From syllogism to common sense: a tour through the logical landscape

Mehul Bhatt Oliver Kutz Thomas Schneider

Introduction 3 November 2011

Organisational aspects

When, where, how?

- Lecture Thursdays 16–18, MZH 1110
- Tutorial Thursdays 18–19, MZH 1110
- Room change: 3 Nov and 17 Nov in MZH 3150
- ECTS: 4
- Literature will be announced as we go along
- Lecture homepage: tinyurl.com/ws2011-logic

Exam

At the end of the semester, pick 2 topics from the course, present them to us in an oral exam and answer our questions.

Who?

Mehul Bhatt

Oliver Kutz

Thomas Schneider

tschneider

bhatt

okutz

@informatik.uni-bremen.de

Aristotle's Syllogisms

- First formal study of logic in Aristotle's Prior Analytics
- Central elements: schemes such as

If all A are B		If all men are mortal
and all B are C	e.g.	and all Greeks are men
then all A are C		then all Greeks are mortal

- We will
 - explain and discuss valid types of syllogism,
 - show their corresponding Venn diagrammes,
 - explore common fallacies (reasoning mistakes with syllogisms),
 - play with the Interactive Syllogistic Machine

Propositional logic

- The most basic classical logic: allows to combine atomic propositions using Boolean operators ("and", "or", "not")
- Two notions of consequence/entailment: proof-theoretic (⊢) and semantic (⊨)

 \vdash implies \models : soundness of the proof theory

 \models implies \vdash : completeness

- We'll introduce basic terminology
- We'll also look at conditionals such as

If he takes a plane he will get here quicker. He will take a plane. Hence, he will get here quicker.

If New York is in New Zealand, then 2 + 4 = 4.

Intuitionistic logic

- Brouwer's Intuitionistic logic developed out of the crisis in the foundations of mathematics in the late 19th century
- The philosophy of intuitionism puts a stong emphasis on the notion of *(mental) construction*. Its logic therefore
 - rejects the classical principle of tertium non datur (excluded middle) and double negation elimination
 - it is a *restriction* of classical logic
 - not truth is preserved, but *justification*
 - proof by contradiction can not be used, as it does not yield a *construction*

We will look at

- Heyting's axiomatisation of intuitionistic propositional logic
- Kripke frames as a semantics for intuitionistic logic in terms of 'stages of knowledge'
- the Gödel translation establishing a correspondence between classical and intuitionistic logic

Bhatt, Kutz, Schneider

Modal logic

- Extends propositional logic
- Concerned with the *modes* in which things can be true/false:

 φ is necessary or possible φ is true sometimes in the future or always in the future the agent knows or believes φ φ is provable

- Different axiomatisations lead to different modal systems
- Possible-world semantics
- Modal tableaux
- Soundness, completeness
- Strict conditional and non-normal modal logics

Many-valued logic

- Many-valued logics give up the idea that there are exactly 2 truth-values
- They evaluate formulae not only to true or false, but e.g. to:
 - true, false, or *indeterminate* (Łukasiewicz)
 - true, false, neither true nor false, both true and false (Belnap)
 - $\bullet\,$ true, false, degrees of truth in the interval $[0,\ldots,1]$ (Zadeh)
 - etc.
- Such logics need more abstract model theory than Boolean Algebras
- Many application areas, such as database theory (SQL), uncertain reasoning, and paraconsistent reasoning
- We discuss basics of model theory, truth tables, axiomatisations, and the relation to classical logic

Description logic

- Allows for describing terminological knowlegde, e.g.
 - Elephant ≡ Mammal□∃hasBodypart.Trunk□∀hasColour.Grey defines elephants extensionally
- DLs are restricted, well-behaved fragments of first-order logic
- DL theories *(ontologies)* are used in biomedicine, healthcare, linguistics, physics, chemistry, engineering, Semantic Web, ...
- Sophisticated tools can automatically infer implicit knowledge (reasoning), explain inferences, extract modules for reusing ontologies, integrate ontologies and databases, ...

First-order logic

- Extend propositional logic: predicates, functions, Boolean operators, quantification
- Used to formalise axiomatic systems and other fundamental mathematical knowledge, e.g.
 - $\forall xyz(xRy \land yRz \rightarrow xRz)$: relation R is transitive
 - $(\forall n P(n)) \leftrightarrow (P(0) \land \forall n (P(n) \to P(n+1)))$: induction
 - Zermelo-Fraenkel set theory, Peano arithmetic,
- Also used as an ontology language more expressive than DLs
- Enjoys important meta-logical properties, but is undecidable → not as computationally well-behaved as DLs
- We'll cover syntax, semantics, deduction system(s), completeness, compactness, Löwenheim-Skolem theorem, first-order ontologies, tool demo

Commonsense reasoning

. . .

. . .