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Abstract
In the last years synthesis of reversible logic functions

has emerged as an important research area. Other fields
such as low-power design, optical computing and quantum
computing benefit directly from achieved improvements. Re-
cently, several approaches for exact synthesis of Toffoli net-
works have been proposed. They all use Boolean satisfiabil-
ity to solve the underlying synthesis problem. In this paper a
new exact synthesis approach based on Quantified Boolean
Formula (QBF) satisfiability – a generalization of Boolean
satisfiability – is presented. Besides the application of QBF
solvers, we propose Binary Decision Diagrams to solve the
quantified problem formulation. This allows to easily sup-
port different gate libraries during synthesis. In addition,
all minimal networks are found in a single step and the best
one with respect to quantum costs can be chosen. Experi-
mental results confirm that the new technique is faster than
the best previously known approach and leads to cheaper
realizations in terms of quantum costs.

1. Introduction
The growing challenges in classical Computer-Aided

Design (CAD), e.g. exponential growth of the number
of transistors in an integrated circuit or power consump-
tion, motivate the research of alternative techniques. As
a promising one reversible logic has emerged. Applica-
tions to low-power design, optical computing and quantum
computing exist, which overcome the limits of classical sys-
tems [4, 15].

Since fanout and feedback are not allowed in reversible
logic, the respective networks have to be a cascade of re-
versible gates. In the past different types of gates have
been introduced, e.g. multiple control Toffoli [19], multi-
ple control Fredkin [8], Peres [16], and elementary quantum
gates [1]. Furthermore, several approaches for the synthe-
sis of reversible logic, heuristic as well as exact ones, have
been proposed in the last few years (e.g. [17, 13, 10]).

In this paper only exact synthesis is considered. In [24]
the authors were able to synthesize minimal networks for
functions with up to three variables. A synthesis approach
considering elementary quantum gates only is described
in [11]. Exact Toffoli network synthesis based on Boolean
Satisfiability (SAT) has been proposed in [9]. The authors
(1) encode the synthesis problem as a SAT instance and (2)
solve this instance by using a state-of-the-art SAT solver.

Recently, in [22] two improvements of this approach have
been introduced. However, in both approaches the synthe-
sis problem is encoded with a significant overhead due to
restrictions of the underlying proof engine, i.e. a separate
constraint has to be built for each truth table line of the
function f to be synthesized. Thus, the instances grow ex-
ponentially with respect to the number of input variables of
the function f .

In this paper, we present an approach for reversible logic
synthesis which leads to a polynomial size encoding by tak-
ing advantage of Quantified Boolean Formula (QBF) sat-
isfiability – a generalization of Boolean satisfiability. We
formulate the exact synthesis problem of a reversible func-
tion f as a QBF problem by encoding the cascade struc-
ture of a reversible network as a functional composition
of universal gates and enforcing to meet the specification
of f by quantification. Then, the quantified Boolean for-
mula is efficiently solved by applying Binary Decision Di-
agrams (BDDs). This leads to three major improvements:
(1) the circuits are synthesized faster than the best previ-
ously known approach, (2) all minimal networks are found
in a single step which allows to choose the best one with
respect to the quantum costs, and (3) different gate libraries
are easily supported by a simple extension of the problem
formulation.

The rest of this paper is organized as follows. Section 2
introduces the basics of reversible logic, QBF satisfiability
and BDDs. In Section 3 the main flow as used in [9, 22]
is reviewed and the weaknesses of these approaches are
briefly discussed. After this, the QBF formulation and its
implementations are proposed in Section 4 and Section 5,
respectively. Experimental results are given in Section 6
and finally the paper is concluded in Section 7.

2. Preliminaries
2.1. Reversible Logic

A reversible logic gate realizes an n-input n-output func-
tion that maps each possible input vector to a unique output
vector. In other words this function is a bijection. Any re-
versible function can be represented by a sequence of re-
versible gates. Many reversible gates have been studied. In
this paper we focus on multiple control Toffoli [19], mul-
tiple control Fredkin [8] and Peres [16] gates, which are
defined below.



Definition 1 Let X := {x1, . . . , xn} be the set of domain
variables. A reversible gate has the form g(C, T ), where
C = {xi1 , . . . , xik

} ⊂ X is the set of control lines and
T = {xj1 , . . . , xjl

} ⊂ X with C∩T = ∅ is the set of target
lines. In this paper we distinguish between three different
gates types:

• A multiple control Toffoli gate has a single target
line xj . The gate maps (x1, x2, . . . , xj , . . . , xn) to
(x1, x2, . . . , xi1xi2 · · ·xik

⊕ xj , . . . , xn).
• A multiple control Fredkin gate has two target lines xj1

and xj2 . The values of the target lines are interchanged
iff the conjunction of all control lines evaluates to 1.

• A Peres gate has one control line xi and
two target lines xj1 and xj2 . The gate
maps (x1, x2, . . . , xj1 , . . . , xj2 . . . , xn) to
(x1, x2, . . . , xi ⊕ xj1 , . . . , xixj1 ⊕ xj2 , . . . , xn).

Since all quantum circuits are reversible, to realize a non-
reversible function (i.e. a n-input m-output function with
n > m) it must be embedded into a reversible one. There-
fore, it is often necessary to add constant inputs and garbage
outputs [12]. The garbage outputs are by definition don’t
cares and can be left unspecified. Functions with garbage
outputs are called incompletely specified functions in the
following.

Quantum costs are often used to measure the cost of re-
versible gates. Every reversible gate can be transformed
into a sequence of elementary quantum gates [1]. Each el-
ementary gate has a quantum cost of one. For example, a
Toffoli gate with two controls has a cost of five; a Fredkin
gate with one control has a cost of seven; and a Peres gate
has a cost of four. The Peres gate is of interest, since the
realization with two Toffoli gates would imply a cost of six.
All cost calculations are based on [1].

2.2. QBF Satisfiability
The satisfiability problem (SAT problem) is to determine

whether there exists an assignment of the Boolean variables
V for a Boolean function h such that h evaluates to true
or to prove that no such assignment exists. That is, SAT
asks if ∃V h. Thereby, the function is given in Conjunctive
Normal Form (CNF). A CNF consists of a conjunction of
clauses. A clause is a disjunction of literals and each literal
is a propositional variable or its negation. Today, large in-
dustrial problems can be solved efficiently by modern SAT
solvers (see e.g. [14, 7]).

QBF satisfiability is a generalization of SAT, where
variables can be universally and existentially quantified.
A QBF formula is given in prenex normal form, that is
Q1V1 . . . QtVth, where h is the Boolean function in CNF,
Vi ⊂ V and Qi ∈ {∃,∀}. State-of-the-art QBF solvers are
e.g. [5, 2].

2.3. Binary Decision Diagram
A Boolean function h can be represented by a Binary

Decision Diagram (BDD) [6]. A BDD is a directed acyclic
graph where a Shannon decomposition h = xihxi=0 +
xihxi=1 (1 ≤ i ≤ n) is carried out in each node. A
BDD is called ordered if each variable is encountered at
most once on each path from the root to a terminal node
and if the variables are encountered in the same order on all
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Figure 1. Iterative synthesis algorithm

such paths. A BDD is called reduced if it does not contain
isomorphic sub-graphs nor does it have redundant nodes.
Reduced and ordered BDDs are a canonical representation
since for each Boolean function the BDD is uniquely spec-
ified [6]. In the following, we refer to reduced and ordered
BDDs for brevity as BDDs. For construction of BDDs sev-
eral packages (e.g. CUDD [18]) exists, which provide a
wide range of operations.

3. Exact Synthesis Procedure
In this section the general procedure of exact synthesis

of reversible functions as introduced in [9, 22] is briefly re-
viewed. The single steps are sketched in Figure 1. As input
the reversible function f in terms of a truth table is given.
Then, iterative checks are performed. First, the procedure
starts with the search for a network realization for f with
one gate only (d = 1). If it is proven, that no realization
with d gates exists, d is incremented. This procedure is re-
peated until a realization is found. By increasing d itera-
tively from d = 1 minimality is ensured.

For the respective checks, the problem (Is there a net-
work realization for f with depth d?) is encoded as an in-
stance of Boolean satisfiability. If an instance becomes sat-
isfiable, a network realization with depth d is found and can
be obtained from the satisfying assignment to the variables
of the encoding. Otherwise, the instance is unsatisfiable and
no realization for the function with depth d exists. For solv-
ing the instances in [9] a standard SAT solver has been used
while in [22] a specialized proof technique exploiting prob-
lem specific knowledge has been applied.

However, in both approaches the problem is encoded for
each truth table line separately. That is, the respective con-
straints representing the network to be synthesized are not
built only for one truth table line, but they are duplicated
for the remaining 2n − 1 truth table lines. Thus, the in-
stances grow exponentially with respect to the number n of
variables.

In contrast, using quantified Boolean formulas the prob-
lem can be formulated in polynomial size, i.e. the network
to be synthesized is encoded only once and the specifica-
tion of the considered function f is enforced by quantifica-
tion. We show that this formulation of the synthesis prob-
lem in combination with a BDD-based implementation out-
performs previous approaches. In addition the proposed ap-
proach finds all minimal solutions and thus allows to choose
the best one with respect to quantum costs.



4. Problem Formulation Using QBF
In this section the problem formulation for reversible

network synthesis using quantified Boolean formulas is in-
troduced. First, the problem formulation for completely
specified functions is given. Then, we show how the re-
sulting formulation can be extended for synthesis of incom-
pletely specified functions.

4.1. Completely Specified Functions
In the following the synthesis problem for completely

specified functions is defined. For the synthesis of a func-
tion f with n inputs/outputs into a reversible network a set
G = {g0, . . . , gq−1} of q ∈ N different gates is considered.
The set G is used to distinguish between all possible gates in
n variables. According to the choosen gate types (i.e. Tof-
foli, Fredkin and/or Peres) the cardinality of G varies as the
following theorem shows:
Theorem 1 Let f be a reversible function over n variables.
Then, there exist
• n · 2n−1 different multiple control Toffoli gates,
• n · (n− 1) · 2n−2 diff. multiple control Fredkin gates,
• n · (n− 1) · (n− 2) different Peres gates.
If the gate library used for synthesis consists of more

than one gate type, then the numbers above have to be
added. For example, in the case of a gate library containing
multiple control Toffoli gates and multiple control Fredkin
gates for the synthesis of a 3 variable function, G contains
3 · 23−1 + 3 · (3− 1) · 23−2 = 12 + 12 = 24 different gates
in total.

Before the synthesis problem is formulated as QBF we
define a universal gate that covers the functionality of all
gates given in the set G.

Definition 2 A universal gate represents the function
UG(X, Y ) : Bn × Bdlog qe → Bn with

UG(X, Y ) =
{

gk(X), if k = [y1 . . . ydlog qe]2 < q
X, otherwise

where
• X = {x1, . . . , xn} is the set of the inputs of the gate

gk and

• Y = {y1, . . . , ydlog qe} is the set of variables rep-
resenting a binary encoding of a natural number k,
which defines the type gk of the gate (in the following
called gate select inputs).

According to the assignments to the gate select inputs Y , a
universal gate UG acts either as a gate from the given set
G or as the identity gate1.

Next, we formalize a reversible network as a cascade of
universal gates.

Definition 3 Let f be a reversible function to be synthe-
sized with at most d gates from the set G. Then, a function
Fd is built representing the cascade structure of d universal
gates UG(X1, Y1), . . . , UG(Xd, Yd). The output of the i-th
universal gate (0 < i ≤ d) is equal to the input of the next
gate, i.e. UG(Xi, Yi) = Xi+1.

1The identity gate has been added to the function definition to handle
the case where the set G does not exactly contains a power of two gates.
In this case G is extended by identity gates to fill the gap.

Figure 2 shows the resulting cascade structure of the
function Fd for d universal gates. Using this structure, any
reversible network containing d gates can be obtained by as-
signing the respective values to each of the gate select input
variables yij ∈ Yi (0 < j ≤ dlog qe).

Based on Definition 3 we have: if a network realiza-
tion with at most d gates for the reversible function f ex-
ists, there has to be at least one assignment to all variables
yij ∈ Yi such that Fd is equal to f . More formally, if f is
synthesizeable with at most d gates the quantified Boolean
formula ∃y11 . . .∃yddlog qe∀x1 . . .∀xn(Fd = f) holds.

In the next section incompletely specified functions are
considered. We show that the above described QBF formu-
lation can be easily adapted for these functions.

4.2. Incompletely Specified Functions
The problem formulation introduced in the last section

can be extended to support synthesis of incompletely spec-
ified functions as well. Garbage outputs are by definition
don’t cares and can be left unspecified [12]. The extension
of the initial QBF formulation of the synthesis problem is
achieved by including the respective ON-sets and don’t care
sets.

Definition 4 Let f : Bn → {0, 1,−}n be an incompletely
specified function. Then, fon

l (fdc
l ) with 0 < l ≤ n defines

the ON-set (don’t care set) for the l-th output of f .

We now include in the QBF formulation that the speci-
fication is meet if the l-th output of f for a given minterm
is don’t care. Therefore, we rewrite the QBF formula from
above as a conjunction of n one-output functions, where the
don’t care outputs always evaluate to true, i.e.:

∃y11 . . .∃yddlog qe∀x1 . . .∀xn(
n∧

l=1

fdc
l ∨ (Fdl

= fon
l )).

The problem considered in the rest of this paper is how to
find a satisfying solution for the quantified Boolean formula
representing the synthesis problem.

5. Implementations
Based on the QBF formulation for the synthesis problem

introduced in the previous section two approaches are used
to solve the formula:2 First, the problem is encoded as an in-
stance of quantified Boolean satisfiability, which is given to
a QBF-prover. Second, the function Fd = f is constructed
as a BDD and thereafter the quantification is carried out on
the BDD. A solution exists if the final BDD is not the con-
stant 0-function. Moreover, all solutions can be extracted
by traversing all paths to the 1-terminal.

For both approaches, the incremental nature of Fd
is exploited during the construction of the formula.
That is, first the formula F0 = (x1, . . . , xn) is built
for depth d = 0. Then, for each iteration the
function Fd is incrementally built by applying Fd =
UG(UG(. . . (UG(F0, Y1), Y2) . . . , Yd−1), Yd). Finally, the
equation to f is constrained.

The next two sections describe the steps of both ap-
proaches in more detail.

2In the following only the implementations for synthesis of completely
specified functions are described. Synthesis of incompletely specified
functions can be handled analogously.



Figure 2. Problem formulation
5.1. Using QBF Solvers

To use a common QBF solver the formula Fd = f has
to be transformed into CNF, i.e. a representation has to be
created that consists of clauses only. It is known that this
can be accomplished in time and space linear in the size of
the original Boolean formula [20]. After the transformation
of the formula into CNF the resulting set of clauses repre-
sents a cascade of d universal gates which has to meet the
specification of f . The complete QBF instance is formed
by adding the respective existential and universal quantifi-
cation followed by the existential quantification for the aux-
iliary variables (denoted as A in the following) added during
the transformation into CNF. The resulting overall quantifi-
cation is: ∃y11 . . .∃yddlog qe∀x1 . . .∀xn∃A.

Finally, the complete instance is given to a QBF solver.
In the case that the instance is satisfiable, a network realiza-
tion of the circuit can be obtained from the assignments to
the variables yij ∈ Yi.

5.2. Using BDDs
As shown later in the experiments the performance of the

QBF solver approach is low. Therefore, we investigated to
perform the synthesis directly with BDDs. That is, instead
of building a quantified CNF and solving this instance with
a QBF solver, the synthesis is carried out on a BDD repre-
sentation.

Therefore, we build the BDD for the formula Fd = f .
This can be done efficiently using a state-of-the-art BDD
package. For building the BDD we set the fixed variable
order X, Y . The alternative order Y, X leads to a blow up
of the BDD representation since in this case the BDD for
Fd would already represent all possible functions in n vari-
ables which are synthesizable with at most d gates. During
the construction isomorphic functions that result from the n
output functions for Fd are shared.

After the computation of the equality the resulting BDD
is a single output function. For this BDD only the univer-
sal quantification of all xi variables has to be carried out.
This is a standard operation available in a BDD package;
the idea is to compute the product of the positive co-factor
and the negative co-factor for a universally quantified vari-
able, i.e. ∀x h(. . . , x, . . .) = h(. . . , 0, . . .) · h(. . . , 1, . . .).
If the final BDD consists of the 0-terminal, then no re-
versible network with the given depth d exists for the func-
tion f . Otherwise there is at least one path to the 1-terminal.
Each of those paths represents an assignment to all variables
yij ∈ Yi and thus, can be converted into a concrete network
realization. Since the BDD represents not only one but all 1-

paths, in fact all realizations with the given depth are found
in one single step. All solutions are of interest since one
can choose the best mapping to elementary quantum gates
which is also shown in the experiments.

6. Experimental Evaluation
The proposed approaches have been implemented in

C++. The QBF instances are solved using sKizzo [2], a
state-of-the-art QBF solver based on symbolic skolemiza-
tion [3]. For the BDD-based approach the BDD package
CUDD [18] version 2.4.1 was used. All approaches have
been evaluated on an AMD Athlon 3500+ with 1 GB of
main memory. The timeout was set to 2000 CPU seconds.
The runtimes of the proposed BDD approach always in-
clude the calculation of quantum costs.

6.1. Comparison to Previous Work
In this section we compare quantified synthesis of re-

versible functions with the SAT-like approaches considered
in [22]. In [22], the encoding for the common SAT solver
MiniSat [7] (denoted by SAT SOLVER) have been com-
pared to a solver utilizing problem specific knowledge (de-
noted by SWORD according to the name of the solver
[21]). In the experiments only synthesis of multiple control
Toffoli networks is considered. For comparison we evalu-
ate our approaches with the same set of benchmarks as done
in [22] (taken from [23]).3 The benchmarks include com-
pletely specified as well as incompletely specified functions
from different problem domains.

The results are given in Table 1. The first column
shows the name of the function while D denotes the min-
imal depth of the resulting network, i.e. the number of Tof-
foli gates. In the remaining columns the runtimes in CPU
seconds (denoted by TIME) and the improvements of the
new approaches with respect to the SAT solver (denoted
by IMPRSAT ) and with respect to SWORD (denoted by
IMPRSW.) are given, respectively. Thereby, the improve-
ment is obtained by the runtime of the SAT/SWORD ap-
proach divided by the runtime of the QBF solver/the BDD
approach.

From the results it is easy to see that utilizing QBF
leads to dramatic improvements for both, the QBF solver
and the BDD approach, in comparison to the common SAT

3Only some trivial functions (e.g. peres, fredkin) have been omitted. In
contrast we consider two additional functions, i.e. hwb4 and 4 49 (taken
from [23], too). According to the authors of [22] these two functions time
out with their approaches.



Table 1. Comparison to Previous Work
SAT-BASED QBF-BASED

SAT SOLVER SWORD QBF SOLVER BDDS
BENCH D TIME TIME TIME IMPRSAT IMPRSW. TIME IMPRSAT IMPRSW.

COMPLETELY SPECIFIED FUNCTIONS
mod5mils 5 48.28s 0.08s 32.22s 1.50 <0.01 0.15s 321.87 0.53
graycode6 5 583.14s 0.12s 145.02s 4.02 <0.01 0.46s 1267.69 0.33

3 17 6 0.43s 0.03s 0.19s 2.26 0.16 0.01s 43.00 3.00
mod5d1 7 2094.13s 11.21s 405.96s 5.16 0.03 1.68s 1246.50 6.67
mod5d2 8 1616.17s 9.06s 337.49s 4.79 0.03 3.84s 420.88 2.36

hwb4 11 >2000s >2000s >2000s – – 20.38s >98.14 >98.14
4 49 12 >2000s >2000s >2000s – – 837.92s >2.39 >2.39

INCOMPLETELY SPECIFIED FUNCTIONS
rd32-v0 4 2.97s <0.01s 0.22s 13.50 < 0.05 0.01s 297.00 < 1.00
rd32-v1 5 13.51s 0.04s 0.35s 38.60 0.11 0.03s 450.33 1.33

4mod5-v0 5 122.54s 0.69s 40.01s 3.06 0.02 0.20s 612.70 3.45
4mod5-v1 5 413.21s 0.48s 44.63s 9.25 0.01 0.16s 2582.56 3.00

decod24-v0 6 6.54s 0.02s 0.97s 6.74 0.02 0.04s 163.50 0.50
decod24-v1 6 6.22s 0.09s 1.28s 4.86 0.07 0.04s 155.50 2.25
decod24-v2 6 7.25s 0.02s 1.03s 7.04 0.02 0.03s 241.66 0.66
decod24-v3 7 28.88s 0.18s 2.00s 14.44 0.09 0.05s 577.60 3.60

ALU-v0 6 1998.83s 8.76s 181.99s 10.98 0.05 2.73s 732.17 3.21
ALU-v1 7 >2000s 369.14s >2000s – – 30.42s >65.75 12.13
ALU-v2 7 >2000s 840.25s >2000s – – 34.72s >57.60 24.20
ALU-v3 7 >2000s 764.04s >2000s – – 45.69s >43.77 16.72

Table 2. Quantum costs of networks
BENCH D TIME #SOL QC

COMPLETELY SPECIFIED FUNCTIONS
mod5mils 5 0.15 12 13-13
graycode6 5 0.46 1 5-5

3 17 6 0.01 7 14-14
mod5d1 7 1.68 1208 11-15
mod5d2 8 3.84 135 12-20

hwb4 11 20.38 264 23-39
4 49 12 837.92 374 32-72

INCOMPLETELY SPECIFIED FUNCTIONS
rd32-v0 4 0.01 4 12-12
rd32-v1 5 0.03 20 13-13

4mod5-v0 5 0.20 1176 9-21
4mod5-v1 5 0.16 592 9-25

decod24-v0 6 0.04 75 10-34
decod24-v1 6 0.04 3 14-22
decod24-v2 6 0.03 23 14-26
decod24-v3 7 0.05 1950 11-43

ALU-v0 6 2.73 824 14-38
ALU-v1 7 30.42 850 15-27
ALU-v2 7 34.72 16296 15-55
ALU-v3 7 45.69 132 15-39

solver. Only if additional knowledge is utilized, as done by
SWORD, the QBF solver method is outperformed. How-
ever, the BDD approach for QBF leads to the smallest over-
all synthesis time for non-trivial functions. That is, for some
benchmarks the runtime is higher than for SWORD indeed,
but this only holds for functions with an overall synthesis
time of less than one second (e.g. graycode6 and decod24-
v0). For all other benchmarks better runtimes are docu-
mented. In the best case (hwb4) an improvement of a factor
of 100 is achieved.

6.2. Quantum Costs of Resulting Networks
After the efficiency of the BDD approach has been

shown with respect to the runtime in the last section, further

experiments demonstrate the quality of the obtained results.
As described in Section 2.1, after synthesis the resulting

Toffoli network has to be transformed into a network con-
sisting of elementary quantum gates only. Thereby, the size
of the quantum networks depends on the used Toffoli gates.
Thus, it may be an advantage to determine not only one,
but more Toffoli network realizations for a given function.
Then, by checking the resulting quantum costs for each of
the obtained realizations the cheapest one with respect to
the quantum costs can be selected.

Previous approaches for minimal Toffoli network syn-
thesis determine only one network in each run. In contrast
using BDDs as described in Section 5.2 leads to all pos-
sible network realizations at once. The differences in the
resulting quantum costs are documented in Table 2. Col-
umn #SOL denotes the number of solutions found by the
BDD approach while QC denotes the minimal as well as
the maximal quantum costs for the determined realizations.

Considering the quantum costs of the obtained Toffoli
network realization may lead to further significant improve-
ments. For function 4 49 the best realization only needs 32
elementary quantum gates, for example, while in the worst
case more than 70 are required. Thus, in contrast to previ-
ous algorithms the BDD-based synthesis is not only faster
but also another quality criterion – the resulting quantum
costs – is applicable.

6.3. Synthesis with Extended Libraries
Finally, in this section we show the application of further

gate types to the BDD-based synthesis. This is done by
extending the universal gate formula from Section 4 with
further gates, i.e. Fredkin and Peres gates.

The results are shown in Table 3. Again, the respec-
tive depth (D), the runtime of the synthesis (TIME), the
number of solutions (#SOL) and the quantum costs (QC)
are listed. Thereby, MCT+MCF denotes the results for a
set of gates including multiple control Toffoli and multi-



Table 3. Synthesis Results Using other Gate Libraries
MCT+MCF MCT+P MCT+MCF+P

BENCH D TIME #SOL QC D TIME #SOL QC D TIME #SOL QC
COMPLETELY SPECIFIED FUNCTIONS

mod5mils 5 0.52 12 13-13 5 0.90 24 12-13 5 1.50 24 12-13
graycode6 5 2.77 1 5-5 5 4.22 1 5-5 5 7.19 1 5-5

3 17 5 0.02 2 15-15 5 0.02 9 11-12 5 0.03 43 11-20
mod5d1 7 15.08 1352 11-19 7 63.62 5632 10-23 7 250.81 5856 10-25
mod5d2 8 63.96 135 12-20 6 4.61 8 12-19 6 9.60 8 12-19

hwb4 9 37.36 774720 31-51 8 10.03 164 23-29 8 64.83 1084 23-33
4 49 10 1193.90 32 54-58 – > 2000 – – – > 2000 – –

INCOMPLETELY SPECIFIED FUNCTIONS
rd32-v0 4 0.02 4 12-12 2 0.01 4 8-8 2 0.02 4 8-8
rd32-v1 5 0.10 780 11-41 3 0.02 12 9-9 3 0.04 12 9-9

4mod5-v0 5 4.09 3672 9-23 5 2.96 35088 8-27 5 36.32 58176 8-39
4mod5-v1 5 3.52 2792 9-29 4 0.25 768 7-18 4 0.89 768 7-18

decod24-v0 5 0.05 13 11-25 4 0.03 5 13-14 4 0.04 8 13-16
decod24-v1 5 0.04 12 15-23 5 0.05 268 14-27 5 0.09 913 14-29
decod24-v2 6 0.09 1435 12-38 5 0.06 180 11-23 5 0.09 911 11-31
decod24-v3 6 0.07 292 12-32 5 0.06 300 11-29 5 0.09 513 11-31

ALU-v0 4 0.43 22 16-30 6 181.43 29900 12-64 4 1.65 38 16-30
ALU-v1 5 6.73 114 17-33 6 202.87 638 18-32 5 97.95 198 17-33
ALU-v2 5 8.66 224 17-39 6 189.73 280 22-40 5 108.39 402 17-39
ALU-v3 5 10.00 126 17-33 – > 2000 – – 5 124.04 431 17-34

ple controle Fredkin gates, MCT+P the results for the set
of gates including multiple control Toffoli and Peres gates
and MCT+MCF+P the results for the set of all gate types
(i.e. multiple control Toffoli, multiple control Fredkin and
Peres gates), respectively.

As expected, extending the gate library leads to smaller
realizations as for example the result for hwb4 shows.
While the minimal realization of this function only with
multiple control Toffoli gates consists of eleven gates it can
be reduced by three more gates using additionally Peres
gates. Furthermore, improvements with respect to the num-
ber of gates can be achieved for ALU, 3 17, mod5d2, 4 49,
rd32 and decod24, respectively.

However, with an increasing number of gates to be con-
sidered the runtimes increase as well. This can be seen
e.g. for function 4 49 or 4mod5. Only for the functions
where the extension of the gate library leads to smaller real-
izations the runtimes sometimes decrease (e.g. for function
ALU with the MCT+MCF library) since fewer iterations of
the main flow have to be performed (see Section 3).

7. Conclusions
In this paper a new approach for exact synthesis of re-

versible logic has been proposed. Instead of the represen-
tation as an instance of SAT, the problem is formulated as
a QBF instance. Since the performance of the QBF solver
approach is low, we propose the usage of BDDs. This leads
to three major improvements: a runtime speed up of up to
a factor of 100, the consideration of another quality crite-
rion (namely the resulting quantum costs), and an easy ex-
pandability for further gate libraries using a universal gate
formulation. Extensive experimental results clearly demon-
strated these improvements.
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