Komplexitätstheorie

Kapitel 4: Mehr Ressourcen, mehr Möglichkeiten?

Einleitung

Bei P vs NP vergleicht man unterschiedliche Maschinenmodelle

Wenn man ein Maschinenmodell und eine Ressource fixiert gilt intuitiv:

Mehr Ressourcen, mehr Probleme lösbar!!

In diesem Kapitel:

- Für natürliche Fälle ist das meist auch richtig (Hierarchie-Theoreme)
- Es gibt bemerkenswerte Ausnahmen (Gap-Theoreme)

Kapitel 4

Hierarchie-Theoreme

Hierarchietheoreme

Hierarchietheoreme:

- Klasse von Resultaten, die Komplexitätsklassen separieren, mit denen also die Echtheit von Inklusionen nachgewiesen werden kann
- Betrachten Klassen, die auf demselben Maschinenmodell und derselben Ressource beruhen
- Basieren auf Diagonalisierungsbeweisen, ähnlich zu Beweisen von Unentscheidbarkeit (z.B. Halteproblem)

Zum warm werden: ein kurzer Exkurs zur Unentscheidbarkeit

Unentscheidbarkeit

Theorem.

Es gibt unentscheidbare Sprachen.

Diagonalisierungsbeweis:

- Modifiziere Kodierung von DTMs als Wörter, so dass jedes Wort DTM repräsentiert (zum Beispiel durch Annahme einer Default-DTM) Für jedes $w \in \{0,1\}^*$ sei $\mu(w)$ die kodierte DTM
- Betrachte Tabelle für Akzeptanz von Wörtern durch DTMs
- Deren Diagonale besteht aus Positionen M, w mit $\mu(w) = M$
- Sprache L_D : Komplementiere die Werte auf der Diagonalen
- ullet Führe Widerspruchsbeweis für Unentscheidbarkeit von L_D

Hierarchietheoreme

Wir beweisen nur ein sehr spezielles Hierarchietheorem

Zur Erinnerung: ExpTime
$$:= \bigcup_{i \geq 1} \mathsf{DTime}(2^{\mathcal{O}(n^i)}).$$

Theorem.

 $\mathsf{P} \subsetneq \mathsf{ExpTime}$

Diagonalisierung soll Problem in EXPTIME \ P liefern:

- in ExpTime: betrachte nur Akzeptanz in exponentiell vielen Schritten
- Intuitiv sollte das Problem immernoch nicht in P sein

Wir nehmen an, dass jede DTM durch unendlich viele Wörter kodiert wird, (Stelle z.B. sicher, dass $\mu(0^*w) = \mu(w)$ für alle $w \in \Sigma^*$)

Sprache L_D implementiert Diagonalisierung und Komplementierung:

Lemma.

 $L_D:=\{w\in \Sigma^*\mid \mu(w) \text{ akzeptiert } w \text{ nicht in } \leq 2^{|w|} \text{ Schritten } \}$ ist in ExpTime \ P

$L_D \notin P$: Widerspruchsbeweis

- ullet Annahme: es gibt p-zeitbeschränkte DTM M mit $L(M)=L_D$
- Wähle w_i mit $\mu(w_i) = M$ und $2^{|w_i|} \ge p(|w_i|)$
- $w_i \in \mu(w_i)$ und $w_i \notin \mu(w_i)$ führt beides zu Widerspruch

Sprache L_D implementiert Diagonalisierung und Komplementierung:

Lemma.

 $L_D:=\{w\in \Sigma^*\mid \mu(w) \text{ akzeptiert } w \text{ nicht in } \leq 2^{|w|} \text{ Schritten } \}$ ist in ExpTime \ P

 $L_D \in \mathsf{EXPTIME} : \mathsf{DTM}\ M$

- simuliert $\mu(w)$ auf Eingabe w
- zählt die Schritte, die schon simuliert wurden
- verwirft, wenn $\mu(w)$ in $\leq 2^{|w|}$ Schritten akzeptiert
- akzeptiert, wenn $\mu(w)$ in $\leq 2^{|w|}$ Schritten verwirft
- akzeptiert, wenn $\mu(w)$ mehr als $2^{|w|}$ Schritte macht

 L_D ist unnatürliches Problem. Natürliche $L \in \mathsf{ExpTime} \setminus \mathsf{P}$ via Vollständigkeit:

Definition ExpTime-Härte, ExpTime-Vollständigkeit

Problem L ist

- ExpTime-hart wenn $L' \leq_p L$ für alle $L' \in \mathsf{ExpTime}$;
- ExpTime-vollständig wenn L ExpTime-hart und in ExpTime.

Offensichtlich: wenn ExpTIME-hartes $L \in P$, dann $L_D \in P$; also:

Lemma.

Wenn L ExpTIME-hart, dann $L \notin P$.

ExpTime-vollständige Probleme:

- das Wortproblem für polyplatzbeschränkte alternierende TMs typisch für ExpTime, ähnlich wie SAT und 3SAT für NP
- manche Spielprobleme
 - z.B. Existenz von Gewinnstrategien in Dame Spielen (bei beliebig grossem Brett)
- manche Probleme in der Logik
 z.B.: Erfüllbarkeit von Formeln der Spezifikationslogik CTL
- manche Datenbankprobleme
 - z.B. Inklusion zwischen XPath-Ausdrücken, für manche Fragmente von XPath 1.0 und 2.0

Zeithierarchiesatz

Das gerade gezeigte Resultat ist Spezialfall eines wesentlich generelleren Satzes

Definition Zeitkonstruierbar

Funktion $t: \mathbb{N} \to \mathbb{N}$ heißt *zeitkonstruierbar* wenn es eine DTM M gibt mit $time_M(w) = t(|w|)$ für alle $w \in \Sigma^*$.

Intuitiv: Funktionen, die mit den Ressourcenvorgaben berechnet werden können, die sie selbst machen ("vernünftige" Funktionen)

Natürliche Funktionen sind i.d.R. zeitkonstruierbar, z.B.:

- n^i für alle $i \ge 1$
- \bullet 2^n

Zeithierarchiesatz

Theorem (Zeithierarchie).

Für jede zeitkonstruierbare Funktion t_2 und jede Funktion t_1 mit $t_2 \in \omega(t_1 \cdot \log(t_1))$ gilt: $\mathsf{DTime}(t_1) \subsetneq \mathsf{DTime}(t_2)$.

 $f \in \omega(g)$ bedeutet "f wächst schneller als g"

Konsequenzen dieses Resultats z.B.:

- $\mathsf{DTime}(n^i) \subsetneq \mathsf{DTime}(n^{i+1})$ für alle $i \geq 1$ (aber keine natürlichen Probleme in $\mathsf{DTime}(n^{i+1}) \setminus \mathsf{DTime}(n^i)$ bekannt)
- DTime $(n^i) \subsetneq P$ für alle $i \ge 0$
- $\bullet \ \ 2\text{-ExpTime} := \bigcup_{i \geq 1} \mathsf{DTime}(2^{2^{\mathcal{O}(n^i)}}) \text{, } 3\text{-ExpTime} := \bigcup_{i \geq 1} \mathsf{DTime}(2^{2^{2^{\mathcal{O}(n^i)}}}) \text{, etc.}$

Dann k-ExpTime $\subsetneq k + 1$ -ExpTime für alle $k \geq 1$

Zeithierarchiesatz

Theorem (Zeithierarchie).

Für jede zeitkonstruierbare Funktion t_2 und jede Funktion t_1 mit $t_2 \in \omega(t_1 \cdot \log(t_1))$ gilt: $\mathsf{DTime}(t_1) \subsetneq \mathsf{DTime}(t_2)$.

Unterschiede im Beweis:

- Konstruiere TM M, die einige Schritte von $\mu(w)$ simuliert, komplementär akzeptiert und dabei selbst exakt $t_2(n)$ Schritte macht
- Dazu wird Zeitkonstruierbarkeit verwendet: gleichzeitiges Simulieren einer TM, die exakt $t_2(|w|)$ Schritte macht
- Verwende L(M) als L_D , dann trivial: $L(M) \in \mathsf{DTime}(t_2)$
- $L(M) \notin \mathsf{DTime}(t_1)$: gleiche Idee, vorsichtigere Analyse Zeitverbrauch

Hierarchiesätze

Weitere Hierarchiesätze existieren, z.B. nicht-deterministische Zeit:

Theorem (Nicht-deterministische Zeithierarchie).

Für jede zeitkonstruierbare Funktion t_2 und jede Funktion t_1 mit $t_2(n) \in \omega(t_1(n+1))$ gilt: $\mathsf{NTime}(t_1) \subsetneq \mathsf{NTime}(t_2)$.

Beweis etwas anders aber Konsequenzen wie in det. Fall, z.B.

- $\mathsf{NTime}(n^i) \subsetneq \mathsf{NTime}(n^{i+1})$ für alle $i \geq 1$;
- $\bullet \ \ \mathsf{NP} \subsetneq \mathsf{NExpTime} := \bigcup_{i \geq 1} \mathsf{NTime}(2^{\mathcal{O}(n^i)})$

Kapitel 4

Gap-Theoreme

Gap Theorem

Scheinbar paradox: es gibt trotzdem beliebig große "Lücken" zwischen Komplexitätsklassen

Theorem (Gap-Theorem).

Für jede Funktion $g: \mathbb{N} \to \mathbb{N}$ gibt es eine berechenbare Funktion $t: \mathbb{N} \to \mathbb{N}$ so dass $\mathsf{DTime}(t) = \mathsf{DTime}(g(t))$.

Zum Beispiel:

- $\bullet \ g = n^2.$ Es gibt Funktion t mit $\mathrm{DTime}(t) = \mathrm{DTime}(t^2).$
- $g = 2^n$. Es gibt Funktion t mit $\mathsf{DTime}(t) = \mathsf{DTime}(2^t)$.

Beweis: Vorbereitung

Sei

- M_0, M_1, M_2, \ldots eine Aufzählung aller Turingmaschinen
- $t_i(n)$ die Zeitkomplexität von M_i auf Eingaben der Länge n, d.h.:

wenn M_i auf jeder Eingabe w der Länge n stoppt:

$$t_i(n) = \max\{\mathsf{time}_{M_i}(w) \mid w \; \mathsf{Eingabe} \; \mathsf{der} \; \mathsf{Länge} \; n\}$$

wenn M_i auf mindestens einer Eingabe w der Länge n nicht stoppt:

$$t_i(n) = \infty$$

Für gegebene Funktion g:

Wir wollen t finden, so dass keine Funktion t_i zwischen t und g(t) liegt

Beweis (fast)

Für jedes $n \ge 0$ wählen wir

$$t(n) = \max\{t_i(n) \mid i \le n \text{ und } t_i(n) < \infty\} + 1$$

Lemma

 $\mathsf{DTime}(t) = \mathsf{DTime}(g(t))$

Problem:

- es gibt keinen Grund, warum dieses t berechenbar sein sollte
- insbesondere können wir für gegebenes i und n nicht entscheiden, ob $t_i(n)=\infty$ oder nicht

Beweis (jetzt aber)

Definiere modifizierte Funktion t, berechne t(n) wie folgt:

Starte mit
$$t(n)=n+1$$
 while $t(n) \leq t_i(n) \leq g(t(n))$ for some $i \leq n$ do
$$t(n)++$$

Intuition: t(n) liegt nicht mehr unbedingt über allen $t_i(n)$ mit $i \leq n$ der Bereich [t(n),g(t(n))] kann auch "Lücke" zwischen allen diesen t_i sein

Lemma

- 1. Die Berechnung von t(n) terminiert.
- 2. $\mathsf{DTime}(t) = \mathsf{DTime}(g(t))$

Nachbemerkung

Der scheinbare Widerspruch zum Hierarchietheorem ist leicht lösbar:

- die Funktion t ist zwar berechenbar, aber sie wächst extrem schnell
- insbesondere ist sie nicht zeitkonstruierbar

Das Gap-Theorem basiert also auf der Existenz "extremer" Funktionen

Wir interessieren uns meist für "normale" Funktionen, da spielt das Gap-Theorem keine wichtige Rolle.

Analoge Theoreme gibt es für nichtdeterministische Zeit