Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi	Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi
	Propositional logic (PL)
From syllogism to common sense: a tour through the logical landscape Propositional logic Mehul Bhatt Oliver Kutz <i>Thomas Schneider</i> 24 November 2011	 allows to analyse connections of given sentences A, B, such as A and B, A or B, not A, if A then B; but only for certain meanings of these connections. does not allow to analyse connections of temporal or modal nature: first A, then B, here A, there B, it is necessarily true that A is based on a beautiful mathematical theory that explains principles relevant for many other logics
Thomas Schneider Propositional logic 1	Thomas Schneider Propositional logic 2
Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi Literature	Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi Plan for today and the next 1–2 weeks
	Boolean functions and formulas
Contents is taken from Chapter 1 of	2 Semantic equivalence and normal forms
W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010. This issue at Universitext: C D01101007/978-14419-1221-3-1	3 Tautologies and logical consequence
● German version of 2008: ● Dol 10 1007/978-3-8348-9530-1	A calculus of natural deduction
• Chapter 1 available in StudIP under "Dateien"	5 Application of the compactness theorem
	6 Hilbert calculi

Joining two sentences

- Let *A*, *B* be sentences. Then the following are also sentences:
 - $A \wedge B$ conjunction A and Btrue if both A, B are true, and false otherwise.
 - $A \lor B$ (inclusive) disjunction A or Btrue if ≥ 1 of A, B is true, and false otherwise.
- \land, \lor are Boolean connectives
- \wedge corresponds to a binary function $f: \{0,1\}^2 \rightarrow \{0,1\}$,

given by its value matrix
$$\begin{pmatrix} 1 \land 1 & 1 \land 0\\ 0 \land 1 & 0 \land 0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}$$

• Analogously: \lor corresponds to a binary function given by

$$\begin{pmatrix} 1 \lor 1 & 1 \lor 0 \\ 0 \lor 1 & 0 \lor 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Propositional logic

Let's generalise: joining *n* sentences

- A function f : {0,1}ⁿ → {0,1} is called n-ary Boolean function or truth function.
- \mathcal{B}_n = set of all *n*-ary Boolean functions

Questions to you

- How many unary (binary) Boolean functions are there?
- What is the cardinality of \mathcal{B}_n ?

Prominent members:

Thomas Schneider

- \bullet constants $0,1\in \mathcal{B}_0$
- \bullet negation $\neg \in \mathcal{B}_1$ defined by $\neg 1 = 0$ and $\neg 0 = 1$

Propositional logic

8

 \bullet conjunction and disjunction from \mathcal{B}_2

Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi

Common binary connections in English and in logic

(We'll now use Boolean connectives/functions interchangeably.)

compound sentence	symbol	truth table
conjunction	^, &	1 0
A and B ; A as well as B		0 0
disjunction	v, V	1 1
A or B		1 0
implication	ightarrow, ightarrow	1 0
if A then B; B provided A		1 1
equivalence	$\leftrightarrow, \ \Leftrightarrow$	1 0
A if and only if B ; A iff B		0 1
exclusive disjunction	+	0 1
either A or B but not both		1 0
nihilation	Ļ	0 0
neither A nor B		0 1
incompatibility	¢	0 1
not at once A and B		1 1
m W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 20		

Propositional logic

Natural deduction

Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi

Logical equivalence

- Two sentences are logically equivalent if their corresponding truth tables are identical.
- Example: A provided $B \equiv A$ or not B (Check for yourself!) (Converse implication $A \leftarrow B$)
- $\, \sim \,$ Only few of the 16 binary Boolean functions require notation
- Example 2: if A and B then $C \equiv$ if B then C provided A

Goal

Recognise and systematically describe logical equiv. of sentences.

Use a formal language.

(Think of arithmetical formulas built from basic symbols.)

Thomas Schneider Propositional logic

10

Hilbert calcul

Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Formulas, precise set-theoretic definition

... more useful for proving general theorems

Definition

Set \mathcal{F} of all formulas is the smallest (i.e., the intersection) of all sets S of strings built from the basic symbols, with the properties

(f1) $p, q, \ldots \in S$ (f2) if $\alpha, \beta \in S$, then $(\alpha \land \beta), (\alpha \lor \beta), \neg \alpha \in S$

Syntax of propositional logic

Thomas Schneider

Boolean fmas

- Basic symbols
 - propositional variables PV = {p, q, r, ... }
 logical connectives ∧, ∨, ¬, ...
 - parentheses (,) as a technical aid
- Formulas (Intuitive, recursive definition)
- Examples:
 - $(p \land (q \lor \neg p))$ is a formula
 - $(p \land (q \lor \neg p) \text{ and } p q \land \text{ are not}$

Thomas Schneider

Propositional logic

11

Hilbert calculi

Signatures

- Formulas are also called Boolean formulas: they are obtained using the Boolean signature $\{\land, \lor, \neg\}$
- Need further connectives? Extend your signature!
- However, $(\alpha \rightarrow \beta)$ and $(\alpha \leftrightarrow \beta)$ are just abbreviations:

$$(\alpha \to \beta) = (\neg \alpha \lor \beta)$$
$$(\alpha \leftrightarrow \beta) = ((\alpha \to \beta) \land (\beta \to \alpha))$$

(Check their truth tables.)

- Extend signature by symbols that are always true (false): verum (falsum) \top (\perp)
 - they are either additional atomic formulas
 - or abbreviations $\bot = (p \land \neg p), \top = \neg \bot$

Thomas Schneider

Propositional logic

Boolean fmas Natural deduction Hilbert calcul The principle of formula induction

- Previous properties rely on intuitively clear facts, e.g.: identical number of left and right parentheses in a formula
- Such facts are usually proven via induction on the construction of a formula.
- Illustration of such an inductive proof with the above example:
 - use $\mathcal{E}\varphi$ to say that property \mathcal{E} holds for string φ
 - E.g.: $\mathcal{E}\varphi \doteq "\varphi$ is a formula that has equally many '(' and ')'"

15

- \mathcal{E} is trivially valid for atomic formulas
- if $\mathcal{E}\alpha$ and $\mathcal{E}\beta$, then also $\mathcal{E}(\alpha \wedge \beta)$, $\mathcal{E}(\alpha \vee \beta)$, and $\mathcal{E}\neg \alpha$
- Hence, \mathcal{E} is valid for all propositional formulas

Roolean fmas Semantic equiv Tautologies etc. Natural deduction Hilbert calcul Parenthesis economy

Conventions similar to those in writing arithmetical terms

- Outermost parentheses of a formula may be omitted (if any).
- ▶ string $(p \lor q) \land \neg p$ denotes formula $((p \lor q) \land \neg p)$
- Binding preference of binary connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$, with \neg binding most strongly
 - $\blacktriangleright p \lor q \land \neg p$ denotes $p \lor (q \land \neg p)$
- \rightarrow is right-associative
 - $\blacktriangleright p \rightarrow q \rightarrow p$ denotes $p \rightarrow (q \rightarrow p)$
- all other binary connectives are left-associative
- ▶ $p \land q \land \neg p$ denotes $(p \land q) \land \neg p$

Thomas Schneider Propositional logic

Boolean fmas Natural deduction Hilbert calculi The principle of formula induction

Theorem

Thomas Schneider

Let \mathcal{E} be a property of strings that satisfies the conditions (o) $\mathcal{E}\pi$ for all atomic formulas π , (s) For all fmas α, β : if $\mathcal{E}\alpha$ and $\mathcal{E}\beta$, then $\mathcal{E}(\alpha \land \beta), \mathcal{E}(\alpha \lor \beta), \mathcal{E}\neg \alpha$. Then $\mathcal{E}\varphi$ holds for all formulas φ .

Proof: easy given our precise definition of formulas on Slide **12**:

- Take the set S of all formulas with property \mathcal{E} .
- Thanks to (o) and (s), S has properties (f1) and (f2).
- Since \mathcal{F} is the smallest such set, $\mathcal{F} \subset S$.
- $\Rightarrow \mathcal{E}$ applies to all formulas $\varphi \in \mathcal{F}$.

(In the presence of other operators, Cond. (s) has to be extended.) Propositional logic

Thomas Schneider

Propositional logic

20

19

• (View φ as a tree \rightarrow rank $\hat{=}$ depth of the tree)

Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi

Semantics of propositional logic

- Remember: Principle of extensionality truth value of a sentence depends only on *truth values* of its parts, not on their *meaning*
- \rightsquigarrow assign truth value to every propositional variable in φ and use them to calculate the truth value of φ
- \rightsquigarrow every formula in *n* propositional variables describes an *n*-ary Boolean function
- (Analogy: evaluation of arithmetical terms over real numbers)

Propositional logic

Propositional logic

Natural deduction

• Value of φ under $w : \mathsf{PV} \to \{0, 1\}$: value $w\varphi$ under the extension of w to \mathcal{F}

Boolean fmas. Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi
Semantics under extended signature

- If logical signature contains more connectives, e.g., →, then the definition of extension must contain additional cases, e.g., w(α → β) = wα → wβ.
- For →, this is actually not necessary: remember, (α → β) is an abbreviation of (¬α ∨ β)
- $\Rightarrow w(\alpha \to \beta) = w(\neg \alpha \lor \beta) = w \neg \alpha \lor w\beta = \neg w\alpha \lor w\beta = w\alpha \to w\beta$

• Similarly,
$$w \top = 1$$
, $w \bot = 0$ (Check for yourself)

Formulas represent Boolean functions

- Let \mathcal{F}_n be the set of all formulas in which at most the variables p_1, \ldots, p_n occur.
- Then the truth value $w\alpha$ depends only on wp_1, \ldots, wp_n :

Theorem

Thomas Schneider

Boolean fmas

Thomas Schneider

For all $n \ge 0$, all $\alpha \in \mathcal{F}_n$, all valuations w, w':

if $wp_i = w'p_i$ for all i = 1, ..., n, then $w\alpha = w'\alpha$

(Proof via induction on $\varphi \in \mathcal{F}_{n}$.)

- Now we can define: $\alpha \in \mathcal{F}_n$ represents the function $f \in \mathcal{B}_n$ if, for all valuations w, it holds that $w\alpha = f(wp_1, \ldots, wp_n)$
- Example: both $p_1 \wedge p_2$ and $\neg(\neg p_1 \vee \neg p_2)$ represent the \wedge -function

Propositional logic

Thomas Schneider

23

22

Hilbert calcul