From syllogism to common sense . . . Exercise Sheet 5: Propositional Logic

To be discussed on 15 December 2011

- **1.** Supply the missing details for the proofs of soundness (Slide 61) and completeness (Lemma on Slide 64):
 - a) Show that the six basic rules preserve the consequence relation. For example, for ($\wedge 2$), show: if $X \models \alpha \land \beta$, then $X \models \alpha, \beta$.
 - (This is almost trivial for (IS), (MR), (\wedge 1), (\wedge 2), and not difficult for (\neg 1), (\neg 2).)
 - b) Show properties C^+ and C^- .
- **2.** Show that every set can be totally ordered. That is, show the following proposition:

For every set M, there is an irreflexive, transitive, and connex relation < on M. (< is a connex relation on M if, for all $a, b \in M$, it holds that a < b or b < a or a = b.)

< is a connex relation on M ii, for all $a, b \in M$, it holds that a < b or b < a or a = b.)

- a) As a warm-up, show the proposition for finite M via induction on n.
- b) For infinite M, proceed according to the following schedule, using the propositional compactness theorem.
 - For every pair $(a, b) \in M \times M$, introduce a new propositional variable p_{ab} that represents the statement a < b.
 - Construct an infinite set X of propositional formulas that expresses irreflexivity, transitivity and connexity of <. For example, reflexivity of < would be expressed by $\{p_{aa} \mid a \in M\}$.
 - Explain how the models of X correspond exactly to the possible orders < on M.
 - Show that every finite subset of X_0 has a model.
 - Use the propositional compactness theorem to conclude that X is satisfiable.
- **3**. Prove the following in the Hilbert calculus.
 - a) $\vdash \alpha \rightarrow \beta \rightarrow \alpha$
 - b) ~ ⊤