.3 Common Debug Mechanisms
	H.3.1 Debug Drawings
	H.3.2 Stopwatch

	I Mechanisms for Modules and Solutions
	I.1 Division of Information Processing into Tasks
	I.2 Defining Modules and Solutions
	I.2.1 Class Module
	I.2.2 Interface Classes
	I.2.3 Base Classes For Modules
	I.2.4 Selecting Solutions
	I.2.5 Administration of Modules

	I.3 Modules and Processes
	I.3.1 Embedding Modules into Processes
	I.3.2 Representations in Processes

	J Programming RobotControl
	J.1 General Structure
	J.2 Message Queues and Message Distribution
	J.2.1 Sending Messages to Robots
	J.2.2 Log-Player
	J.2.3 Distribution of Incoming Messages
	J.2.4 Example

	J.3 Physical Robots
	J.4 Simulated Robots
	J.4.1 Replication of The Robot Operating System
	J.4.2 Integration of SimRobot
	J.4.3 Interface to RobotControl
	J.4.4 Processing Data from Physical Robots

	J.5 Graphical User Interface
	J.5.1 The Main Window
	J.5.2 Dialog Bars
	J.5.3 Tool Bars

	J.6 Additional Mechanisms
	J.6.1 Central Debug Key Tables
	J.6.2 Configuration Manager

	J.7 Main Program
	J.7.1 Start of RobotControl
	J.7.2 Synchronisation

	K Adding a Dialog Bar to RobotControl
	K.1 Creation of a new Dialog Bar
	K.1.1 Creation of a dialog resource
	K.1.2 Changes in Resource.h
	K.1.3 Creating a Class for the Dialog Bar
	K.1.4 Embedding a Dialog Bar into the Main Window

	K.2 Programming a Dialog Bar
	K.2.1 Member Variables for Control
	K.2.2 Dynamic Resizing
	K.2.3 Activating and Deactivating Controls
	K.2.4 Handling Window Messages
	K.2.5 Handling External Window Messages

	K.3 Integration into the Overall Application
	K.3.1 Using Message Queues
	K.3.2 Storing Settings in the Registry

	K.4 Creating Dialog Bars With Visual C++ 6.0

	L Adding a Tool Bar to RobotControl
	L.1 Creating a Tool Bar
	L.1.1 Creating images for the buttons
	L.1.2 Creating IDs for Controls
	L.1.3 Labels and Help Texts
	L.1.4 Creating a Class for the Tool Bar
	L.1.5 Arranging Controls on a Tool Bar
	L.1.6 Embedding a Tool Bar into the Main Window

	L.2 Programming Tool Bars
	L.2.1 Adding Drop-Down-Lists, Edit Controls and Sliders
	L.2.2 Changing the State of Controls
	L.2.3 Handling Window Messages

	L.3 Integration into the Overall Application

