
2. Computational aspects of equilibria

Tuesday, May 25, 2010

Computational issues

2

In this chapter, we look at game theory from the point of view
of a computer scientist.

We are interested in finding algorithms for computing
equilibria, and also in understanding the computational
complexity of this problem.

We will concentrate on games with two players, and we
consider two cases:

1. Two player zero-sum games

2. Arbitrary two player strategic games

We start by some preliminaries on linear programming.

Tuesday, May 25, 2010

Linear programming basics

• a set of real-valued variables

• a linear objective function (whose value we aim to maximize)

• this is just a weighted sum of the variables

• a set of linear constraints

• each constraint requires that a weighted sum of the
variables be greater than or equal to some constant
(can also use less than, or equality)

3

A linear program consists of:

Tuesday, May 25, 2010

Linear programming problem

4

Typical form for a linear programming problem with n variables
and m constraints:

maximize

subject to

n�

i=1

wixi

n�

i=1

aijxi ≤ bi j = 1, . . . ,m

i = 1, . . . , nxi ≥ 0

objective function

linear constraints

Goal: find values for the variables which satisfy the constraints
and maximize (minimize) the value of the objective function

“minimize”
can also
be used

Tuesday, May 25, 2010

Solving linear programming problems

5

Many interesting practical problems can be phrased as
linear programming problems.

Good news: these problems can be solved in polynomial time.

Two general types of algorithms exist:

 Interior point methods:
terminate in polynomial time

Simplex method:
worst-case exponential time but works very well in practice

Tuesday, May 25, 2010

Intuitions for simplex method

6

Feasible region:

• Assignments of values to variables
 which satisfy all of the constraints
• Geometrical interpretation:
 convex polytope
• Optimal value of objective function
 is reached at some corner point

Simplex method:

• Identify an initial corner point
• Move to an adjacent corner point
 until local (=global) optimum found

Tuesday, May 25, 2010

Intuitions for simplex method

6

Feasible region:

• Assignments of values to variables
 which satisfy all of the constraints
• Geometrical interpretation:
 convex polytope
• Optimal value of objective function
 is reached at some corner point

Simplex method:

• Identify an initial corner point
• Move to an adjacent corner point
 until local (=global) optimum found

Tuesday, May 25, 2010

Intuitions for simplex method

6

Feasible region:

• Assignments of values to variables
 which satisfy all of the constraints
• Geometrical interpretation:
 convex polytope
• Optimal value of objective function
 is reached at some corner point

Simplex method:

• Identify an initial corner point
• Move to an adjacent corner point
 until local (=global) optimum found

Tuesday, May 25, 2010

Intuitions for simplex method

6

Feasible region:

• Assignments of values to variables
 which satisfy all of the constraints
• Geometrical interpretation:
 convex polytope
• Optimal value of objective function
 is reached at some corner point

Simplex method:

• Identify an initial corner point
• Move to an adjacent corner point
 until local (=global) optimum found

Tuesday, May 25, 2010

Intuitions for simplex method

6

Feasible region:

• Assignments of values to variables
 which satisfy all of the constraints
• Geometrical interpretation:
 convex polytope
• Optimal value of objective function
 is reached at some corner point

Simplex method:

• Identify an initial corner point
• Move to an adjacent corner point
 until local (=global) optimum found

Tuesday, May 25, 2010

Intuitions for simplex method

6

Feasible region:

• Assignments of values to variables
 which satisfy all of the constraints
• Geometrical interpretation:
 convex polytope
• Optimal value of objective function
 is reached at some corner point

Simplex method:

• Identify an initial corner point
• Move to an adjacent corner point
 until local (=global) optimum found

Tuesday, May 25, 2010

Back to two-person zero-sum games

7

We aim to show how the problem of finding a Nash equilibrium
can be rephrased as a linear programming (LP) problem.

This will show that a Nash equilibrium can be computed in
polynomial time using existing algorithms for LP.

We will make use of the Minmax Theorem which tells us:

A strategy profile is a Nash equilibrium if and only if
it is composed of minmax (= maxmin) strategies.

Therefore, we can find a Nash equilibrium by computing
minmax strategies for both players.

We will show how to compute minmax strategies using LP.
Tuesday, May 25, 2010

Computing player 2ʼs minmax strategy

8

minimize v1

�

a2∈A2

u1(a1, a2) · sa2
2 ≤ v1

�

a2∈A2

sa2
2 = 1

subject to

sa2
2 ≥ 0

for all a1 ∈ A1

for all a2 ∈ A2

The following LP program computes a minmax strategy for
player 2 against player 1.

Tuesday, May 25, 2010

Computing player 2ʼs minmax strategy

9

minimize v1

�

a2∈A2

u1(a1, a2) · sa2
2 ≤ v1

�

a2∈A2

sa2
2 = 1

subject to

sa2
2 ≥ 0

for all a1 ∈ A1

for all a2 ∈ A2

Here v1 is a variable representing the utility for player 1, and

sa2
2 is a variable representing the probability of action a2 in

player 2’s mixed strategy. The u1(a1, a2) are constants.

The following LP program computes a minmax strategy for
player 2 against player 1.

Tuesday, May 25, 2010

Computing player 2ʼs minmax strategy

10

minimize v1

�

a2∈A2

u1(a1, a2) · sa2
2 ≤ v1

�

a2∈A2

sa2
2 = 1

subject to

sa2
2 ≥ 0

for all a1 ∈ A1

for all a2 ∈ A2

The following LP program computes a minmax strategy for
player 2 against player 1.

The last two constraints make sure that the probabilities in the
mixed strategy are non-negative and sum up to 1.

Tuesday, May 25, 2010

Computing player 2ʼs minmax strategy

11

minimize v1

�

a2∈A2

u1(a1, a2) · sa2
2 ≤ v1

�

a2∈A2

sa2
2 = 1

subject to

sa2
2 ≥ 0

for all a1 ∈ A1

for all a2 ∈ A2

The following LP program computes a minmax strategy for
player 2 against player 1.

The first constraint ensures that no matter what strategy
player 1 chooses, his expected utility is at most v1

Tuesday, May 25, 2010

Computing player 2ʼs minmax strategy

12

minimize v1

�

a2∈A2

u1(a1, a2) · sa2
2 ≤ v1

�

a2∈A2

sa2
2 = 1

subject to

sa2
2 ≥ 0

for all a1 ∈ A1

for all a2 ∈ A2

The following LP program computes a minmax strategy for
player 2 against player 1.

Since player 2 wants to minimize the utility of player 1, we
must minimize the variable v1

Tuesday, May 25, 2010

Computing player 2ʼs minmax strategy

13

minimize v1

�

a2∈A2

u1(a1, a2) · sa2
2 ≤ v1

�

a2∈A2

sa2
2 = 1

subject to

sa2
2 ≥ 0

for all a1 ∈ A1

for all a2 ∈ A2

The following LP program computes a minmax strategy for
player 2 against player 1.

A LP for computing a minmax strategy for player 1 can be
be constructed in a similar manner.

Tuesday, May 25, 2010

General two-player games

14

For general 2-player games, we formulate our NE problem
as a mixed integer programming problem (MIP).

Mixed integer programming problems are just like LP problems
except that we can add constraints forcing some variables to only
take integer values.

Mixed integer programming problems are thus more general than
linear programming problems.

Unfortunately, this extra expressivity leads to an increase in
computational complexity. There are no known polynomial
time algorithms for solving MIP.

Tuesday, May 25, 2010

MIP formulation

15

for all a1 ∈ A1

for all a2 ∈ A2

ua1 =
�

a2∈A2

u1(a1, a2) · sa2
2

for all a1 ∈ A1

ua2 =
�

a1∈A1

u2(a1, a2) · sa1
1

�

a2∈A2

sa2
2 = 1

�

a1∈A1

sa1
1 = 1

for all a2 ∈ A2

sa1
1 ≤ 1− ba1 sa2

2 ≤ 1− ba2

ra1 ≤ d1 · ba1 ra2 ≤ d2 · ba2

ra1 = v1 − ua1 ra2 = v2 − ua2

find s
aj

i ≥ 0, uai ≥ 0, rai ≥ 0, vi ≥ 0, and bai ∈ {0, 1} such that

Tuesday, May 25, 2010

Notes on the MIP formulation

16

In this particular MIP, there is no objective function to optimize,
we just have to find values for the variables which satisfy
the constraints.

d1 and d2 are constants defined as follows:

di = maxa1
1,a2

1∈A1

a1
2,a2

2∈A2

ui(a1
1, a

1
2)− ui(a1

2, a
2
2)

Thus, di represents the maximum difference in utility between
two pure strategy profiles.

Binary variable bai is used to indicate whether ai is played with
non-zero probability. If it is, we will have value 0, otherwise 1.

Tuesday, May 25, 2010

MIP formulation, step by step

17

for all a1 ∈ A1

for all a2 ∈ A2

ua1 =
�

a2∈A2

u1(a1, a2) · sa2
2

ua2 =
�

a1∈A1

u2(a1, a2) · sa1
1

First two constraints:

The first constraint ensures that ua1 is assigned the utility for player 1
of playing the pure strategy a1 against player 2’s mixed strategy.

The second constraint does the same, but for player 2.

Tuesday, May 25, 2010

MIP formulation, step by step

18

Third and fourth constraints:

�

a2∈A2

sa2
2 = 1

�

a1∈A1

sa1
1 = 1

As before, these constraints are used to ensure that the
variables s

aj

i define a proper probability distribution.

We require the probabilities of each player’s actions to sum to 1.

Tuesday, May 25, 2010

MIP formulation, step by step

19

sa1
1 ≤ 1− ba1

sa2
2 ≤ 1− ba2

for all a1 ∈ A1

for all a2 ∈ A2

Fifth and sixth constraints:

If ba1 = 0, constraint trivially holds.

If ba1 = 1, require that a1 not played, i.e. sa1
1 = 0.

Similarly for the second constraint above.

Tuesday, May 25, 2010

MIP formulation, step by step

20

for all a1 ∈ A1

for all a2 ∈ A2

Remaining constraints:

ra1 ≤ d1 · ba1

ra2 ≤ d2 · ba2

ra1 = v1 − ua1

ra2 = v2 − ua2

Variable vi represents the highest possible expected utility
that player i can obtain given the other player’s mixed strategy.

Tuesday, May 25, 2010

MIP formulation, step by step

21

for all a1 ∈ A1

for all a2 ∈ A2

Remaining constraints:

ra1 ≤ d1 · ba1

ra2 ≤ d2 · ba2

ra1 = v1 − ua1

ra2 = v2 − ua2

Variable rai represents the regret of playing ai, i.e. the
difference in utility between playing ai and playing a best
response to the other player’s strategy.

Tuesday, May 25, 2010

MIP formulation, step by step

22

for all a1 ∈ A1

for all a2 ∈ A2

Remaining constraints:

ra1 ≤ d1 · ba1

ra2 ≤ d2 · ba2

ra1 = v1 − ua1

ra2 = v2 − ua2

In other words, every action played with non-zero probability
must be a best response to the other player’s mixed strategy.

Tuesday, May 25, 2010

MIP formulation

23

for all a1 ∈ A1

for all a2 ∈ A2

ua1 =
�

a2∈A2

u1(a1, a2) · sa2
2

for all a1 ∈ A1

ua2 =
�

a1∈A1

u2(a1, a2) · sa1
1

�

a2∈A2

sa2
2 = 1

�

a1∈A1

sa1
1 = 1

for all a2 ∈ A2

sa1
1 ≤ 1− ba1 sa2

2 ≤ 1− ba2

ra1 ≤ d1 · ba1 ra2 ≤ d2 · ba2

ra1 = v1 − ua1 ra2 = v2 − ua2

find s
aj

i ≥ 0, uai ≥ 0, rai ≥ 0, vi ≥ 0, and bai ∈ {0, 1} such that

• Every solution to the above MIP yields a Nash equilibrium.

• Every Nash equilibrium corresponds to some solution.

Tuesday, May 25, 2010

Solving MIP problems

24

MIP problems are search problems.

Lots of work in computer science on search algorithms.

MIP solvers with sophisticated optimizations can be used.

Various heuristics can be used to help guide the search.

Experimental results show that adding an objective function to our
MIP formulation can greatly improve performance.

Examples of objective functions one can add:
• minimize number of actions played
• maximize sum of playersʼ utilities

Tuesday, May 25, 2010

Complexity of finding Nash equilibria

25

We know that for two player zero-sum games, we can
find a Nash equilibrium in polynomial time.

But what about general two player games ?

Or games with more than two players ?

Known algorithms all run in exponential time, but so far
nobody has shown that a polynomial algorithm cannot exist.

“Together with factoring, the complexity of finding a Nash
equilibrium is in my opinion the most important concrete open
question on the boundary of P today” (Papadimitriou)

Tuesday, May 25, 2010

Is this problem NP-complete ?

26

NP-complete problems (SAT, travelling salesman, ...) are a
class of problems for which no polynomial time algorithms
are known, but no one has shown that they donʼt exist.

So is the problem of finding a NE an NP-complete problem ?

Probably not.

First: a search problem, not a decision problem.

Second: NE always exist, whereas NP-complete problems
usually involve testing whether a solution exists

Tuesday, May 25, 2010

The class PPAD

27

NE problem is related to a less well-known class called PPAD.

Canonical PPAD-complete problem

• Suppose we have an exponential-size graph where the
in-degree and out-degree of each node is at most 1

• Given any node in the graph, we have a polynomial-time
algorithm that finds the neighbours of the node
[succinct encoding of the graph]

• Problem: given a parentless node, output a childless node

Note: at least one childless node must exist

Tuesday, May 25, 2010

The class PPAD

28

Typical PPAD problem:

given parentless node

Tuesday, May 25, 2010

Completeness for PPAD

29

Finding a Nash equilibrium is PPAD-complete

• for general n-player games with n>3 [2005]

• for general 3-player games [later in 2005]

• for general 2-player games [even later in 2005]

Finding the Nash equilibrium even for general 2-player games
is no easier than doing it for n-player games !

Currently very little is known about the class PPAD, and in
particular, its relation to the class P.

Tuesday, May 25, 2010

Related NP-complete problems

30

Many problems related to Nash equilibria can be shown to be
NP-complete (and thus probably cannot be solved in polytime):

• Uniqueness: Is there a unique Nash equilibrium?

• Pareto optimality: Does there exist a Pareto-optimal
Nash equilibrium?

• Guaranteed payoff: Given a value v, does there exist a Nash
equilibrium in which some player obtains an expected payoff
of at least v?

• Guaranteed social welfare: Does there exist a Nash equilibrium
in which the sum of agents’ utilities is at least k?

Tuesday, May 25, 2010

What about correlated equilibria?

31

Good news: the equations we gave for determining whether a
strategy profile is a correlated equilibrium define a linear program.

This means we can use LP solvers to compute correlated equilibria.

It follows that a correlated equilibrium of a given game can be found
in polynomial time.

Can also compute a correlated equilibrium maximizing some
linear objective function. Example: maximize social welfare.

More good news: the Uniqueness, Pareto-optimality, Guaranteed
payoff, and Guaranteed social welfare problems can all be
solved in polynomial time.

Tuesday, May 25, 2010

Computational aspects of IESDS / IEWDS

32

Computing result of IESDS / IESWS can be done in polytime.

Some relevant decision problems:

• Strategy elimination: Does there exist some elimination path
under which the strategy si is eliminated?

• Reduction identity: Given action subsets Bi ⊆ Ai for each
player i, does there exist a maximally reduced game where
each player i has the actions Bi?

• Reduction size: Given constants ki for each player i, does
there exist a maximally reduced game where each player i
has exactly ki actions?

These problems are in P for IESDS, but NP-complete for IEWDS.

Tuesday, May 25, 2010

What about extensive form games?

33

One option: just use translation to strategic form representation
• Misses issues of subgame perfection, etc.
• Strategic form can be exponentially larger, so add another

 exponential to the running time
• Mixed strategy takes exponential space to represent

Another option: try to work directly on the game tree

• sequence form: different representation in terms of paths of tree

• for 2-player, zero-sum perfect recall games, obtain polytime
 algorithm for computing NE in behavioral strategies

Tuesday, May 25, 2010

