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Propositional logic (PL) . . .

allows to analyse connections of given sentences A, B, such as
A and B, A or B, not A, if A then B;

but only for certain meanings of these connections.

does not allow to analyse connections of temporal or modal
nature:

first A, then B,

here A, there B,

it is necessarily true that A

is based on a beautiful mathematical theory
that explains principles relevant for many other logics
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Literature

Contents is taken from Chapter 1 of
W. Rautenberg:
A Concise Introduction to Mathematical Logic, Springer, 2010.

This issue at Universitext: DOI 10.1007/978-1-4419-1221-3_1

German version of 2008: DOI 10.1007/978-3-8348-9530-1

Chapter 1 available in StudIP under “Dateien”
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Plan for today and the next 1–2 weeks . . .

1 Boolean functions and formulas

2 Semantic equivalence and normal forms

3 Tautologies and logical consequence

4 A calculus of natural deduction

5 Application of the compactness theorem

6 Hilbert calculi
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And now . . .

1 Boolean functions and formulas

2 Semantic equivalence and normal forms

3 Tautologies and logical consequence

4 A calculus of natural deduction

5 Application of the compactness theorem

6 Hilbert calculi
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Principles of two-valued logics

Principle of bivalence:
there are only two truth values – true and false

no third (fourth, . . . ) truth value
no degrees of truth
interpretation of true and false is irrelevant
❀ denote them with 1, 0 or �,⊥ or t, f

Principle of extensionality:
truth value of a sentence depends only
on truth values of its parts, not on their meaning

Classical modal, temporal, description, first-order logic
and other logics build on these principles.

Of course, principles are an idealisation!
(If that doesn’t suffice, change your logic.)
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Joining two sentences

Let A, B be sentences. Then the following are also sentences:
A ∧ B conjunction A and B

true if both A, B are true, and false otherwise.
A ∨ B (inclusive) disjunction A or B

true if �1 of A, B is true, and false otherwise.

∧,∨ are Boolean connectives

∧ corresponds to a binary function f : {0, 1}2 → {0, 1},

given by its value matrix
�

1 ∧ 1 1 ∧ 0
0 ∧ 1 0 ∧ 0

�

=

�
1 0
0 0

�

Analogously: ∨ corresponds to a binary function given by
�

1 ∨ 1 1 ∨ 0
0 ∨ 1 0 ∨ 0

�

=

�
1 1
1 0

�
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Let’s generalise: joining n sentences

A function f : {0, 1}n → {0, 1} is called n-ary Boolean
function or truth function.
Bn = set of all n-ary Boolean functions

Questions to you
How many unary (binary) Boolean functions are there?
What is the cardinality of Bn ?

Prominent members:
constants 0, 1 ∈ B0

negation ¬ ∈ B1 defined by ¬1 = 0 and ¬0 = 1
conjunction and disjunction from B2
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Common binary connections in English and in logic
(We’ll now use Boolean connectives/functions interchangeably.)

1.1 Boolean Functions and Formulas 3

The first column of the table below contains the common binary connec-

tions with examples of their instantiation in English. The second column

lists some of its traditional symbols, which also denote the corresponding

truth function, and the third its truth table. Disjunction is the inclusive
or and is to be distinguished from the exclusive disjunction. The latter

corresponds to addition modulo 2 and is therefore given the symbol +.

In Boolean circuits the functions +, ↓, ↑ are often denoted by xor, nor,
and nand ; the latter is also known as the Sheffer function. Recall our

agreement in the section Notation that the symbols &, ∨, ⇒ , and ⇔
will be used only on the metatheoretic level.

A connected sentence and its corresponding truth function need not be

denoted by the same symbol; for example, one might take ∧ for conjunc-

tion and et as the corresponding truth function. But in doing so one would

only be creating extra notation, but no new insights. The meaning of a

symbol will always be clear from the context: if α,β are sentences of a for-

mal language, then α∧β denotes their conjunction; if a, b are truth values,

then a∧ b just denotes a truth value. Occasionally, we may want to refer

to the symbols ∧ , ∨,¬, . . . themselves, setting their meaning temporarily

aside. Then we talk of the connectives or truth functors ∧ , ∨,¬, . . .

compound sentence symbol truth table
conjunction

A and B; A as well as B
∧ , &

1 0
0 0

disjunction

A or B
∨, ∨ 1 1

1 0

implication

if A then B; B provided A
→, ⇒ 1 0

1 1

equivalence

A if and only if B; A iff B
↔, ⇔ 1 0

0 1

exclusive disjunction

either A or B but not both
+

0 1
1 0

nihilation

neither A nor B
↓ 0 0

0 1

incompatibility

not at once A and B
↑ 0 1

1 1

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.
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Logical equivalence

Two sentences are logically equivalent
if their corresponding truth tables are identical.

Example: A provided B ≡ A or not B (Check for yourself!)
(Converse implication A ← B)

❀ Only few of the 16 binary Boolean functions require notation

Example 2: if A and B then C ≡ if B then C provided A

Goal
Recognise and systematically describe logical equiv. of sentences.

Use a formal language.
(Think of arithmetical formulas built from basic symbols.)
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Syntax of propositional logic

Basic symbols
propositional variables PV = {p, q, r , . . . }
logical connectives ∧,∨,¬, . . .
parentheses (, ) as a technical aid

Formulas (Intuitive, recursive definition)
1 p, q, r , . . . are formulas (atomic formulas).
2 If α, β are formulas, then so are (α ∧ β), (α ∨ β), and ¬α.

(compound formulas)

Examples:
(p ∧ (q ∨ ¬p)) is a formula
(p ∧ (q ∨ ¬p) and p q ∧ are not
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Formulas, precise set-theoretic definition

. . . more useful for proving general theorems

Definition
Set F of all formulas is the smallest (i.e., the intersection)
of all sets S of strings built from the basic symbols,
with the properties
(f1) p, q, . . . ∈ S

(f2) if α, β ∈ S, then (α ∧ β), (α ∨ β), ¬α ∈ S
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Signatures

Formulas are also called Boolean formulas:
they are obtained using the Boolean signature {∧,∨,¬}

Need further connectives? Extend your signature!

However, (α → β) and (α ↔ β) are just abbreviations:

(α → β) = (¬α ∨ β)

(α ↔ β) =
�
(α → β) ∧ (β → α)

�

(Check their truth tables.)

Extend signature by symbols that are always true (false):
verum (falsum) � (⊥)

they are either additional atomic formulas
or abbreviations ⊥ = (p ∧ ¬p), � = ¬⊥
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Parenthesis economy

Conventions similar to those in writing arithmetical terms

Outermost parentheses of a formula may be omitted (if any).
� string (p ∨ q) ∧ ¬p denotes formula

�
(p ∨ q) ∧ ¬p

�

Binding preference of binary connectives: ¬,∧,∨,→,↔,
with ¬ binding most strongly
� p ∨ q ∧ ¬p denotes p ∨ (q ∧ ¬p)

→ is right-associative
� p → q → p denotes p → (q → p)

all other binary connectives are left-associative
� p ∧ q ∧ ¬p denotes (p ∧ q) ∧ ¬p
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The principle of formula induction

Previous properties rely on intuitively clear facts, e.g.:
identical number of left and right parentheses in a formula

Such facts are usually proven via
induction on the construction of a formula.

Illustration of such an inductive proof with the above example:

use Eϕ to say that property E holds for string ϕ

E.g.: Eϕ =̂ “ϕ is a formula that has equally many ’(’ and ’)’”
E is trivially valid for atomic formulas
if Eα and Eβ, then also E(α ∧ β), E(α ∨ β), and E¬α

Hence, E is valid for all propositional formulas
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The principle of formula induction

Theorem
Let E be a property of strings that satisfies the conditions
(o) Eπ for all atomic formulas π,
(s) For all fmas α, β: if Eα and Eβ, then E(α∧β), E(α∨β), E¬α.

Then Eϕ holds for all formulas ϕ.

Proof: easy given our precise definition of formulas on Slide 12 :
Take the set S of all formulas with property E .
Thanks to (o) and (s), S has properties (f1) and (f2).
Since F is the smallest such set, F ⊆ S.

⇒ E applies to all formulas ϕ ∈ F . ✷

(In the presence of other operators, Cond. (s) has to be extended.)
Thomas Schneider Propositional logic 16
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The unique formula reconstruction property

Every compound fma. is of the form ¬α or (α∧ β) or (α∨ β),
for suitable α, β ∈ F .
Intuitively clear and easily proven by induction.
More interestingly, this decomposition is unique!
E.g., (α ∧ β) cannot at the same time be, say, (α� ∨ β�)

Theorem
Each compound formula ϕ ∈ F
is of exactly one of the forms ¬α or (α ∧ β) or (α ∨ β),
for some uniquely determined formulas α, β ∈ F .

Is not obvious. Proof: exercise
Does not rely on parentheses:
e.g., Polish notation ∧αβ, ∨αβ, ¬α
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Subformulas

Subformulas of ϕ are all substrings of ϕ that are again fmas.

Defined recursively on the construction of formulas

The set of all subformulas of a fma. ϕ, written sf ϕ,
is defined as:

sf π = {π} for atomic formulas π

sf ¬α = sf α ∪ {¬α}
sf(α ∧ β) = sf α ∪ sf β ∪ {(α ∧ β)}
sf(α ∨ β) = sf α ∪ sf β ∪ {(α ∨ β)}

⇒ ϕ ∈ sf ϕ
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The rank of a formula

Length of ϕ doesn’t always provide a useful measure
for the complexity of ϕ

Alternative measure: rank of ϕ, written rk ϕ,
determines highest number of nested connectives in ϕ

Defined recursively on the construction of formulas

rk π = 0 for atomic formulas π

rk ¬α = rk α + 1
rk(α ∧ β) = max{rk α, rk β} + 1
rk(α ∨ β) = max{rk α, rk β} + 1

(View ϕ as a tree ❀ rank =̂ depth of the tree)
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Recursive definitions and inductive proofs

Principle of defining a function f recursively on the
construction of formulas
relies on the unique formula reconstruction property.

From now on, we’ll say: f is defined by recursion on ϕ

Similarly: property E is proven by induction on ϕ
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Semantics of propositional logic

Remember: Principle of extensionality –
truth value of a sentence depends only
on truth values of its parts, not on their meaning

❀ assign truth value to every propositional variable in ϕ
and use them to calculate the truth value of ϕ

❀ every formula in n propositional variables
describes an n-ary Boolean function

(Analogy: evaluation of arithmetical terms over real numbers)
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Semantics of propositional logic

Propositional valuation is a mapping w : PV → {0, 1}

Can be understood as a mapping from atomic fmas to {0, 1}.

Every valuation w is extended to a mapping w : F → {0, 1}:

w(α ∧ β) = w(α) ∧ w(β)

w(α ∨ β) = w(α) ∨ w(β)

w¬α = ¬wα

Operators on the left-hand side: Boolean connectives

Operators on the right-hand side: Boolean functions!

Value of ϕ under w : PV → {0, 1}:
value wϕ under the extension of w to F
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Semantics under extended signature

If logical signature contains more connectives, e.g., →,
then the definition of extension must contain additional cases,
e.g., w(α → β) = wα → wβ.

For →, this is actually not necessary:
remember, (α → β) is an abbreviation of (¬α ∨ β)

⇒ w(α→β) = w(¬α∨β) = w¬α∨wβ = ¬wα∨wβ = wα → wβ

Similarly, w� = 1, w⊥ = 0 (Check for yourself)
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Formulas represent Boolean functions

Let Fn be the set of all formulas in which at most the
variables p1, . . . , pn occur.

Then the truth value wα depends only on wp1, . . . , wpn:

Theorem
For all n � 0, all α ∈ Fn , all valuations w , w

�:

if wpi = w
�
pi for all i = 1, . . . , n, then wα = w

�α

(Proof via induction on ϕ ∈ Fn.)
Now we can define: α ∈ Fn represents the function f ∈ Bn
if, for all valuations w , it holds that wα = f (wp1, . . . , wpn)

Example:
both p1 ∧ p2 and ¬(¬p1 ∨ ¬p2) represent the ∧-function
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