
RevKit — User Manual

Version 1.3 – April, 2013
http://www.revkit.org
revkit@informatik.uni-bremen.de

Contents

1. Introduction 1

2. Requirements 2

3. Download and Installation 3

4. First Steps Using “Out of the Box”-Tools 5
4.1. RevKit Graphical User Interface . 5
4.2. RevKit Viewer . 8
4.3. RevKit Shell Tools . 10

5. First Steps Using Python-Scripts 12
5.1. Creating a circuit . 12
5.2. Adding Gates . 13
5.3. Reading and Writing a Circuit from a File 14
5.4. Iterating through the Gates of a Circuit . 14
5.5. Calling an approach . 15
5.6. Displaying a Circuit . 16
5.7. Miscellaneous . 17

6. Advanced Examples 18
6.1. A Stand-alone Program . 18

Command Reference

A. Core Data Structures 20
A.1. Gate . 20
A.2. Circuit . 20
A.3. Buses . 22
A.4. Truth Table . 23
A.5. Pattern . 24

B. Core Functions 25
B.1. Basic Functions . 25
B.2. Input/Output . 29
B.3. Utilities . 31

C. Synthesis 33
C.1. Synthesis with Boolean Decision Diagrams 33
C.2. Synthesis with Kronecker Functional Decision Diagrams 35
C.3. Transformation-based Synthesis . 37
C.4. Transformation-based Synthesis . 38
C.5. Exact Synthesis using Boolean Satisfiability 39

RevKit – User Manual

C
ontents

C.6. ESOP-based Synthesis . 40
C.7. Truth Table Embedding . 41
C.8. Synthesis with Output Permutation . 43
C.9. Quantum Decomposition . 45

D. Optimization 47
D.1. Window Optimization . 47
D.2. Line Reduction . 49
D.3. Adding Lines Optimization . 51

E. Version History 52

F. Acknowledgments 55

3

RevKit – User Manual

1.
Intro

duction

1. Introduction

RevKit is an open source toolkit aimed to make recent developments in the domain
of reversible circuit design accessible to other researchers. Therefore, RevKit provides
core functionality (like parsers, export functions, cost calculations, etc.), but also elabo-
rated methods for synthesis, optimization, and verification of reversible (and quantum)
circuits. More precisely, the following approaches are available in RevKit.

Synthesis

• A transformation-based synthesis method inspired by the concepts of [7]

• The BDD-based synthesis method as introduced in [11]

• The KFDD-based synthesis method as introduced in [9]

• The heuristic synthesis with output permutation method as introduced in [12]

• The ESOP-based synthesis method inspired by the concepts of [2]

• The exact synthesis method as introduced in [3]

• A Reed Muller Spectra-based synthesis algorithm inspired by the concepts of [5]

• A transposition-based synthesis algorithm

Optimization

• The window optimization method as introduced in [10]

• The circuit line reduction method as introduced in [15]

• The adding lines optimization method as introduced in [8]

Verification

• The SAT-based equivalence checker as introduced in [13]

Further Methods

• A naı̈ve method to embed irreversible functions into reversible ones (needed
e.g. to synthesize irreversible functions using the transformation-based method)

• A simple simulation engine (for reversible circuits working on Boolean values)

• A simple decomposition method that maps a given reversible circuit (composed
of Toffoli, Fredkin, and Peres gates) to its equivalent quantum circuit (composed
of NOT, CNOT, V, and V+ gates) inspired by the concepts of [1] and [4].

• Support of hierarchical circuitry (i.e. modules, flattening of circuits, etc.), sequen-
tial circuits, annotations, and more.

1

2.
R
eq
ui
re
m
en
ts

RevKit – User Manual

• Visualization of circuits.

This document provides a manual describing how to apply the provided approaches
and core functionalities of RevKit1. The main aspects are thereby kept brief, but are
illustrated by means of examples.

In order to invoke approaches, RevKit uses a command line interface enabling an
easy and flexible access to the functions and algorithms in the framework. This inter-
face allows to create, modify, and display circuits as well as to call the above mentioned
approaches. Additionally, to a certain degree it is also possible to extend the framework
with new functionality (even if this is not the main intention of the interface). The in-
terface itself is based on the Python programming language. As a result, commands (or
sequences of commands) can easily be specified and processed using a common Python
interpreter.

In the following, the usage of RevKit using its command interpreter is described as
follows: First, how to get and how to install RevKit is shown, respectively. Section 4
and Section 5 provide a brief introduction into the usage of the basic functionality of
RevKit followed by some more advanced examples in Section 6. Finally, the last sec-
tions provide the documentation of all data-structures and functions supported by the
interpreter so far (including synopsis, examples, etc.).

2. Requirements

RevKit needs a couple of packages which can easily be installed with the distribution’s
package manager. Below the commands for common distributions are listed. In distri-
butions not listed it can be done analogue but the package names might deviate.

Ubuntu, Mint Linux (for the Python Interface Ubuntu 9.10 or higher is required):

> sudo apt−get install build−essential cmake python−dev ipython
python−qt4 python−numpy

openSUSE:

> sudo zypper install gcc−c++ cmake python−devel IPython
python−qt4 python−numpy

Fedora:

> sudo yum install wget gcc−c++ cmake python−devel ipython PyQt4 numpy

1For a description of how to extend RevKit with own approaches or how to integrate RevKit in own
C++-projects, respectively, we refer the reader to the developers’ documentation. The developers’
documentation (including an API) is provided by means of doxygen in the sources of RevKit as well
as on http://www.revkit.org.

2

RevKit – User Manual

3.
D
ow

nload
and

Installation

Further packages which are not available in the distrubition’s package manager (as
e.g. CUDD or PUMA) are downloaded and installed automatically from the bootstrap
script. Boost is also required and will be downloaded and installed by default.

For Fedora users: In order to run RevKit, SE Linux needs to be disabled. This can be
done temporarily or permanently as follows:

Temporarily:

> sudo /usr/sbin/setenforce 0

Permanently: Change ”enforcing” to ”disabled” in ”/etc/selinux/config” and reboot.

3. Download and Installation

RevKit can be downloaded from the www.revkit.org website. Opening a Bash shell and
assuming that the file revkit-1.3.tar.gz is in the current working directory, first the pack-
age needs to be unpacked:

> tar xvfz revkit−1.3.tar .gz
> cd revkit−1.3

Then, you can build the toolkit. The build process is divided into two scripts. First,
the RevKit environment is created using the bootstrap script. Afterwards, the RevKit
algorithms are built using the build script. This has the benefit of running the second
script only if changes have been made on the algorithms but not on the environment.
The bootstrap script should only be called once at the beginning.

More precisely, first run the bootstrap script:

> ./make.py bootstrap

This will download and compile all dependencies automatically. For that purpose,
compiling boost takes some time. If you already have installed boost using the distri-
bution’s package manager, the option -DBOOST PATH can be used to specify its path,
e.g. -DBOOST PATH=/usr. Alternatively you can specify the boost include and libs
path separately by using –boost, –boost-include-dir and –boost-lib-dir as arguments.
Plaese make sure that your version of boost satisfies the requirements.

After bootstraping the environment, the build script needs to be executed. To run
this script manually call:

> ./make.py build

This will build the whole RevKit suite including the core, algorithms, examples, and
the Python bindings. The Python bindings enable the CLI to use RevKit like a shell.
If the system cannot build the Python bindings or if they are not needed, they can be
deactivated by calling

> ./make.py build −DBUILD BINDINGS=OFF

3

3.
D
ow

nl
oa
d
an
d
In
st
al
la
ti
on

RevKit – User Manual

instead.
The build script must be called at least once. Afterwards, the sources only need to be

compiled again if local changes have been performed. Alternatively, the program make
can be executed manually by calling

> make

in the build directory.
The build script also provides the options of enabling and disabling the compilation

of unstable and example algorithms by using the parameters -DBUILD UNSTABLE
and -DBUILD EXAMPLES.

4

RevKit – User Manual

4.
F
irst

S
teps

U
sing

“O
ut

of
the

B
ox”-T

o
ols

4. First Steps Using “Out of the Box”-Tools

After the installation, RevKit is fully functional and ready to use. In this section, we
describe how to apply the most important functions using “out of the box”-tools. This
should provide a starting point to become familiar with the framework and its func-
tionalities.

4.1. RevKit Graphical User Interface

The RevKit Graphical User Interface enables the creation and execution of customized
design processes to be executed. Therefore, a GUI is utilized where the respective tasks
can easily be put together by means of item blocks connected to a graph. Each item
performs an operation and may have ports for the respective input parameters and
output results. Input ports can be connected to output ports forming a channel when
they support the same data types.

In order to start the RevKit Graphical User Interface, the following command has to
be invoked from within the root directory of RevKit:

> ./tools/gui/gui.py

The use of the GUI is illustrated by means of several tutorial-videos at the www.revkit.org
website. In the following, we briefly outline the available items.

Sources

• Path Benchmarks
This item opens a set of benchmarks (either Boolean functions provided in *.pla-
files, Truth Tables provided in *.spec-files, or Circuits provided in *.real-files2)
and separately pass them to the succeeding items. This can be applied, if a design
process should be applied to a larger set of benchmarks. A right-click on the item
opens a file browser, where a path including the respective files can be selected.

• PLA function
This item opens a single function provided in a given *.pla-file. A right-click on
the item opens a file browser, where the file can be selected.

• Truth Table
This item opens a single function provided in a given *.spec-file. A right-click on
the item opens a file browser, where the file can be selected.

• Circuit Realization
This item opens a single circuit provided in a given *.real-file. A right-click on the
item opens a file browser, where the file can be selected.

2See www.revlib.org for a documentation on the respective file formats.

5

4.
F
ir
st

S
te
ps

U
si
ng

“O
ut

of
th
e
B
ox
”-
T
o
ol
s

RevKit – User Manual

• Simulation Pattern
This item enables the definition of simulation patterns that should be applied to
a circuit. The pattern can be provided manually or in terms a *.sim-file.

Sinks

• Result Table
This item generates a table summarizing the results of an applied process. In
particular, this item finds application if more than one benchmark is considered
(i.e. in combination with the item “Path Benchmarks”). The result table gets a set
of circuits and lists the name of the benchmark, the number of lines, the number
of gates, the quantum cost, and the transistor cost of them.

Using the result table, also different sets of circuits (e.g. obtained by different
synthesis approaches) can be compared. Therefore, further item-inputs have to be
added by clicking on the button with the “+”-symbol on the left of the first tab in
the enlarged item. A double click on the respective tabular enables to name each
input individually. Global columns (i.e. table columns which are supposed to be
identical for all circuit sets) can be defined at the right-hand side of the enlarged
item. Finally, extra columns can be defined using the button named “configure”.
Here, Python expressions can be defined in order to e.g. automatically compute
improvements of certain values (e.g. the number of gates or the quantum cost).
The resulting table can be exported either as *.pdf- or as *.tex-file.

The usage of the result table is explicitly illustrated by means of a tutorial-video
at the www.revkit.org website.

• Circuit Viewer
This item displays a given circuit.

• Write Circuits To Path
This item dumps a given set of circuits as *.real-files to a given path. In particular,
this item finds application if more than one benchmark is considered (i.e. in com-
bination with the item “Path Benchmarks”). A right-click on the item opens a file
browser, where the path to which the circuits should be stored can be defined.

• Write Circuit to File
This item dumps a given circuit a *.real-file to a given path. A right-click on the
item opens a file browser, where the respective file to which the circuit should be
stored can be defined.

Synthesis

• DD Synthesis
This item provides the BDD-based synthesis method as introduced in [11] as well

6

RevKit – User Manual

4.
F
irst

S
teps

U
sing

“O
ut

of
the

B
ox”-T

o
ols

as the KFDD-based synthesis method as introduced in [9]. The respective syn-
thesis approach can be selected on the right-hand side of the enlarged item. Ad-
ditionally, the reordering strategy and whether complement edges should be ap-
plied or not can be specified. Optionally, the applied DD structure can be dis-
played. After the item has been processed, the enlarged item reports the run-time
needed to perform the synthesis.

• ESOP Synthesis
This item provides the ESOP-based synthesis method inspired by the concepts
of [2]. This approach can be configured according to the options summarized
in Section C.6. After the item has been processed, the enlarged item reports the
run-time needed to perform the synthesis.

• Transformation-based Synthesis
This item provides the transformation-based synthesis method inspired by the
concepts of [7] as well as the corresponding synthesis with output permutation
method as introduced in [12]. The respective synthesis approach can be selected
in the pull-down menu (in case of synthesis with output permutation addition-
ally the optimization criteria can be defined). Furthermore, it can be specified
whether bi-directional synthesis should be applied or not. After the item has
been processed, the enlarged item reports the run-time needed to perform the
synthesis.

• Exact Synthesis
This item provides the exact synthesis method as introduced in [3]. It can be speci-
fied whether incremental SAT techniques should be applied or not. Furthermore,
the maximum number of gates to be considered can be defined. After the item
has been processed, the enlarged item reports the run-time needed to perform the
synthesis.

• Embedding
This item provides a simple embedding method. Embedding needs to be pro-
cessed in order to transform a PLA function into a Truth Table. Optionally, the
name of the garbage outputs can be defined. After the item has been processed,
the enlarged item reports the run-time needed to perform the embedding.

Optimization

• Adding Lines Optimization
This item provides the adding lines optimization method as introduced in [8]. It
requires to define the number of lines that should be added. After the item has
been processed, the enlarged item reports the run-time needed to perform the
optimization.

• Line Reduction
This item provides the circuit line reduction method as introduced in [15]. This

7

4.
F
ir
st

S
te
ps

U
si
ng

“O
ut

of
th
e
B
ox
”-
T
o
ol
s

RevKit – User Manual

approach can be configured according to the options summarized in Section D.2.
After the item has been processed, the enlarged item reports the run-time needed
to perform the optimization.

• Window Optimization
This item provides the window optimization method as introduced in [10]. This
approach can be configured according to the options summarized in Section D.1.
After the item has been processed, the enlarged item reports the run-time needed
to perform the optimization.

Optimization

• Equivalence Checking
This items provide the SAT-based equivalence checker as introduced in [13]. It
gets two circuits and returns “equivalent” if both circuits realizing the same func-
tion. The equivalence checker supports different configurations of constant inputs
and garbage outputs in the considered circuits. After the item has been processed,
the enlarged item reports the run-time needed to perform the equivalence check.

• Sequential Simulation
This item provides a simulation engine. It gets a circuit and a Pattern. After the
item has been processed, the enlarged item displays a waveform illustrating the
simulation. The usage of the simulation item is explicitly illustrated by means of
a tutorial-video at the www.revkit.org website.

Helper Functions

• Comparator
This item gets two circuits and passes the better one along depending on criteria
which can be define in the enlarged item.

4.2. RevKit Viewer

In order to display more complex circuits (e.g. hierarchical circuits), a special GUI called
RevKit Viewer can be utilized. The RevKit Viewer can be started using

> ./tools/viewer.py −−filename circuit.real

or just by

> ./tools/viewer.py

without specifying a circuit to open. A circuit can be opened in the GUI using a corre-
sponding menu entry. The user interface of the RevKit Viewer is shown in Figure 1. It
shows the circuit specified in examples/hierarchies.real.

8

RevKit – User Manual

4.
F
irst

S
teps

U
sing

“O
ut

of
the

B
ox”-T

o
ols

Figure 1: RevKit Viewer

In the following the functionality of the RevKit Viewer is described by outlining its
menu actions. For some menu entries corresponding tool buttons in the tool-bar are
available.

File I Open Opens a new circuit into the viewer. This replaces an already opened
circuit.

File I Save as Image Saves the circuit as a PNG or JPG image.

File I Save as LATEX Saves the LATEX code to draw the circuit.

File I Quit Closes the viewer.

View I Circuit details Shows details about the circuit, i.e. different cost metrics.

View I View truth table Calculates and displays the fully specified truth table of the
circuit. Depending on the size of the circuit, this can take some time.

View I View partial truth table Calculates and displays the partial truth table, i.e. an
optimized truth table omitting constant inputs and garbage outputs.

Help I About Shows information about the viewer.

Zooming into the Circuit

You can zoom into and out of the circuit by placing the mouse over the view area and
then move the mouse wheel.

9

4.
F
ir
st

S
te
ps

U
si
ng

“O
ut

of
th
e
B
ox
”-
T
o
ol
s

RevKit – User Manual

Browsing Hierarchical Circuits

Figure 2: Navigating through modules in the RevKit Viewer

In hierarchical circuits (using RevLib 2.0 modules), the structure of the modules can
be displayed by clicking on the Hierarchy button on the left tool-bar in the viewer. This
opens a dock window containing a tree showing the hierarchy. Double clicking on a
hierarchy opens the respective circuit in the view area.

Besides that, modules can also be opened by double clicking on the respective mod-
ule gate in the circuit.

Displaying Annotations

Annotations are be displayed by means of tool-tips of the respective gate. Simply place
the mouse over the gate and the annotation will appear.

LATEX Export

The RevKit viewer also provides a shortcut for export LATEX code to produce images of
the circuit. Therefore, just click on the view area using the right mouse button. This
opens a context menu providing a button for this action. Clicking on this button copies
the LATEX code to the clipboard.

4.3. RevKit Shell Tools

Besides the GUIs, RevKit also provides shell scripts of the most important functional-
ities (e.g. for the supported synthesis, optimization, or verification approaches). These
are written in Python and are available in the homonymous folder tools. For example,

10

RevKit – User Manual

4.
F
irst

S
teps

U
sing

“O
ut

of
the

B
ox”-T

o
ols

to apply a given RevLib specification function.spec to the exact synthesis approach and
to store the result in circuit.real, the following command has to be invoked:

> ./tools/exact synthesis.py −−filename function.spec −−realname circuit.real

There are further options which can be passed to the exact synthesis.py tool. They can
be listed using the help option:

> ./tools/exact synthesis.py −−help

For each approach implemented in RevKit a corresponding script is available in the
tools folder. Call them using the help option to learn more about their usage.

11

5.
F
ir
st

S
te
ps

U
si
ng

P
yt
ho
n-
S
cr
ip
ts

RevKit – User Manual

5. First Steps Using Python-Scripts

To enable command line usage, all functions of RevKit are also exposed as a Python
library. In this section, the syntax of that library is illustrated by means of small exam-
ples and applications. Using this as a basis, more complex applications can be created
in a similar fashion. Section 6 provides more advanced application scenarios which can
be realized using RevKit together with Python.

In order to use the RevKit framework in Python, just enter ipython followed by

from revkit import ∗

into a shell. In the following the usage of the respective RevKit commands is intro-
duced. To get an overview of all available commands, type

revkit commands()

into the python shell.

5.1. Creating a circuit

How to create a circuit using RevKit is described by means of Multiple Control Toffoli
gates (MCT) in the following. Therefore, four steps are performed:

1. Importing the the revkit module,

2. declaring a circuit including 3 lines,

3. adding the respective Toffoli gates to the circuit, and

4. printing the circuit in ASCII format to the standard output3.

This can be performed using the following Python code:

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit (3)

 append toffoli(circ , [2], 1)
 append toffoli(circ , [0, 1], 2)
 append toffoli(circ , [1, 2], 0)
 append toffoli(circ , [0, 1], 2)

 append toffoli(circ , [2], 1)

 print circ

3Note that there is a special function print function, which can be used to print the circuit to the stan-
dard output accepting more options to change the appearance. More information can be get from the
reference in the remainder of this document

12

RevKit – User Manual

5.
F
irst

S
teps

U
sing

P
ython-S

cripts

The second parameter of the append toffoli function gives thereby a list of indices de-
noting the control line locations, while the last parameter gives the index of the target
line. All lines are thereby counted starting with 0, whereby 0 denotes the top line.

5.2. Adding Gates

After getting to know about adding gates in general, in the following example, a circuit
is created with different methods, i.e. using different gate types and positions where to
insert the corresponding gate. Therefore,

1. An empty circuit with 5 lines is created,

2. Names for the input and output signals of the circuit are set.

3. A CNOT Gate with control at line 2 (counted from 0) and target at line 3 is added,

4. A V Gate (control on 0, target on 1) is prepended (added in the front of the circuit),

5. A Fredkin Gate with controls on 0 and 1 and targets 2 and 4 is appended at the
end of the circuit,

6. A V+ Gate is inserted before the second gate (second parameter) with control on
1 and target on 2,

7. A NOT Gate is prepended at the beginning of the circuit,

8. A Toffoli gate with controls on 0, 1, 2, and 3 and target on 4 is added at the end of
the circuit,

9. The LATEX 2ε code for drawing the circuit (using TikZ) is printed. Thereby the
width between gates is adjusted.

This leads to the following circuit:

i1 o1
i2 o2
i3 o3
i4 o4
i5 o5

V

V†

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit (5)
 circ . inputs = [”i 1”, ”i 2”, ”i 3”, ”i 4”, ”i 5”]
 circ .outputs = [”o 1”, ”o 2”, ”o 3”, ”o 4”, ”o 5”]

13

5.
F
ir
st

S
te
ps

U
si
ng

P
yt
ho
n-
S
cr
ip
ts

RevKit – User Manual

 append cnot(circ, 2, 3)
 prepend v(circ, 0, 1)

 append fredkin(circ, [0, 1], 2, 4)
 insert vplus(circ , 2, 1, 2)
 prepend not(circ, 2)
 append toffoli(circ , [0, 1, 2, 3], 4)

 print create image(circ , elem width = 0.75)

5.3. Reading and Writing a Circuit from a File

Instead of manually creating circuits, RevKit also supports circuit descriptions given
in the RevLib format (see [14] for more information on RevLib and the supported for-
mats). The following example demonstrates how a circuit given in this format can be
imported, modified, and finally re-stored in a file. More precisely, the following code
shows how

1. an empty circuit is created,

2. the RevLib realization file is parsed,

3. the circuit is modified (here, the gates are simply reversed), and

4. the circuit is re-stored to another file.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ();
 read realization (circ , ” circuit . real”)
 reverse circuit (circ)
 write realization (circ , ” circuit−copy.real”)

5.4. Iterating through the Gates of a Circuit

Having a circuit available, RevKit provides functions in order to work with it. As an
example, the following code shows how to iterate through the gates of circuit using the
Python for . . . in loop. For each gate the number of its control lines is printed to the
standard output. Therefore,

1. an empty circuit is created,

2. a RevLib file is parsed,

3. every gate is traversed from left to right, and

14

RevKit – User Manual

5.
F
irst

S
teps

U
sing

P
ython-S

cripts

4. for each gate the number of its control lines is printed.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 read realization (circ , ” circuit . real”)

 for g in circ .gates:
 print ”Gate has”, g.num controls, ”controls.”

5.5. Calling an approach

Having the basic functionality introduced so far, the main purpose of RevKit is to use
the approaches e.g. for synthesis, optimization, verification, etc. This is exemplarily de-
scribed in the following by means of the transformation based synthesis method (orig-
inally introduced in [7]).

In general, all approaches can be invoked using a generic signature of the respective
functions. Usually, the first parameter denotes thereby the variable to which the result
should be assigned (e.g. in the case of a synthesis approach, a variable representing the
generated circuit). The following parameters denote all data, which might be required
by the respective approach. In the case of the transformation based synthesis, this is a
truth table description of the function to be synthesized. Finally, optional parameters
can be delivered. If not, these parameters are initialized with default values. In case of
a successful run, the return value of the respective functions is a dictionary (Python type
dict) containing statistical data collected by the algorithm. Otherwise, the return value
is a string containing an error message.

The following code shown the call of the transformation based synthesis with default
parameters only.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 spec = binary truth table ()
 read specification (spec, ”function.spec”)

 transformation based synthesis(circ , spec)

The function has an optional parameter bidirectional, which enables a special configura-
tion of the approach (see Section C.3 for more details). By default, this option is enabled
(i.e. the respective parameter is set to True). However, as the following code shows, this
configuration can be easily modified.

15

5.
F
ir
st

S
te
ps

U
si
ng

P
yt
ho
n-
S
cr
ip
ts

RevKit – User Manual

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 spec = binary truth table ()
 read specification (spec, ’function.spec’)

 transformation based synthesis(circ , spec, bidirectional = False)

A more detailed documentation of all parameters (also denoted by settings) can be
found in the last sections of this manual (e.g. in case of the transformation based ap-
proach in Section C.3). These parameter always can be applied in every order after the
mandatory parameters.

Besides the settings, there are also statistical variables, denoted by statistics in the
following. In the case of the transformation based algorithm, the only statistical infor-
mation is the run-time. In the following example, this statistic should be printed after
the execution of the approach. The value is thereby assigned to a Python dict variable.
It can be accessed by the name of the statistical parameter which are specified in the
documentaion for each approach as well. However, in the case the execution of the
approach fails, a string containing an error message is returned and, thus, the statis-
tical values cannot be accessed. Thus, we have to check first whether the algorithm
succeeded.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 spec = binary truth table ()
 read specification (spec, ”function.spec”)

 r = transformation based synthesis(circ , spec, bidirectional = False)

 if type(r) == dict : # Success
 print ”Runtime”, r[”runtime”], ”seconds.”
 else : # Fail
 print r

5.6. Displaying a Circuit

RevKit contains some basic GUI functionality (see also Section 4.2). As described above,
a circuit can be printed to the standard output using Python’s print or the print circuit
command. Additionally, RevKit provides functions to visualize a circuit. The following
example demonstrates how to use the GUI functions. Therefore,

16

RevKit – User Manual

5.
F
irst

S
teps

U
sing

P
ython-S

cripts

1. a circuit is read from a RevLib realization file,

2. the GUI is initialized (needs to be done only once per session),

3. a window (represented by the variable w) displaying the circuit is created and
shown, and

4. an input pattern is assigned to the circuit in order to simulate it (in this example,
it is assumed that the circuit has three lines).

#!/usr/bin/python
from revkit import ∗

circ = circuit ()
read realization (circ , ” circuit . real”)

init gui ()

w = display circuit (circ)
w.simulate([1,0,0])

It is possible to zoom in and out into the circuit using the mouse wheel. Further, click-
ing the right mouse button on the viewer opens a context menu. This menu provides
an action to copy the LATEX code to draw the circuit to the clipboard.

5.7. Miscellaneous

In this section, some tips in the usage of RevKit with the IPython interpreter are given.
As already mentioned above, all available data structures and commands can be listed
by entering

revkit commands()

into the Python interpreter. To get the synopsis and some documentation of a com-
mand, the name of the command followed by a question mark can be entered, e.g.

swop?

Entering two question marks will print out the Python source code implementation of
the command:

swop??

17

6.
A
dv
an
ce
d
E
xa
m
pl
es

RevKit – User Manual

6. Advanced Examples

6.1. A Stand-alone Program

This section illustrates how to build a stand-alone program (also denoted as tool) using
RevKit in combination with Python. As an example, the transformation-based synthe-
sis approach is used.

First, the Python header is set up, and the revkit as well as the sys libraries are loaded.
The latter is used for accessing the command line parameters.

 #!/usr/bin/python
 from revkit import ∗
 import sys

Note that the sys library is not loaded into the global namespace. Now, the program
options are set up. Therefore, different methods are available (for a comprehensive
overview, see the reference in the remainder of this user guide). In the following, we
need a parameter for providing a specification file to read from and a parameter for
providing a realization file to write to. Furthermore, two user defined options are given.
The first one is used to enable an ASCII print out and the second one to choose if the
bidirectional approach for the transformation based synthesis should be used or not.

 opts = program options()
 opts.add read specification option() \
 .add write realization option() \
 .add option(”print”, ”prints the circuit ”) \
 .add option(”bidirectional”, True, ”Bidirectional approach”)

The methods for adding program options can be added successively, but note that in
the end of each line a backslash has to be written, since there is no end of statement
character in Python. The parameter for controlling the bidirectional flag comes with a
default value, i.e. True.

After all parameters are set up, they have to be parsed and checked if they are entered
correctly. This is done with the methods parse and good, respectively.

 opts.parse(sys.argv)

 if not opts.good():
 print opts
 exit ()

The parameter for parse is sys.argv, i.e. the argument values from the command line. It
checks, if the names of the parameters have been correctly entered and if values for all
mandatory parameters have been provided. If the method good fails, a string for the
usage of the program options is printed to the standard output and the program quits.

For the synthesis function, an empty circuit and binary truth table is required. The
truth table should be parsed from the given program option.

18

RevKit – User Manual

6.
A
dvanced

E
xam

ples

 circuit circ ;
 binary truth table spec;

 read specification (spec, opts.read specification filename ())

After that, we are ready to call the synthesis function. The parameter to enable or
disable the bidirectional approach is thereby directly taken from the program options
using the [] operator. Since we defined a default value for this parameter, it is assured
that it yields a valid value. The key is the same string which was given by the call of
add option in line 8.

 res = transformation based synthesis(circ , spec, \
 bidirectional = opts[”bidirectional”])

The result of the algorithm is saved in the variable res. As mentioned above, if the
algorithm failed, res is a string. Otherwise, it is a Python dictionary (dict) with statistical
information. Thus, first it is checked, whether the algorithm succeeded. If not, the error
message is printed and the program quits.

 if type(r) == str :
 print r
 exit ()

However, if the functional call succeeded, first it should be checked, whether the circuit
should be printed to the standard output. This can be controlled using the program
option print. Whether a program option is set or not can be checked with the method
is set.

 if opts. is set (”print”):
 print circ

Then, it should be checked whether the circuit realization should be dumped to a
RevLib file. Since a predefined method of program options was used to add this op-
tion, there exists a predefined option for checking and reading the value of that option
as well.

 if opts. is write realization filename set ():
 write realization (circ , opts. write realization filename ())

Finally, statistical information of the circuit as well as of the synthesis process (e.g. the
run-time)is printed to the standard output.

 print statistics (circ , res[”runtime”])

19

A
.
C
or
e
D
at
a
S
tr
uc
tu
re
s

RevKit – User Manual

A. Core Data Structures

A.1. Gate

The class gate represents a gate in a circuit. It is a collection of control and target lines.
Furthermore, a distinct type is set to each gate. Usually, gates are added using helper
functions, e.g. append toffoli.

Constructors

gate() Initializes an empty gate

Properties

controls Line iterator, allows the use of a for . . . in loop (read-only)

targets Line iterator, allows the use of a for . . . in loop (read-only)

size Size of the gate, which is the sum of number of control lines and target lines
(read-only)

num controls Number of control lines (read-only)

num targets Number of target lines (read-only)

type Type of the gate, which can be gate type.toffoli, gate type.peres, gate type.fredkin,
gate type.peres, gate type.v, gate type.vplus, and gate type.module

module name If the gate is a module, this returns the name of that module (read-
only)

module reference If the gate is a module, this returns the circuit it refers to (read-
only)

Methods

add control(l) Adds a control at line l

remove control(l) Removes the control at line l

add target(l) Adds a target at line l

remove target(l) Removes the control at line l

A.2. Circuit

A circuit is the central data structure in the RevKit framework. It can be seen as a
container of lines. Furthermore, it has properties for meta-data information such as
names of the inputs, declaration of constant inputs, etc. A sub-circuit is also a circuit,
shares the same data structure, and, thus, the same properties and operations. It is
created with the subcircuit constructor.

Constructors

circuit() Initializes an empty circuit with 0 lines

20

RevKit – User Manual

A
.
C
ore

D
ata

S
tructures

circuit(n) Initializes an empty circuit with n lines

subcircuit(base, from, to) Initializes a sub-circuit with base as circuit basis, includ-
ing the gates from to to, where to is excluded

subcircuit(base, from, to, filter) Initializes a sub-circuit with base as circuit basis,
including the gates from to to, where to is excluded. Furthermore, the lines
are restricted to the indices in the list filter

Properties

lines Number of lines

num gates Number of gates (read-only)

gates Gate iterator, allows the use of a for . . . in loop (read-only)

rgates Reverse gate iterator, allows the use of a for . . . in loop (read-only)

inputs Input labels

outputs Output labels

constants Determines constant inputs, i.e. a list which assigns the values True,
False, or None to each input

garbage Determines garbage outputs, i.e. a list which assigns the values True or
False to each output

circuit name Name of the circuit

filter The filter is a list [s,f]. In the case the circuit is a sub-circuit and restricted
by its lines, then s is the number of lines of the base circuit and f is the set of
lines present in the sub-circuit. Otherwise, s is 0 and f is empty (read-only)

offset In case the circuit is a sub-circuit it returns the offset, i.e. the index of the
sub-circuit’s first gate in the base circuit (read-only)

Methods

append gate(g) Appends gate g

prepend gate(g) Prepends gate g

insert gate(n, g) Inserts gate g in front of the gate at position n

remove gate at(n) Removes the gate at position n

is subcircuit() Returns whether circuit is a sub-circuit or not

inputbuses() Returns the input buses of the circuit (as bus collection)

outputbuses() Returns the output buses of the circuit (as bus collection)

statesignals() Returns the state signals of the circuit (as bus collection)

add module(name, circ) Adds the circuit circ as module named name to the cir-
cuit. This does not add a gate, but only the reference in the header of the
circuit

21

A
.
C
or
e
D
at
a
S
tr
uc
tu
re
s

RevKit – User Manual

modules() Returns a dictionary that maps a module name to its reference as cir-
cuit

annotation(g, key, default value) Returns the value of the annotation called key of
gate g. If no such annotation exists, default value is returned instead

annotations(g) Returns a dictionary with all annotations, where the name of the
annotation (key) maps to the value.

annotate(g, key, value) Annotates gate g with an annotation called key having the
value value.

[n] Accessor Gets the n-th gate, counting from 0 (read-only)

Example

Two different methods for iterating through the gates.

 #!/usr/bin/python

 circ = circuit ()
 read realization (circ , ’ circuit . real ’)

 for g in circ :
 print g.num controls()

 for i in range(0, circ .num gates):
 print circ [i]. num controls()

A.3. Buses

As mentioned in the above section, the buses of a circuit, e.g. the inputbuses, refer to a
bus collection. This data structure handles the creation and the access of the buses and
is described in this section.

Methods

find bus(line index) Returns the name of the bus where the line at line index be-
longs to, if it belongs to a bus

has bus(has bus) Returns whether the line at line index belongs to a bus

signal index(line index) Returns the index of a signal relative to its bus

empty() True, if and only if no bus exists in this collection. . .

[name] Accessor Returns all signals belonging to the bus with the name name
(read-only)

22

RevKit – User Manual

A
.
C
ore

D
ata

S
tructures

A.4. Truth Table

As truth table, the user interface of RevKit provides a binary truth table containing
Boolean values only.

Constructors

binary truth table() Initializes an empty binary truth table, working on the val-
ues True, False, and None (don’t care)

Properties

entries Entry iterator, allows the use of a for . . . in loop (read-only)

num inputs Number of input variables. The value initially is 0 and is determined
after the first call of add entry() (read-only)

num outputs Number of output variables. The value initially is 0 and is deter-
mined after the first call of add entry() (read-only)

permutation Current output permutation, i.e. a list with the numbers from 0 to
n − 1, where n is the number of primary outputs. The permutation can also
be changed with permute()

inputs Input labels

outputs Output labels

constants Determines constant inputs, i.e. a list which assigns the values True,
False, or None to each input

garbage Determines garbage outputs, i.e. a list which assigns the values True or
False to each output

Methods

add entry(in, out) Adds an entry with inputs in and outputs out. The first call
determines the number of input and output variables. Afterwards, the size
of in and out must be conform to them

clear() Clears the truth table, including all meta-data and number of inputs and
outputs

permute() Permutes the output variables. Returns False when no more new per-
mutation can be set

Example

Iterating through the entries of a specification.

 #!/usr/bin/python

 spec = binary truth table ()
 read specification (spec, ”function.spec”)

23

A
.
C
or
e
D
at
a
S
tr
uc
tu
re
s

RevKit – User Manual

 for entry in spec.entries :
 print entry [0], ”maps to”, entry[1]

A.5. Pattern

This class offers read-only access to a simulation file, that can be read with read pattern.

Constructors

read pattern() Initializes an empty pattern file

Properties

initializers Returns a dict of initializers, specified by the .init command (read-
only)

inputs Returns a list of input signal names, specified by the .inputs command
(read-only)

patterns Returns a list of input sequences, specified in the simulation file (read-
only)

24

RevKit – User Manual

B
.
C
ore

F
unctions

B. Core Functions

B.1. Basic Functions

Version

revkit version()

Returns the current RevKit version as string.

Adding Circuits

append circuit(circ, src, controls = [])

Appends the circuit src to the circuit circ controlled by the control lines in controls.

prepend circuit(circ, src, controls = [])

Inserts the circuit src at the beginning of circuit circ controlled by the control lines
in controls.

insert circuit(circ, pos, src, controls = [])

Inserts the circuit src before gate with index pos of the circuit circ controlled by the
control lines in controls. The index is counted from 0.

Adding Gates

append toffoli(circ, controls, target)

Appends the Toffoli gate with control lines in the list controls and target line on
target to the circuit circ.

append fredkin(circ, controls, target1, target2)

Appends the Fredkin gate with control lines controls and target lines target1, tar-
get2 to the circuit circ.

append peres(circ, control, target1, target2)

Appends the Peres gate with control line control and target lines target1, target2 to
the circuit circ.

append cnot(circ, control, target)

Appends the CNOT gate with control line control and target line target to the cir-
cuit circ.

append not(circ, target)

Appends the NOT gate with target line target to the circuit circ.

25

B
.
C
or
e
F
un

ct
io
ns

RevKit – User Manual

append v(circ, control, target)

Appends the V gate with control line control and target line target to the circuit
circ.

append vplus(circ, control, target)

Appends the V+ gate with control line control and target line target to the circuit
circ.

append module(name, controls, targets)

Appends the module gate named name with control lines controls and target lines
targets. The module has to be added to the circuit before calling this function.

prepend toffoli(circ, controls, t

Prepends the Toffoli gate with control lines controls and target line target to the
circuit circ.

prepend fredkin(circ, controls, target1, target2)

Prepends the Fredkin gate with control lines controls and target lines target1, tar-
get2 to the circuit circ.

prepend peres(circ, control, target1, target2)

Prepends the Peres gate with control line control and target lines target1, target2 to
the circuit circ.

prepend cnot(circ, control, target)

Prepends the CNOT gate with control line control and target line target to the
circuit circ.

prepend not(circ, target)

Prepends the NOT gate with target line target to the circuit circ.

prepend v(circ, control, target)

Prepends the V gate with control line control and target line target to the circuit
circ.

prepend vplus(circ, control, target)

Prepends the V+ gate with control line control and target line target to the circuit
circ.

prepend module(name, controls, targets)

Prepends the module gate named name with control lines controls and target lines
targets. The module has to be added to the circuit before calling this function.

26

RevKit – User Manual

B
.
C
ore

F
unctions

insert toffoli(circ, n, controls, t

Inserts the Toffoli gate with control lines controls and target line target to the circuit
circ.

insert fredkin(circ, pos, controls, target1, target2)

Inserts the Fredkin gate with control lines controls and target lines target1, target2
to the circuit circ at position pos.

insert peres(circ, pos, control, target1, target2)

Inserts the Peres gate with control line control and target lines target1, target2 to
the circuit circ at position pos.

insert cnot(circ, pos, control, target)

Inserts the CNOT gate with control line control and target line target to the circuit
circ at position pos.

insert not(circ, pos, target)

Inserts the NOT gate with target line target to the circuit circ at position pos.

insert v(circ, pos, control, target)

Inserts the V gate with control line control and target line target to the circuit circ
at position pos.

insert vplus(circ, pos, control, target)

Inserts the V+ gate with control line control and target line target to the circuit circ
at position pos.

insert module(name, pos, controls, targets)

Inserts the module gate named name with control lines controls and target lines
targets at position pos. The module has to be added to the circuit before calling
this function.

Circuit Lines

add line to circuit(circ, input, output, is control = None, is garbage = False)

Adds a line to the circuit.

control lines(g)

Returns a list of the control lines of g.

target lines(g)

Returns a list of the target lines of g.

27

B
.
C
or
e
F
un

ct
io
ns

RevKit – User Manual

find non empty lines(circ or gate, begin = None, end = None)

Returns the non empty lines in a circuit(range) or gate. The first parameter can be
a circuit or a gate. If the first paramater is a circuit, then the gates can be selected
by a range from begin to end (exclusive).

find empty lines(circ or gate, begin or line size = None, end = None)

Returns the empty lines in a circuit, a circuit range, or a gate. The first parameter
can be a circuit or a gate. If the first paramater is a circuit, then the gates can
be selected by a range from begin (begin or line size parameter) to end (exclusive).
If the first parameter is a gate then the second parameter is used to specify the
number of lines in the gate.

Copying, Modifying and clearing circuits

clear circuit(circ)

Clears the circuit circ completely, i.e. gates, lines, and meta-data are deleted. The
object is still valid.

circuit to truth table(circ, spec)

Generates the truth table for the circuit circ.

copy circuit(src, dest)

Copies all relevant data including lines, gates, and meta-data from src to dest.

copy metadata(base, circ, copy inputs = True, copy outputs = True, copy constants
= True, copy garbage = True, copy name = True, copy inputbuses = True,
copy outputbuses = True, copy statesignals = True, copy modules = True)

Copies data from a specification or circuit base including inputs, outputs, garbage
lines and constant lines to the circuit circ.

reverse circuit(src [, dest])

Reverses the circuit src and write the result into dest, if given. Otherwise the circuit
is reversed in-place.

expand circuit(sub, circ)

Expands the sub-circuit sub by the lines of its base circuit and copies the result to
circ.

Truth Table Information and Modification

fully specified(spec)

Returns True, if spec is a fully specified truth table. Otherwise False.

extend truth table(spec)

Removes the Don’t Cares Values of a binary truth table spec.

28

RevKit – User Manual

B
.
C
ore

F
unctions

Simulation

create simulation pattern(p, circ)

Creates simulation pattern to be used with sequential synthesis from simulation
file p according to circuit circ.

Hierarchies and Modules

flatten circuit(base, circ)

Flattens the circuit base and stores an equivalent circuit with no modules in circ.

circuit hierarchy(circ)

Returns a hierarchy tree of the circuit based on the modules, and sub-modules, . . .

A hierarchy tree has the following methods:

Methods

root() Returns the root node of the tree

node name(node) Returns the name of node

node circuit(node) Returns the circuit node is referring to

children(node) Returns the children of node

parent(node) Returns the parent of node

size() Returns the size of the tree, i.e. the number of nodes

B.2. Input/Output

Creating Images

create image(circ, generator = create tikz settings(), elem width = 0.5, elem height =
0.5, line width = 0.3, control radius = 0.1, target radius = 0.2)

Creates an image from circ and prints out the code to generate the image, e.g. LATEX.
The target code can be specified using the generator parameter. In the default case,
the output is TikZ code for LATEX. Another possible generator is create pstricks settings.
Furthermore layout options can be specified with the remaining parameters.

Printing a circuit to console

print circuit(circ, print inputs and outputs = False, print gate index = False,
control char = ’*’, line char = ’-’, gate spacing = 0, line spacing = 0)

Prints the circuit circ as an ASCII representation to the console. The remaining
parameters can adjust the appearance.

29

B
.
C
or
e
F
un

ct
io
ns

RevKit – User Manual

Printing statistics

print statistics(circ, runtime = -1.0, main template = ’...’, runtime template = ’...’)

Prints statistics of circ to the console. If runtime is not -1.0 it is printed as well. For
more information about the templates, we refer to the corresponding entry in the
API of the developers’ documentation.

Reading and writing circuits and specifications

read realization(circ, filename)

Read-in routine for RevLib realization files. The circuit circ has to be empty.

write realization(circ, filename, version = ’2.0’, header = ’This file has been generated
using RevKit ... (www.revkit.org)’)

Dumps the circuit circ as RevLib realization file called filename.

read specification(spec, filename)

Read-in routine for RevLib specification files. The binary truth table spec has to be
empty.

write specification(spec, filename, version = ’2.0’, header = ’This file has been gener-
ated using RevKit ... (www.revkit.org)’, output order = [])

Dumps the binary truth table spec as RevLib specification file called filename. Using
output order the order of the outputs can be changed. If specified, the length of the
list has to match the number of outputs and all indices must be contained in the
list.

read pattern(p, filename) Read-in routine for a simulation file in filename to p.

read pla(spec, filename, extend = True) Read-in routine for PLA specification files. The
binary truth table spec has to be empty. The PLA gets extended using extend truth table
automatically. This behavior can be disabled by setting extend to False.

write blif(circ, filename, tmp signal name = ’tmp’, blif mv = False)

Dumps the circuit circ as BLIF circuit to a file called filename.

write verilog(circ, filename, propagate constants = True)

Dumps the circuit circ as Verilog circuit to a file called filename. If propagates constants
is set to True, all constants signals are omitted in the resulting circuit and evalu-
ated implicitly. Otherwise, for each constant signal a Verilog variable is created.

30

RevKit – User Manual

B
.
C
ore

F
unctions

B.3. Utilities

Cost Functions

costs(circ, cost function)

Returns the costs for the circuit circ base on the costs function cost function, which
can be either gate costs(), quantum costs(), transistor costs(), or line costs().

Program Options

Constructors

program options() Initializes an instance of type program options which has ini-
tially only the help option.

Methods

add costs option() Adds an option costs to specify a cost function.

add read specification option() Adds a mandatory option filename to specify a
RevLib specification to read from. If this method was called, add read realization option
cannot be called anymore.

add read realization option() Adds a mandatory option filename to specify a RevLib
realization to read from. If this method was called, add read specification option
cannot be called anymore.

add write realization option() Adds an option realname to specify a RevLib real-
ization to read to.

add numeric option(name, description) Adds an option getting a numeric value
without a default value having the name name and a description description.

add double option(name, description) Adds an option getting a floating number
value without a default value having the name name and a description de-
scription.

add option(name, description) Adds an option getting a string value without a
default value having the name name and a description description.

add option(name, default value, description) Adds an option with a default value.
The corresponding type can be determined from the default value, which
can be either numeric or a string.

costs() Returns the selected costs function, if a respective option was added.

good() Evaluates to True, iff all mandatory options were specified and the help
option was not requested.

is set(name) Returns True, if the option with name name was set as argument.

parse(arguments) Parses the program arguments, usually in sys.argv.

read realization filename() Value of the filename (as realization) option, if speci-
fied.

31

B
.
C
or
e
F
un

ct
io
ns

RevKit – User Manual

read specification filename() Value of the filename (as specification) option, if spec-
ified.

write realization filename() Value of the realname option, if specified.

is write realization filename set() Returns True, iff the realname option is set as
an argument.

[name] Accessor Returns the value of the option with name name, if specified
(read-only)

32

RevKit – User Manual

C
.
S
ynthesis

C. Synthesis

C.1. Synthesis with Boolean Decision Diagrams

This algorithm implements the BDD based synthesis approach based on [11]. It sup-
ports complemented edges, different re-ordering strategies and the generation of both,
Toffoli and elementary quantum gates.

The function representation can be read from a BLIF or PLA file-name. Thereby the
extension is used to determine the file type, so it has to be ensured that a BLIF file has
the extension *.blif and a PLA file has the extension *.pla, respectively.

Synopsis

bdd_synthesis(circ, filename[, ...])

circ An empty circuit, which is filled with gates by the algorithm

filename A file which contains a function described as PLA or BLIF

Settings for the algorithm:

complemented edges Specifies whether complemented edges should be used by
the BDD. The default value is True.

reordering The reordering strategy for choosing the variable ordering. The de-
fault value is 4.

dotfilename If this string is specified, i.e. if it is not empty, then a graph repre-
sentation of the BDD in DOT format is written to that file-name.

infofilename If this string is specified, i.e. if it is not empty, then information
about the generated BDD are dumped to that file-name.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

node count Number of nodes of the generated BDD

Example

The following example creates a circuit using the BDD synthesis approach and dumps
the BDD as a graph. Using dot, the graph can be displayed with the command
cat /tmp/test.dot | dot -Tpng | display

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()

33

C
.
S
yn
th
es
is

RevKit – User Manual

 bdd synthesis(circ, ’function.pla’ , dotfilename = ’/tmp/test.dot’)

34

RevKit – User Manual

C
.
S
ynthesis

C.2. Synthesis with Kronecker Functional Decision Diagrams

This synthesis approach constructs KFDDs from a given functional representation in
PLA or BLIF and constructs a reversible circuit by constructing cascades for every node
type as proposed in [9]. Thereby, re-ordering strategies as well as different decomposi-
tion types can be used.

Synopsis

kfdd_synthesis(circ, filename[, ...])

circ An empty circuit, which is filled with gates by the algorithm

filename A file which contains a function described as PLA or BLIF

Settings for the algorithm:

default decomposition The default decomposition type (Shannon = 0, positive
Davio = 1, negative Davio = 2) used when initially constructing the KFDD.
The default value is 0.

reordering The reordering strategy for choosing the variable ordering. The de-
fault value is 0.

sift factor Sets a factorial limit for the growth during a siftprocess cause although
the outcome will be improved, during sifting the KFDD might explode if not
kept at bay. Suggested values are in between 2 and 3. The default value is
2.5

sifting growth limit This parameter (possible values are ’r’ for relative and ’a’
for absolute) determines whether the given sift-factor should be treated as
relative or absolute growth limit. In the case of a relative treatment, after
each repositioning of a sifting variable the comparison size for the growing
is actualized. In the case of an absolute treatment, the comparison size is the
intial size of the KFDD for the complete sifting process. The default value is
’a’.

sifting method Sets the kind of choice for the next sifting candidate. Possible
values and their meaning are listed in the following table:

Method Description
’r’ (Random) The random selection was introduced for comparison reasons.
’i’ (Initial) The sifting variables are chosen in the order given before the sifting

procedure starts.
’g’ (Greatest) Chooses the variable in the level with the largest number of nodes.

35

C
.
S
yn
th
es
is

RevKit – User Manual

’l’ (Loser first) Although the complete sifting process will reduce the number of
DD-Nodes (or at least keep the same size if no improvement can be
done) after each repositioning of a sifting variable there will occa-
sionally be some levels that grow. The loser first strategy chooses
the next sifting candidate as the variable in the level with the least
increase in size.

’v’ (Verify) Calculates the number of node eliminations due to the reduction
rules of OKFDDs if a variable is repositioned in a specific level. It
then chooses the best position according to the highest count result.

The default value is ’v’.

dotfilename If this string is specified, i.e. if it is not empty, then a graph repre-
sentation of the KFDD in DOT format is written to that file-name.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

node count Number of nodes of the generated BDD

Example

The following example synthesizes a circuit using the KFDD synthesis approach. The
negative Davio decomposition is used as the default in the construction process.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 kfdd synthesis(circ , ’function.pla’ , default decomposition = 2)

36

RevKit – User Manual

C
.
S
ynthesis

C.3. Transformation-based Synthesis

This transformation based synthesis algorithm is based on [6]. The idea is to traverse
the truth table rows from top to bottom and add gates to the circuit to obtain the iden-
tity. In the paper, two strategies were proposed, a basic approach adding gates in the
end of the circuit and a bidirectional approach also adding gates in the beginning which
can lead to fewer costs. Both approaches are implemented in this algorithm.

Synopsis

transformation_based_synthesis(circ, spec[, ...])

circ An empty circuit, which is filled with gates by the algorithm

spec A fully specified binary truth-table which is basis for the synthesis algorithm

Settings for the algorithm:

bidirectional Determines whether the bidirectional approach should be used or
not. The default value is True

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

The following example synthesizes two reversible circuits using the function described
in the file function.spec. First, the basic approach is applied and afterwards the bidirec-
tional extension is enabled.

 circ1 = circuit ()
 circ2 = circuit ()

 spec = binary truth table ()

 read specification (spec, ’function.spec’)

 # bidirectional approach
 transformation based synthesis(circ1, spec)

 # no bidirectional approach
 transformation based synthesis(circ2, spec, bidirectional = False)

37

C
.
S
yn
th
es
is

RevKit – User Manual

C.4. Reed Muller Spectra-based Synthesis

This transformation based synthesis algorithm is based on [5]. The idea is to traverse
the truth table rows from top to bottom and add gates to the circuit to obtain the iden-
tity. In the paper, two strategies were proposed, a basic approach adding gates in the
end of the circuit and a bidirectional approach also adding gates in the beginning which
can lead to fewer costs. Both approaches are implemented in this algorithm. The algo-
rithm is very similar to the transformation-based synthesis approach, however, instead
of being based on the truth table in internally computes the Reed Muller Spectra and
works on that representation.

Synopsis

reed_muller_synthesis(circ, spec[, ...])

circ An empty circuit, which is filled with gates by the algorithm

spec A fully specified binary truth-table which is basis for the synthesis algorithm

Settings for the algorithm:

bidirectional Determines whether the bidirectional approach should be used or
not. The default value is True

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

The following example synthesizes two reversible circuits using the function described
in the file function.spec. First, the basic approach is applied and afterwards the bidirec-
tional extension is enabled.

 circ1 = circuit ()
 circ2 = circuit ()

 spec = binary truth table ()

 read specification (spec, ’function.spec’)

 # bidirectional approach
 reed muller synthesis(circ1 , spec)

 # no bidirectional approach
 reed muller synthesis(circ2 , spec, bidirectional = False)

38

RevKit – User Manual

C
.
S
ynthesis

C.5. Exact Synthesis using Boolean Satisfiability

Synthesizes a minimal circuit (with respect to the number of gates) using the SAT-based
exact synthesis approach as presented in [3].

Synopsis

exact_synthesis(circ, spec[, ...])

circ An empty circuit, which is filled with gates by the algorithm

spec A fully specified binary truth-table which is basis for the synthesis algorithm

Settings for the algorithm:

solver The solver to be used in the approach. The default (and currently only
available) value is MiniSAT.

max depth The maximal considered circuit depth. The default value is 20.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

In the following example, a circuit is synthesized using Boolean Satisfiability.

 #!/usr/bin/python
 from revkit import ∗

 spec = binary truth table ()
 circ = circuit ()

 read specification (spec, ”function.spec”)
 exact synthesis(circ , spec)

39

C
.
S
yn
th
es
is

RevKit – User Manual

C.6. ESOP-based Synthesis

This algorithm implements the ESOP based synthesis approach as introduced in [2].
The basic approach, where each input signal requires to line for its positive and neg-
ative polarity version, can be enabled by setting the setting separate polarities to True.
If one line is used for both polarities, which is the default case, a functor can be spec-
ified to reorder the cubes in order to minimize inverter gates. Two functors are pro-
vided which are, no reordering which keeps the initial order from the truth table, and
weighted reordering which is proposed in [2] as reordering strategy.

Synopsis

esop_synthesis(circ, filename[, ...])

circ An empty circuit, which is filled with gates by the algorithm

filename A file which contains a function described as ESOP cubes

Settings for the algorithm:

separate polarities If True, the basic approach using two circuit lines for each
input variable is used. Furthermore, in that case, no reordering functor has
to be specified. The default value is False.

reordering Function for reordering the cubes to obtain a better result by using
less NOT gates. The default value is weighted reordering with default values.

garbage name A string for the name of the garbage outputs which are possible
created during embedding. The default value is ’g’.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

40

RevKit – User Manual

C
.
S
ynthesis

C.7. Truth Table Embedding

This algorithm takes an irreversible (incompletely) specified truth table, for example
using read pla and embeds it into a reversible specification. Thereby necessary garbage
and constant lines are added. The function is always embedded using the 0 values
of the constant lines and the method which is used is the ”Greedy Method” applying
possible assignments by the minimal hamming distance.

Synopsis

embed_truth_table(spec, base[, ...])

spec A truth table which will be created by this algorithm. Can be the same as base.

base The base truth table which is irreversible.

Settings for the algorithm:

garbage name A string for the name of the garbage outputs which are possible
created during embedding. The default value is ’g’.

output order The initial has a number of output variables, say n, the initial order
of them is [0, . . . , n − 1], i.e. the i-th variable is initially in the i-th column.
However, with embedding garbage lines are possibly added, say l garbage
lines. Usually, the garbage lines are appended to the output columns, i.e. the
initial order of the output variables will not change. To change this behavior
a list of indices can be specified. The list must have n different elements with
the values from 0 to (n + g − 1) or the list is empty meaning that the output
order will remain the same. The default value is the empty list.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

In this example the AND function is specified manually and then embedded to be re-
versible. Finally the reversible specification is synthesized using the transformation
based synthesis.

 #!/usr/bin/python
 from revkit import ∗

 spec = binary truth table ()
 spec.add entry([False, False], [False])
 spec.add entry([False, True], [False])
 spec.add entry([True, False], [False])

41

C
.
S
yn
th
es
is

RevKit – User Manual

 spec.add entry([True, True], [True])

 embed truth table(spec, spec)

 circ = circuit ()

 transformation based synthesis(circ , spec)

42

RevKit – User Manual

C
.
S
ynthesis

C.8. Synthesis with Output Permutation

This is an implementation of the SWOP (Synthesis with Output Permutation) synthesis
approach as introduced in [12]. Thereby it is generic and can be used with every truth
table based synthesis approach, which gets a circuit and a truth table as parameters.

Synopsis

swop(circ, spec[, ...])

circ An empty circuit, which is filled with gates by the algorithm

spec A fully specified binary truth-table which is basis for the synthesis algorithm

Settings for the algorithm:

enable This parameter enables the output permutation. Thus, when this param-
eter is False, the algorithm behaves the same as calling the chosen synthesis
algorithm once. Therewith, embedding a synthesis algorithm in the swop al-
gorithm enables three configurations: no swop (enable is False), heuristic and
exhaustive (enable is True in combination with the exhaustive parameter). The
default value is True.

exhaustive If this parameter is True, then all permutations are checked, otherwise
the a good permutations is heuristically determined by sifting the permu-
tations. The complexity of the SWOP algorithm (not considering the used
synthesis approach) is O(2n) if this parameter is True, and O(n2) if this pa-
rameter is set to False. The default value is False.

synthesis A functor to the default synthesis approach which is used. The functor
is of type truth table synthesis func. The default value is
transformation based synthesis func().

cost function A pointer to a cost function, which is used is criteria to minimize
the circuit. The default value is gate costs().

stepfunc A function which gets called after each iteration of the SWOP algorithm.
The functor is of type swop step func. The default value is an empty function.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

In the following example the SWOP synthesis is used with a modified transforma-
tion based synthesis (using the non bidirectional approach) and a step function, which
counts the number of iterations in a global variable named counter.

43

C
.
S
yn
th
es
is

RevKit – User Manual

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 spec = binary truth table ()

 counter = 0

 read specification (spec, ’function.spec’)

 tbs = transformation based synthesis func(bidirectional = False)

 def step ():
 global counter
 counter += 1

 swop(circ, spec, synthesis = tbs , stepfunc = swop step func.from callable(step))
 print counter, ’ iterations were performed’

44

RevKit – User Manual

C
.
S
ynthesis

C.9. Quantum Decomposition

This algorithm decomposes a reversible circuit into a quantum circuit based on the
work of [1] and [4]. The resulting circuits do not necessarily coincide with the quantum
costs calculated by quantum costs(), since some further optimizations are not consid-
ered yet.

Synopsis

quantum_decomposition(circ, base[, ...])

circ An empty circuit, which will be filled with quantum gates by the algorithm.

base The base circuit, containing reversible gates which needs to be decomposed. This
circuit will not be changed by the algorithm.

Settings for the algorithm:

helper line input In some cases a helper line is introduced by the algorithm (see
above). This string specifies the input name for the helper line. The default
value is ’w’.

helper line output In some cases a helper line is introduced by the algorithm (see
above). This string specifies the output name for the helper line. The default
value is ’w’.

gate decomposition This parameter is a gate decomposition functor which decom-
poses a single gate and adds it to the quantum circuit. This fuctor is called
by the algorithm for every gate. The default value is standard decomposition,
which implements the above described decomposition techniques.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

The following example decomposes the Toffoli gate as its quantum cascade and writes
it to another realization file.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit (3)
 append toffoli(circ , [0,1], 2)

 quancirc = circuit ()
 quantum decomposition(quancirc, circ)

45

C
.
S
yn
th
es
is

RevKit – User Manual

 write realization (quancirc, ’ circuit . real ’)

46

RevKit – User Manual

D
.
O
ptim

ization

D. Optimization

D.1. Window Optimization

This algorithm implements the window optimization approach as presented in [10].
The implementation is very generic and depends heavily on the functors defined in
settings.

In a loop, a new window is selected using the select window setting, and in case a
window was found, the optimization approach using the optimization setting is applied.

The resulting new window is compared to the extracted one using the cost metric
defined in the cost function setting.

Synopsis

window_optimization(circ, base[, ...])

circ An empty circuit, which is filled with gates by the algorithm by optimizing base.

base The base circuit which should be optimized.

Settings for the algorithm:

select window A functor which selects the window which should be considered
for local optimization. The default value is shift window selection func with
default parameters.

optimization A functor which optimizes the window. The default value is resyn-
thesis optimization func with default parameters.

cost function A pointer to a cost function, which is used is criteria to minimize
the circuit. The default value is gate costs().

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

In this circuit a circuit is read from a realization file and afterwards first optimized using
shift window selection with a window length of 7 and an offset of 3. Finally, the circuit
is again optimized using the line window selection scheme and quantum costs as cost
criteria.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 read realization (circ , ’ circuit . real ’)

47

D
.
O
pt
im

iz
at
io
n

RevKit – User Manual

 opt circ1 = circuit ()
 window optimization(opt circ1, circ, \
 select window = shift window selection func(window length = 7, offset = 3))

 opt circ2 = circuit ()
 window optimization(opt circ2, opt circ1, \
 select window = line window selection func(), cf = quantum costs())

48

RevKit – User Manual

D
.
O
ptim

ization

D.2. Line Reduction

This algorithm implements the approach presented in [15]. Windows are found and re-
synthesized such that an output of that window is always returning a constant value,
so that it can be used as replacement for another constant input line, often introduced
by hierarchical synthesis methods.

Synopsis

line_reduction(circ, base[, ...])

circ An empty circuit, which is filled with gates by the algorithm by optimizing base.

base The base circuit which should be optimized.

Settings for the algorithm:

max window lines Number of lines the selected windows can have initially. The
default value is 6.

max grow up window lines When the truth table is not reversible, obtained by
a window with max window lines lines, then the number of lines can be in-
creased up at most this value. The default value is 9.

window variables threshold The possible window inputs are obtained by simu-
lating its cone of influence. It is only simulated if the number of its primary
inputs is less or equal to this value. The default value is 17.

simulation Simulation function used to simulate values inside the windows and
inside the cone of influence. The default value is simple simulation func().

window synthesis Functor used to re-synthesize the window. It only has to em-
bed and synthesize the window. It is preferred to use embed and synthesize,
whereby the parameters can be adjusted to use different synthesis algorithms.
The default value is embed and synthesize() with default parameters.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

num considered windows Number of windows, which were considered in total.

skipped max window lines Number of skipped windows due to maximum num-
ber of allowed primary inputs to be simulated, see window variables threshold.

skipped ambiguous line Number of skipped windows due to irreversible speci-
fication.

skipped no constant line Number of skipped windows in the case that no con-
stant line can be found for a garbage line.

skipped synthesis failed Number of skipped windows in the case that the syn-
thesis of the window failed.

49

D
.
O
pt
im

iz
at
io
n

RevKit – User Manual

Example

First the line are reduced using the standard settings, meaning that the transforma-
tion based synthesis is exploited. Afterwards, line reduction is applied using the exact
synthesis. To keep the number of window lines small when using the exact synthesis
approach, the value for max grow up window lines is adjusted.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 read realization (circ , ’ circuit . real ’)

 lr circ1 = circuit ()
 line reduction(lr circ1 , circ)

 lr circ2 = circuit ()
 window optimization(lr circ2, circ , \
 max grow up window lines = 6, \
 window synthesis = embed and synthesize(synthesis = exact synthesis func()))

50

RevKit – User Manual

D
.
O
ptim

ization

D.3. Adding Lines Optimization

This algorithm implements the approach presented in [8]. Gates sharing the same sub-
set of control lines are determined with the aim to replace these control lines with an
additional line in order to reduce quantum costs.

Synopsis

adding_lines(circ, base[, ...])

circ An empty circuit, which is filled with gates by the algorithm by optimizing base.

base The base circuit which should be optimized.

Settings for the algorithm:

additional lines Number of additional lines to be added to the circuit. The default
value is 1.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

In this example, the additional lines optimization approach is applied with two addi-
tional lines.

 #!/usr/bin/python
 from revkit import ∗

 circ = circuit ()
 read realization (circ , ’ circuit . real ’)

 circ optimized = circuit ()
 adding lines(circ optimized, circ , additional lines = 2)

51

E
.
V
er
si
on

H
is
to
ry

RevKit – User Manual

E. Version History

• RevKit 1.3 (published April 2013)

– [C++] The RM Spectra synthesis algorithm introduced in [MDM:07] has
been added.

– [C++] Verification/Simulation: Recursive simulation of modules has been
added.

– [C++] Synthesis: A function transposition to circuit has been added which
creates a circuit realizing a certain transposition.

– [C++] Synthesis: A synthesis approach has been added based on consecu-
tive applications of transposition to circuit.

– [C++] New options in write blif to distinguish state signals and to keep
name of constant lines have been added.

– [Helpers] The helpers scripts are now integrating new algorithms into the
Python bindings.

– [Python] GUI Changes: Snap Items to Items have been added.

– [Build] The installing and compilation process has been re-organized and
unitized (see README for details).

– [Build] New scripts have been added allowing for the individual compila-
tion of the entire toolkit and its individual algorithms/implementations.

– [Build] New clean scripts have been added.

– [Build] A symbol link for python has been added which is used by all
Python-scripts.

– [Build] RevKit is now compatible with the recent boost-library, i.e. compila-
tion errors with (new) Linux distributions have been fixed.

– [C++] BUGFIX: Equivalence checking is now compatible with new gcc-
compilers.

– [C++] BUGFIX: The order of targets in a Peres gate is now respected.

– [C++] BUGFIX: The underflow in embed truth table with functions that
have more outputs than inputs has been fixed.

– [C++] BUGFIX: Small bugfixes in core/circuit have been performed.

– [C++] BUGFIX: Several further bugs have been fixed.

– [Python] BUGFIX: Wrong function name in embed truth table tool has been
fixed.

• RevKit 1.2.2

– [C++] BUGFIX: Make .variables optional when parsing *.spec files

– [C++] BUGFIX: Use generic Python library for building Python bindings

52

RevKit – User Manual

E
.
V
ersion

H
istory

• RevKit 1.2.1

– [Python] BUGFIX: GUI crash on Ubuntu versions older than 11.04 has been
fixed.

• RevKit 1.2 (published May 2011)

– [Python] The RevKit Graphical User Interface has been added (see User
Documentation, Section 3.1 or the tutorial videos at www.revkit.org).

– [C++] An algorithm for the simulation of sequential circuits has been added.

– [C++] RevLib 2.0: Support of simulation files.

– [Python] Extended zooming capabilities have been added (see the status bar
of the RevKit Viewer).

– [Python] The module ’revkitmath’ for matrix manipulation has been added.

– [C++] Support of buses and BlifMV in write blif.

– [C++] Bus information can be copied in copy metadata.

– [C++] Settings for copy metadata have been added enabling to select which
data should be copied.

– [C++] Copying of hierarchical information is now configurable in flatten circuit.

– [C++] BUGFIX: The properties class (used for algorithms) has been re-implemented
(without changing the interface).

– [C++] BUGFIX: A problem with constant inputs and garbage outputs in the
equivalence checker has been fixed.

– [C++] BUGFIX: The costs calculation for hierarchical circuits has been fixed.

– [C++] BUGFIX: The problem of too many items in read pla when there were
more than one space between columns has been fixed.

• RevKit 1.1.1 (published February 2011)

– [Python] BUGFIX: The costs calculation for hierarchical circuits in the RevKit
Viewer has been fixed.

– [C++] BUGFIX: A missing case for Fredkin gate synthesis has been added in
write verilog.

– [Python] BUGFIX: It is now possible to select a synthesis method in the
line reduction tool script.

– [C++] BUGFIX: A wrong pathname for testcase has been fixed in the tutorial
of the developer’s documentation.

– [C++] BUGFIX: The timeout for the line reduction synthesis algorithms has
been fixed.

– [C++] BUGFIX: A wrong return value in target lines and control lines has
been fixed.

53

E
.
V
er
si
on

H
is
to
ry

RevKit – User Manual

– [C++] BUGFIX: Wrong output names and number of output signals in write blif
have been fixed.

– [Python] In KFDD-based synthesis, sifting instead of exact ordering is used
as default.

– [C++] BUGFIX: A wrong variable name in testcase script has been fixed.

– [C++] BUGFIX: A missing variable reference in bus collection has been fixed.

– [C++] BUGFIX: A wrong reference type in python binding for circuit::circuit name
has been fixed.

• Version 1.1 (published December 2010)

– [C++] The adding lines optimization method introduced in [MWD:2010] has
been added (see User Documentation, Section D.3).

– [C++] The visualization of circuits has been improved (see User Documen-
tation, Section 3.2).

– [C++] RevLib 2.0: Support of hierarchical circuitry (i.e. modules, flatten circuit).

– [C++] RevLib 2.0: Support of input and output buses and state signals.

– [C++] RevLib 2.0: Support of annotations.

– [C++] RevLib 2.0: Support of quotes in input and output names.

– [C++] A new IO-function ”write verilog” has been added which generates
a Verilog-Code from a given circuit.

– [C++] An offset calculation of quantum costs has been added which can be
applied to determine hypothetical costs

– [C++] An active control concept has been introduced in circuit class.

– [C++] Gates can be accessed by the index in circuit class.

– [C++] A return value has been added for the ”add line to circuit”-function.

– [C++] Timer: It is now possible to use system time instead of user time.

– [Python] A ”size()”-method has been added in the bitset class.

– [C++] BUGFIX: A bug in the quantum cost calculation of Fredkin gates has
been fixed.

– [C++] BUGFIX: Fixed ”write realization” and ”write simulation” to compile
in Mac OS.

– [C++] BUGFIX: Fixed warnings to compile in Mac OS.

– [Helpers] BUGFIX: Fixed functor name.

• Version 1.0.1 (published October 2010)

– [Build] BUGFIX Installing python bindings is now possible on 64-bit ma-
chines

54

RevKit – User Manual

R
eferences

– [C++] BUGFIX Bug in quantum decomposition fixed (thanks to Gerhard W.
Dueck for reporting this error)

• Version 1.0 (published July 2010)

F. Acknowledgments

We are indebted to the following people for providing tools and/or support, which
significantly helped us developing RevKit:

• Aaron Lye: For updating and maintaining the toolkit.

• D. Michael Miller: For his help in implementing the adding lines optimization
method and many useful comments.

• Eleonora Schönborn and Bastian Blachetta: For their help in implementing the
RevLib simulation file format.

• Fabio Somenzi: Author of the BDD-Package CUDD, which is used by RevKit

• Wolfgang Günther: Author of a parser for CUDD, which is used by RevKit

• Niklas Een and Niklas Sörensson: Authors of the SAT solver MiniSAT, which is
used by RevKit

• Andreas Hett, Harry Hengster, and Bernd Becker: Co-authors of the OKFDD-
Package PUMA, which is used by RevKit

References

[1] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus, P. Shor,
T. Sleator, J. Smolin, and H. Weinfurter. Elementary gates for quantum compu-
tation. The American Physical Society, 52:3457–3467, 1995.

[2] K. Fazel, M. Thornton, and J. Rice. ESOP-based Toffoli gate cascade generation.
In Communications, Computers and Signal Processing, 2007. PacRim 2007. IEEE Pacific
Rim Conference on, pages 206 –209, 2007.

[3] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact multiple control Toffoli
network synthesis with SAT techniques. IEEE Trans. on CAD, 28(5):703–715, 2009.

[4] D. Maslov and G. Dueck. Improved quantum cost for n-bit Toffoli gates. Electronics
Letters, 39(25):1790 – 1791, 11 2003.

[5] D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis of re-
versible Toffoli networks. ACM Trans. on Design Automation of Electronic Systems,
12(4), 2007.

55

R
ef
er
en
ce
s

RevKit – User Manual

[6] D. Miller, D. Maslov, and G. Dueck. A transformation based algorithm for re-
versible logic synthesis. In Design Automation Conference, 2003. Proceedings, pages
318 – 323, 2-6 2003.

[7] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm for
reversible logic synthesis. In Design Automation Conf., pages 318–323, 2003.

[8] D. M. Miller, R. Wille, and R. Drechsler. Reducing reversible circuit cost by adding
lines. In Int’l Symp. on Multi-Valued Logic, 2010.

[9] M. Soeken, R. Wille, and R. Drechsler. Hierarchical synthesis of reversible circuits
using positive and negative Davio decomposition. In Int’l Design and Test Work-
shop, pages 143–148, 2010.

[10] M. Soeken, R. Wille, G. W. Dueck, and R. Drechsler. Window optimization of
reversible and quantum circuits. In IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems, 2010.

[11] R. Wille and R. Drechsler. BDD-based synthesis of reversible logic for large func-
tions. In Design Automation Conf., pages 270–275, 2009.

[12] R. Wille, D. Große, G. Dueck, and R. Drechsler. Reversible logic synthesis with
output permutation. In VLSI Design, pages 189–194, 2009.

[13] R. Wille, D. Große, D. M. Miller, and R. Drechsler. Equivalence checking of re-
versible circuits. In Int’l Symp. on Multi-Valued Logic, pages 324–330, 2009.

[14] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: an online
resource for reversible functions and reversible circuits. In Int’l Symp. on Multi-
Valued Logic, pages 220–225, 2008. RevLib is available at http://www.revlib.org.

[15] R. Wille, M. Soeken, and R. Drechsler. Reducing the number of lines in reversible
circuits. In Design Automation Conf., 2010.

56

