
4. Social choice & mechanism design

Tuesday, July 6, 2010



Basic setting
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A social welfare function is a function f : Ln → L.

A social choice function is a function F : Ln → O.

A social choice problem consists of:

• a finite set P = {1, . . . , n} of agents

• a finite set O of outcomes (alternatives, candidates)

• for each player i, a preference ordering �i over O

– must be a total order on O (use L for set of total orders on O)
– o1 �i o2 means agent i prefers o1 to o2

Goal of social choice: aggregate preferences of a group of agents
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Examples of voting rules
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Scoring rules are based on a vector (c1, . . . , cn) of constants, where
ci represents the points a candidate receives for being ranked ith.
A candidate wins if he gets the most points.

Some examples of scoring rules:

• Plurality: we use the vector (1, 0, . . . , 0)

– winner is the candidate who is ranked first most often

• Veto: we use (1, 1, . . . , 1, 0)

– winner is the candidate who is ranked last least often

• Borda: we use (m− 1, m− 2, . . . , 0)
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Examples of voting rules
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Plurality with runoff: first use plurality to select top two candidates,
then whichever is ranked higher than the other by more voters, wins

Single transferable vote (STV, instant runoff): candidate with lowest
plurality score is removed; if you voted for that candidate, your vote
transfers to the next (live) candidate on your list; repeat until a single
candidate remains.

Approval: instead of giving a ranking, each voter divides the
candidates into two sets, those he approves, and those he doesn’t.
The candidate with the most approvals wins.
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Examples of voting rules
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A pairwise election between candidates a and b consists in
comparing how many voters rank a above b and how many
prefer b to a.

Some voting rules based on pairwise elections:

• Copeland give two points to a candidate for each pairwise
election he wins, one point for a tie, candidate with most
points wins

• Simpson: choose candidate whose worst result in pairwise
election is the best

• Pairwise elimination: pair up the candidates, those who
lose are removed, repeat until only one candidate
(like in sports tournaments)
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Condorcet condition
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A candidate is a Condorcet winner if she wins all pairwise elections.

Note: sometimes there is no Condorcet winner.

A voting rule satisfies the Condorcet condition if it always selects a
Condorcet winner whenever one exists.

499 agents: a � b � c
3 agents: b � c � a
498 agents: c � b � a

Condorcet winner: b

Plurality winner: a

a � b � c b � c � a c � a � b

Plurality does not satisfy the Condorcet condition!

Tuesday, July 6, 2010



Sensitivity to losing candidate
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Consider the following preference profile:

35 agents: a � c � b
33 agents: b � a � c
32 agents: c � b � a

Result with plurality?
Result with Borda?
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Sensitivity to losing candidate

8

Consider the following preference profile:

35 agents: a � c � b
33 agents: b � a � c
32 agents: c � b � a

Result with plurality?
Result with Borda? a
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Sensitivity to losing candidate

9

Consider the following preference profile:

35 agents: a � c � b
33 agents: b � a � c
32 agents: c � b � a

Result with plurality?
Result with Borda? a

Now suppose c drops out of the race, leaving only a and b:

35 agents: a � b
65 agents: b � a

Result with plurality?
Result with Borda?
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Sensitivity to losing candidate

10

Consider the following preference profile:

35 agents: a � c � b
33 agents: b � a � c
32 agents: c � b � a

Result with plurality?
Result with Borda? a

Now suppose c drops out of the race, leaving only a and b:

35 agents: a � b
65 agents: b � a

Result with plurality?
Result with Borda? b
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Sensitivity to the agenda setter
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35 agents: a � c � b
33 agents: b � a � c
32 agents: c � b � a

We’ll consider the same preference profile:

But now we use pairwise elimination.

Result if start by pairing a and b?

Result if start by pairing b and c?

Result if start by pairing a and c?
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Sensitivity to the agenda setter
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35 agents: a � c � b
33 agents: b � a � c
32 agents: c � b � a

We’ll consider the same preference profile:

But now we use pairwise elimination.

Result if start by pairing a and b?

Result if start by pairing b and c?

Result if start by pairing a and c?

a

b

c
The agenda setter
can determine the
outcome!
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Sensitivity to the agenda setter
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Another preference profile:

We use pairwise elimination with ordering a, b, c, d.

Result?

1 agent: a � b � d � c
1 agent: b � d � c � a
1 agent: c � a � b � d
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Sensitivity to the agenda setter
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Another preference profile:

We use pairwise elimination with ordering a, b, c, d.

Result? d

1 agent: a � b � d � c
1 agent: b � d � c � a
1 agent: c � a � b � d
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Sensitivity to the agenda setter
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Another preference profile:

We use pairwise elimination with ordering a, b, c, d.

Result? d

But every agent strictly prefers b to d!

1 agent: a � b � d � c
1 agent: b � d � c � a
1 agent: c � a � b � d
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Properties of social welfare functions
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If ∀i(o1 �� o2 ⇔ o1 ��� o2), then o1 �F ([��
i])

o2 ⇔ o1 �F ([���
i ]) o2.

Nondictatorship: A social welfare function F is non-dictatorial if there
does not exist i ∈ P such that o1 �i o2 ⇒ o1 �F o2 for all o1, o2 ∈ O.

Pareto efficiency (PE): A social welfare function F is Pareto-efficient
if for any o1, o2 ∈ O, if o1 �i o2 for all i, then o1 �F o2.

Independence of irrelevant alternatives (IIA): A social welfare
function F satisfies IIA if, for any o1, o2 ∈ O and any [��

i], [���
i ] ∈ L

n:
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Arrowʼs impossibility theorem
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Theorem

If |O| ≥ 3, any social welfare function that is Pareto-efficient
and satisfies IIA must be a dictatorship.

A very important, but rather negative result.

Idea: maybe we can do better for social choice functions
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Properties of social choice functions
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Weak Pareto efficiency (PE): A social choice function f is weak
Pareto-efficient if, for any preference profile [�] ∈ Ln, if there
exists o1, o2 ∈ O such that o1 �i o2 for all i, then f([�]) �= o2.

Monotonicity: A social choice function f is monotonic if, for any
preference profile [�i] ∈ Ln with f([�i]) = o, then for any other
preference profile [��

i] such that ∀i∀o�, o ��
i o� if o �i o�, it must

be the case that f([��
i]) = o.

Nondictatorship: A social choice function f is non-dictatorial
if there does not exist i ∈ P such that f always selects i’s
most preferred candidate.
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Muller-Satterthwaite theorem

19

Theorem

So negative result holds also for social choice functions.

If |O| ≥ 3, any social choice function that is weakly Pareto-efficient
and monotonic is dictatorial.
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Case of plurality
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Plurality rule is weakly Pareto-efficient and non-dictatorial.

It follows from the previous theorem that plurality is not monotonic.

Consider the following preference profile:

3 agents: a � b � c
2 agents: b � c � a
2 agents: c � b � a

Plurality selects a
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Case of plurality

21

Plurality rule is Pareto-efficient and non-dictatorial.

It follows from the previous theorem that plurality is not monotonic.

Consider the following preference profile:

3 agents: a � b � c
2 agents: b � c � a
2 agents: c � b � a

Plurality selects a

Plurality selects b!

Now move c behind a in the last ranking:

3 agents: a � b � c
2 agents: b � c � a
2 agents: b � a � c
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Manipulability
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2 agents: b � a � c � d
1 agent: a � b � c � d

So far we have assumed that voters report their true preferences.

However, sometimes a voter can improve the outcome by lying 
about her preferences.

Example: Borda
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Manipulability

23

So far we have assumed that voters report their true preferences.

However, sometimes a voter can improve the outcome by lying 
about her preferences.

Example: Borda

2 agents: b � a � c � d
1 agent: a � b � c � d

a: 7, b: 8
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Manipulability

24

So far we have assumed that voters report their true preferences.

However, sometimes a voter can improve the outcome by lying 
about her preferences.

Example: Borda

2 agents: b � a � c � d
1 agent: a � b � c � d

a: 7, b: 8

2 agents: b � a � c � d
1 agent: a � c � d � b
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Manipulability

25

So far we have assumed that voters report their true preferences.

However, sometimes a voter can improve the outcome by lying 
about her preferences.

Example: Borda

2 agents: b � a � c � d
1 agent: a � b � c � d

a: 7, b: 8

2 agents: b � a � c � d
1 agent: a � c � d � b

a: 7, b: 6
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Manipulability
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So far we have assumed that voters report their true preferences.

However, sometimes a voter can improve the outcome by lying 
about her preferences.

Example: Borda

A voting rule is called strategy-proof is no agent can benefit by
lying about her preferences.

2 agents: b � a � c � d
1 agent: a � b � c � d

a: 7, b: 8

2 agents: b � a � c � d
1 agent: a � c � d � b

a: 7, b: 6
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Gibbard-Satterthwaite theorem
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Theorem
If |O| ≥ 3, any social choice function that is onto and strategy-proof
is dictatorial.

A social choice function f is onto if for each candidate o ∈ O

there is a preference profile [�i] such that f([�i]) = o.

In other words, any voting rule which is not dictatorial and doesnʼt
preclude some candidate winning can be manipulated.
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Special case: single-peaked preferences
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Suppose the candidates are ordered o1, . . . , on.

An agent’s preference relation � is single-peaked if there exists
a candidate o∗ such that candidates closer to o∗ are preferred to
candidates further from o∗:

o∗ = ok ⇒ ∀ 1 ≤ i < j ≤ k : oj � oi

∀ k ≤ i < j ≤ n : oi � oj

Suppose all agents have single-peaked preferences, and they
tell us their preferred option (“peak”).

Social choice function which selects the median peak: 
- satisfies the Condorcet condition
- non-manipulable (even though non-dictatorial and onto)
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Computational issues in voting
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Complexity of winner determination

For most voting rules, result computable in polytime.

For some rules (e.g. Slater ranking, Dogsonʼs rule, Kemeny), 
determining the result can be NP-hard.

Complexity of manipulation

STV is NP-hard to manipulate, and other rules (e.g. plurality,
Borda) can be slightly modified to get NP-hardness.

But also some empirical studies showing manipulation is 
easy in typical cases.
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Mechanism design
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Basic idea: social choice + game theory

As in social choice, we want to select an outcome based on the 
preferences of a group of agents.

However, the agents are rational, so might lie to us to try to obtain a 
better outcome.

Want to design a mechanism (game) such that it is in the best
interest of the agents to tell the truth.

Gibbard-Satterthwaite theorem tells us this is not possible in general.

However, there are different settings in which this theorem does not 
apply, and for which positive results exist.
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Examples of mechanism design problems
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Auctions

Matching problems

Single-item auction: suppose we have an item we wish 
to sell, but we do not know what price the agents are willing 
to pay for it. If we want to sell the item to the agent who values
it most, what should we do?

Stable marriage problem:  there are n men and n women, and
each person ranks all the members of the opposite sex in order
of preference. We need to find a way of matching up the men
and women so that no pair would prefer to be together rather 
than with their assigned partner. How can we accomplish this?

As the semester is almost over, our discussion of mechanism
design will focus mostly on auctions.
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Single-item auctions
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We consider different auction protocols for
determining who gets the item and for what price.

Basic setting:

• one seller /auctioneer

• many bidders / buyers

• a single item up for sale

• value vi of the item for each bidder i

• utility of vi − p if i wins and pays price p,
and otherwise 0
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English auctions
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Also known as ascending bid auctions.

Protocol:

• auction carried out interactively in real time

• bidding starts at reservation price and proceeds in rounds

• at each round, a bidder can propose a bid which is
higher than the current one

• auction ends when no new bids are placed

• winner is the last bidder to place a bid, pays his bid

Commonly used for selling art and antiques.
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English auctions
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Bidders in English auctions have a dominant strategy:

keep placing (minimal) higher bids until you win or 
the current price is higher than your valuation

Why dominant?

- if the current price is higher than your valuation,
  then you might lose utility by placing a bid, but 
  you lose nothing if you donʼt bid

- if the current price is lower than your valuation,
  then you might gain utility by placing a bid, but
  you wonʼt gain anything if you donʼt bid 

Nice property: bidder with highest valuation wins
                       (assuming all bidders use their dominant strategy)
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Dutch auctions
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Also known as descending bid auctions.

Name comes from fact that this type of auction is used 
for selling flowers in the Netherlands.

Protocol:

• auction carried out interactively in real time

• the seller starts by announcing a very high price

• the price is lowered little by little until someone accepts

• this person is the winner, and pays the accepted price
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Dutch auctions
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What is the best strategy in a Dutch auction?

Ideally, we would like to accept at the lowest possible price, 
but how long after our valuation is called should we wait?

The problem is of course that the best time to accept 
depends on the valuations of the other players.

So there can be no dominant strategy for this type of auction.

Note: bidder with highest valuation may not win
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First-price sealed-bid auctions (FPSB)
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What is a good strategy in such an auction?

Protocol:

• bidders submit their “sealed bids” to the seller

• the winner is the buyer who submits the highest bid

• the winner pays his bid

Ideally, we would like to submit the lowest bid which 
will guarantee us a win.

The problem again is that we need to know the valuations
of the other bidders, so no dominant strategy. 
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Vickrey auctions
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Named after economist William Vickrey.

Also known as second-price sealed-bid auctions.

Protocol:

• bidders submit their “sealed bids” to the seller

• the winner is the buyer who submits the highest bid

• the winner pays the second highest bid
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Vickrey auctions
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Bidders in Vickrey auctions have a dominant strategy:

bid your valuation

Why dominant?

- if you bid higher than your valuation, then you might
  have to pay too much for the item

- if you bid lower than your valuation, then you might 
  lose when you could have won, and if you do win,
  you pay the same as if you bid your true valuation

Nice property: bidder with highest valuation wins
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Relationships between protocols
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First-price sealed bid auctions can be seen as simulations
of Dutch auctions.

Likewise, Vickrey auctions can be seen as simulations
of English auctions. 

During a Dutch auction, no information on other biddersʼ
valuations until someone accepts. So the strategy of 
a bidder is just the price at which he will accept, which
corresponds to the sealed-bid in FPSB.

In an English auction, the bidder with highest valuation
wins, as in the Vickrey auction, and she pays the price
at which the second highest bidder drops out, which
corresponds to that bidderʼs valuation.
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Which auction is best for the seller?
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So far, we assumed the seller is interested in attributing the 
object to the buyer who values it the most.

But what if he just wants to make as much money as possible?

In general, not clear which auction is best:

• in English/Vickrey, seller only gets second-highest bid

• in Dutch/FPSB, bidders will usually submit a bid lower
than their actual valuations

Vickreyʼs Revenue Equivalence Theorem:

Under some (rather strong) assumptions on the bidders’ valuations,
all four auction protocols give the same expected revenue.
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Combinatorial auctions
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We now consider a more general setting where the auctioneer
may sell multiple items:

• one seller /auctioneer

• set B of bidders / buyers

• set G of items for sale

• a value vi(S) for each bidder i and each S ∈ 2G

• utility of vi(S)− p for i if receives S and pays p

Note: we assume vi(∅) = 0 and vi(S) ≤ vi(S�) whenever S ⊆ S�
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Combinatorial auctions

43

Combinatorial auction protocol = allocation rule + pricing rule

Bidders submit a (potentially untrue) valuation function to the
seller, who then must choose an allocation of goods to the 
bidders and the payments to be made.

Definition
An allocation of G among n bidders is a sequence of sets
S1, S2, . . . , Sn such that ∪iSi = G and Si ∩ Sj = ∅ for all i �= j.
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Vickrey auctions, revisited
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Goal: a combinatorial auction protocol which works like Vickreyʼs.

In the Vickrey auction:

Discount is difference between highest and second-highest bid.

Another way to see it is the difference in value attained with the
bidder and without the bidder:
• with bidder, total value is highest bid

• without bidder, total value is second-highest bid

• allocation rule = give item to bidder who values it most

• pricing rule = pay bid minus some discount
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VCG mechanism
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The Vickrey-Clarke-Groves mechanism generalizes the Vickrey
auction to the case of multiple goods.

Basic idea:

• allocation rule = choose allocation which yields highest value

• pricing rule = pay bid minus difference in value caused by bidder

Informally: bi − (maxval −maxval−i)

To introduce VCG more formally, we need some notation.
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Some terminology and notation

46

Use vi for i’s valuation, and v̂i for i’s reported valuation.

Maximal value allocation:

Maximal value allocation if i not present:

We use X to refer to the set of (feasible) allocations.

If x ∈ X , then x(i) is the set of goods which x assigns to i.

x∗ ∈ argmaxx∈X

�

j

v̂j(x(j))

x∗−i ∈ argmaxx∈X−i

�

j �=i

v̂j(x−i(j))
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Pricing rule for VCG mechanism
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Then the price pi for bidder i is defined as follows:

Let x∗ be a maximal value allocation, and for each bidder i,
let x∗−i be a maximal value allocation without i.

Another way to see this: a bidder pays the amount of value
the group loses by his participation 

pi = v̂i(x∗(i))−




�

j

v̂j(x∗(j))−
�

j �=i

v̂j(x∗−i(j))





=
�

j �=i

v̂j(x∗−i(j))−
�

j �=i

v̂j(x∗(j))

Tuesday, July 6, 2010



VCG example
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Suppose the items a and b are for sale, and there are three bidders
who report the following valuations:

Bidder 1: v̂1(∅) = 0, v̂1({a}) = 30, v̂1({b}) = 10, v̂1({a, b}) = 40
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 0, v̂2({b}) = 0, v̂2({a, b}) = 50
Bidder 3: v̂3(∅) = 0, v̂3({a}) = 10, v̂3({b}) = 30, v̂3({a, b}) = 35
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VCG example

49

Suppose the items a and b are for sale, and there are three bidders
who report the following valuations:

Bidder 1: v̂1(∅) = 0, v̂1({a}) = 30, v̂1({b}) = 10, v̂1({a, b}) = 40
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 0, v̂2({b}) = 0, v̂2({a, b}) = 50
Bidder 3: v̂3(∅) = 0, v̂3({a}) = 10, v̂3({b}) = 30, v̂3({a, b}) = 35

We first compute the optimal allocations:

p1 = 30− (60− 50) = 20 p2 = 0− (60− 60) = 0

p3 = 30− (60− 50) = 20

Optimal allocation for the group: give a to 1, b to 3 (value of 60)
Optimal allocation without 1: give a and b to 2 (value 50)
Optimal allocation without 2: same as for whole group (value 60)
Optimal allocation without 3: give a and b to 2 (value 50)

So 1 gets a, 3 gets b, and the payments are as follows:
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Properties of the VCG mechanism
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The VCG mechanism has the property we were hoping for:

It does however suffer some disadvantages:

• low or possibly even no revenue to the auctioneer

• non-monotonicity: sometimes revenue decreases unexpectedly

• possibilities for cheating (collusion, false-name bidding)

• high computational complexity

• strategy-proofness: truthful bidding is dominant strategy

It also has the following essential property:
• weak budget balance: bidders pay, not the auctioneer
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VCG and truthful bidding
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Theorem: 
In a VCG mechanism, truthful bidding is a dominant strategy.

Proof: Consider bidder i, and suppose x∗, x∗−i as before.
Let hi =

�
j �=i v̂j(x∗−i(j)), and remark that hi does

not depend on i’s reported valuation. We have:
pi = hi −

�
j �=i v̂j(x∗(j))

vi(x∗(i))− pi = vi(x∗(i)) +
�

j �=i v̂j(x∗(j))− hi

and hence i’s utility can be expressed as

So i should choose v̂i to maximize vi(x∗(i)) +
�

j �=i v̂j(x∗(j)).
But seller chooses x∗ to maximize

�
j v̂j(x∗(j)) = v̂i(x∗(i)) +

�
j �=i v̂j(x∗(j))

so setting v̂i = vi (i.e. telling the truth) is best strategy.
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Weak budget balance

52

Weak budget balance:  sum of payments is non-negative 

This property holds for VCG because the absence of a bidder 
cannot decrease the value for the rest of the group.

However, this only is true because we assume bidders
are always happy to accept additional goods.

Example:

Bidder 1: v1(∅) = 0, v1({a}) = 90, v1({b}) = 10, v1({a, b}) = 10
Bidder 2: v2(∅) = 0, v2({a}) = 20, v2({b}) = 30, v2({a, b}) = 50

VCG gives payments p1 = 20 and p2 = −90.
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Lack of revenue

53

Bidder 1: v̂1(∅) = 0, v̂1({a}) = 0, v̂1({b}) = 0, v̂1({a, b}) = 2
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 2, v̂2({b}) = 0, v̂2({a, b}) = 2
Bidder 3: v̂3(∅) = 0, v̂3({a}) = 0, v̂3({b}) = 2, v̂3({a, b}) = 2

Consider the following reported valuations:

Optimal allocation for the group: give a to 2, b to 3 (value of 4)
Optimal allocation without 1: give a to 2, b to 3 (value of 4)
Optimal allocation without 2: give a and b to 1 (value 2)
Optimal allocation without 3: give a and b to 1 (value 2)

We compute the optimal allocations and payments:

p1 = 0− (4 − 4) = 0
p2 = 2− (4 − 2) = 0
p3 = 2− (4 − 2) = 0

⇐ nobody pays!!
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Non-monotonicity
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Consider the same bids as on previous slide:

Bidder 1: v̂1(∅) = 0, v̂1({a}) = 0, v̂1({b}) = 0, v̂1({a, b}) = 2
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 2, v̂2({b}) = 0, v̂2({a, b}) = 2
Bidder 3: v̂3(∅) = 0, v̂3({a}) = 0, v̂3({b}) = 2, v̂3({a, b}) = 2

What happens if bidder 3 is no longer present?

What if bidder 3 bids 1 for b (or a, b) instead of 2?
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Non-monotonicity

55

Consider the same bids as on previous slide:

Bidder 1: v̂1(∅) = 0, v̂1({a}) = 0, v̂1({b}) = 0, v̂1({a, b}) = 2
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 2, v̂2({b}) = 0, v̂2({a, b}) = 2
Bidder 3: v̂3(∅) = 0, v̂3({a}) = 0, v̂3({b}) = 2, v̂3({a, b}) = 2

What happens if bidder 3 is no longer present?

What if bidder 3 bids 1 for b (or a, b) instead of 2?

In both cases, positive revenue to the auctioneer

So increasing the number of bidders or the size of bids does not 
necessarily lead to greater revenue.
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Collusion

56

If bidders work together, they can obtain a better outcome by
lying about their valuations. 

Bidder 1: v̂1(∅) = 0, v̂1({a}) = 0, v̂1({b}) = 0, v̂1({a, b}) = 4
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 1, v̂2({b}) = 0, v̂2({a, b}) = 1
Bidder 3: v̂3(∅) = 0, v̂3({a}) = 0, v̂3({b}) = 1, v̂3({a, b}) = 1

Bidder 1 gets both objects and pays 4− (4− 2) = 2

Now suppose bidders 2 and 3 both lie about their valuations:
Bidder 1: v̂1(∅) = 0, v̂1({a}) = 0, v̂1({b}) = 0, v̂1({a, b}) = 4
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 4, v̂2({b}) = 0, v̂2({a, b}) = 4
Bidder 3: v̂3(∅) = 0, v̂3({a}) = 0, v̂3({b}) = 4, v̂3({a, b}) = 4

Bidder 2 gets a, bidder 3 gets b, both pay 4− (8− 4) = 0 (nothing!)

Suppose the bidders make the following truthful bids:
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Another way for bidders to manipulation the VCG mechanism
is to place multiple bids under fictitious names.

Consider the following example, where bidder 1 wins both goods:
Bidder 1: v̂1(∅) = 0, v̂1({a}) = 0, v̂1({b}) = 0, v̂1({a, b}) = 4
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 1, v̂2({b}) = 1, v̂2({a, b}) = 2

Bidder 1: v̂1(∅) = 0, v̂1({a}) = 0, v̂1({b}) = 0, v̂1({a, b}) = 4
Bidder 2: v̂2(∅) = 0, v̂2({a}) = 4, v̂2({b}) = 0, v̂2({a, b}) = 4
Bidder 2’: v̂3(∅) = 0, v̂3({a}) = 0, v̂3({b}) = 4, v̂3({a, b}) = 4

Suppose bidder 2 creates a fake bidder 2ʼ with following bids:

Bidder 2 gets both items and pays nothing!!

This problem is especially relevant in electronic auctions.
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VCG mechanism requires us to compute an optimal allocation of
the goods, as well as optimal allocations with each bidder removed.

So if there are N bidders, we must find N+1 optimal allocations.

Unfortunately, this problem is computationally difficult:

Theorem:

The problem of finding an optimal allocation is NP-hard.

Note: cannot just use an approximately optimal allocation,
since then the resulting mechanism might not be strategy-proof
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• “Computational social choice” course by Ulle Endriss (UVA)
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We unfortunately didnʼt get to cover much social choice and 
mechanism design, so if youʼre interested, here are some 
references to learn more:
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