Theoretische Informatik 2

Gewertete Aufgaben, Blatt 5

Abgabe:Bis 17.6.13 ins Postfach Ihrer Tutorin/Ihres Tutors Besprechung: KW 25

- 1. $(20\%=4\times5\%)$ Begründen oder widerlegen Sie folgende Aussagen:
 - a) Falls weder L_1 noch L_2 entscheidbar ist, dann ist auch keine Obermenge von $L_1 \cup L_2$ entscheidbar.
 - b) Für Turing-erkennbare Sprachen L ist " $L = \emptyset$ " ist eine nicht-triviale Eigenschaft.
 - c) Es gibt kontextfreie Sprachen L_1 und L_2 so dass $L_1 \cap L_2$ unentscheidbar ist.
 - d) Eine Sprache L ist genau dann entscheidbar ist, wenn $L \leq \{0\}^* \cdot \{1\}^*$.
- 2. $(20\%=2\times 10\%)$ Besitzen folgende Instanzen P_i des Postschen Korrespondenzproblems PKP Lösungen oder nicht? Begründen Sie Ihre Antwort.
 - a) $P_1 = \{(a, aaa), (abaaa, ab), (ab, b)\}$
 - b) $P_2 = \{(ab, aba), (abaa, abba), (aba, baa), (aaba, baab), (aab, bba)\}$
- 3. (20%) Zeigen Sie, dass das Postsche Korrespondenzproblem über dem einelementigen Alphabet $\Sigma = \{a\}$ entscheidbar ist.
- **4.** (40%=20%+10%+10%)
 - a) Welche der folgenden vier Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ sind erfüllbar, welche sind gültig, welche sind äquivalent zueinander?
 - $\varphi_1 = (z \to \neg y) \lor (x \to y)$
 - $\varphi_2 = z \land \neg((\neg z \lor x \lor y) \to \neg z)$
 - $\varphi_3 = ((x \to y) \to z) \leftrightarrow x$
 - $\varphi_4 = ((z \to y) \to x) \lor \neg x$
 - b) Bringen Sie die folgenden beiden Formeln jeweils in konjunktive Normalform und in disjunktive Normalform:

$$(x \wedge y) \to z$$
 $(z \wedge \neg x) \leftrightarrow (y \wedge x)$

c) Geben Sie eine aussagenlogische Formel mit drei Variablen x,y,z an, die genau drei erfüllende Belegungen hat.