Dr. Mehul Bhatt, Dr. Oliver Kutz, Dr. Thomas Schneider

WS 2011/12

From syllogism to common sense . . . Exercise Sheet 4: Propositional Logic

To be discussed on 8 December 2011

- **1.** Prove that the following formulas are tautologies using the deduction theorem.
 - a) $(p \to q \to r) \to (p \to q) \to (p \to r)$
 - b) $(p \rightarrow q) \rightarrow (q \rightarrow r) \rightarrow (p \rightarrow r)$
- **2.** Show the following derivabilities using natural deduction. Consider $\alpha \lor \beta$ as an abbreviation for $\neg(\neg \alpha \land \neg \beta)$ and $\alpha \to \beta$ as an abbreviation for $\neg(\alpha \land \neg \beta)$.
 - a) $\neg \neg p \vdash p$
 - b) $\alpha \lor \top \vdash \top$
 - c) $\alpha \rightarrow \beta \rightarrow \gamma \vdash \beta \rightarrow \alpha \rightarrow \gamma$
- 3. Prove the correctness of the following non-basic rule of natural deduction:

$$\frac{X \vdash \alpha}{X \vdash \alpha \lor \beta, \ \beta \lor \alpha}$$

That is, find a sequence S_0, \ldots, S_n with $S_n = X \vdash \alpha \lor \beta$ where, in addition to the basic rules, each S_i may be $X \vdash \alpha$. As above, consider $\alpha \lor \beta$ as an abbreviation for $\neg(\neg \alpha \land \neg \beta)$.

4. Using the rule from the previous exercise, show via natural deduction that $\vdash \alpha \lor \neg \alpha$.