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Propositional logic . . .

assumes that there are two truth values (bivalence)

assumes that the truth value of a sentence depends only on
the truth value of its parts (extensionality)

connects atomic propositions using connectives that
correspond to Boolean functions

and, or, not, if-then, iff, nand, nor

uses a recursive definition to define formulas

uses the induction principle to prove properties of fma.s

enjoys the unique formula reconstruction property,
which allows to define functions over fma.s recursively

Thomas Schneider Propositional logic 2
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Semantics of Boolean formulas . . .

is given by valuations w : PV→ {0, 1},
which can be extended to w : F → {0, 1}

gives rise to the correspondence formulas ; Boolean fct.s:
α ∈ Fn represents Boolean function f ∈ Bn
if, for all valuations w , it holds that wα = f (wp1, . . . ,wpn).

Thomas Schneider Propositional logic 2
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What’s in this section?

We want to . . .

define when two formulas are logically equivalent

show that every Boolean function is representable by a formula

establish the duality principle for two-valued logic

Thomas Schneider Propositional logic 2 26
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Semantic equivalence

Formulas α, β are (logically or semantically) equivalent,
written α ≡ β,
if for all valuations w : wα = wβ.

Obviously, α ≡ β iff α, β represent the same n-ary function
for some n > 0

Example: α ≡ ¬¬α

; At most how many formulas in Fn can be pairwise
inequivalent?

(Note the difference between α ≡ β and α = β.
The latter denotes identity of the strings α, β.)

Thomas Schneider Propositional logic 2 27
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Prominent examples of equivalences

1.2 Semantic Equivalence and Normal Forms 11

1.2 Semantic Equivalence and Normal Forms

Throughout this chapter w will always denote a propositional valuation.
Formulas α, β are called (logically or semantically) equivalent, and we
write α ≡ β, when wα = wβ for all valuations w. For example α ≡ ¬¬α.
Obviously, α ≡ β iff for any n such that α, β ∈ Fn, both formulas represent
the same n-ary Boolean function. It follows that at most 22n formulas in
Fn can be pairwise inequivalent, since there are no more than 22n

n-ary
Boolean functions.

In arithmetic one writes simply s = t to express that the terms s, t rep-
resent the same function. For example, (x+y)2 = x2 +2xy +y2 expresses
the equality of values of the left- and right-hand terms for all x, y ∈ R.
This way of writing is permissible because formal syntax plays a minor role
in arithmetic. In formal logic, however, as is always the case when syntac-
tic considerations are to the fore, one uses the equality sign in messages
like α = β only for the syntactic identity of the strings α and β. There-
fore, the equivalence of formulas must be denoted differently. Clearly, for
all formulas α, β, γ the following equivalences hold:

α ∧ (β ∧γ) ≡ α∧β ∧γ, α ∨ (β ∨ γ) ≡ α ∨ β ∨ γ (associativity);
α∧β ≡ β ∧α, α ∨ β ≡ β ∨ α (commutativity);
α ∧α ≡ α, α ∨ α ≡ α (idempotency);

α∧ (α ∨ β) ≡ α, α ∨ α∧β ≡ α (absorption);
α∧ (β ∨ γ) ≡ α∧β ∨ α ∧γ, (∧ -distributivity);

α ∨ β ∧γ ≡ (α∨β)∧ (α∨γ) (∨-distributivity);
¬(α∧β) ≡ ¬α ∨ ¬β, ¬(α ∨ β) ≡ ¬α∧¬β (de Morgan rules).

Furthermore, α ∨ ¬α ≡ #, α∧¬α ≡ ⊥, and α ∧ # ≡ α ∨ ⊥ ≡ α. It is also
useful to list certain equivalences for formulas containing → , for example
the frequently used α →β ≡ ¬α ∨ β (≡ ¬(α ∧¬β), and the important

α →β →γ ≡ α∧β →γ ≡ β →α →γ.

To generalize: α1 → · · · →αn ≡ α1 ∧ · · · ∧αn−1 →αn. Further, we men-
tion the “left distributivity” of implication with respect to ∧ and ∨, namely

α →β ∧γ ≡ (α →β)∧ (α →γ); α →β ∨ γ ≡ (α →β) ∨ (α →γ).

Should the symbol → lie to the right then the following are valid:

α ∧β →γ ≡ (α →γ) ∨ (β →γ); α ∨ β →γ ≡ (α →γ)∧ (β →γ).

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

α ∧ ¬α ≡ ⊥ α ∧ > ≡ α

α ∨ ¬α ≡ > α ∨ > ≡ >

α→ β ≡ ¬α ∨ β ≡ ¬(α ∧ ¬β)

α→ β → γ ≡ α ∧ β → γ ≡ β → α→ γ

(Augustus De Morgan, 1806–1871, British math./logician, Cambridge/London)
Thomas Schneider Propositional logic 2 28
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A strange natural language example

Consider the two sentences:
1 Students and pensioners pay half price.
2 Students or pensioners pay half price.

They evidently have the same meaning – but why?

Abbreviate student, pensioners, pay half price by S,P,H.

The sentences can be put into propositions as follows.
1 α = (S → H) ∧ (P → H)
2 β = (S ∨ P)→ H

Now α ≡ β (check via truth tables)

Thomas Schneider Propositional logic 2 29
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Properties of semantic equivalence

Obviously, ≡ is an equivalence relation:
α ≡ α (reflexivity)
if α ≡ β, then β ≡ α (symmetry)
if α ≡ β and β ≡ γ, then α ≡ γ (transitivity)

Also, ≡ is a congruence relation on F :
If α ≡ α′ and β ≡ β′,
then α ∧ β ≡ α′ ∧ β′, α ∨ β ≡ α′ ∨ β′, and ¬α ≡ ¬α′

Consequence: Replacement theorem

Theorem
Let α ≡ α′ and ϕ be formulas,
and let ϕ′ be obtained from ϕ by replacing one or several
occurrences of α with α′.
Then ϕ ≡ ϕ′.

(Proof by induction on ϕ.)
Thomas Schneider Propositional logic 2 30
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Negation normal form

Consider the equivalences

¬¬α ≡ α

¬(α ∧ β) ≡ ¬α ∨ ¬β
¬(α ∨ β) ≡ ¬α ∧ ¬β

Take an arbitrary formula ϕ,
systematically apply these equivalences as replacement rules.

⇒ In the resulting formula ϕ′ ≡ ϕ,
negation only occurs in front of variables.
ϕ′ is in negation normal form (NNF)

Example:

¬(p ∧ q ∨ ¬r) ≡ ¬(p ∧ q) ∧ ¬¬r ≡ (¬p ∨ ¬q) ∧ r

Thomas Schneider Propositional logic 2 31
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Conjunctive and disjunctive normal forms

A literal is an atomic formula or a negation thereof.

A disjunctive normal form (DNF) is a disjunction
α1 ∨ · · · ∨ αn, where each αi is a conjunction of literals.

A conjunctive normal form (CNF) is a conjunction
α1 ∧ · · · ∧ αn, where each αi is a disjunction of literals.

Examples:
(p ∧ ¬q ∧ r) ∨ (q ∧ r) ∨ (¬p ∧ r) is a DNF.
p ∨ q is both a DNF and CNF.
p ∨ (q ∧ ¬p) is neither a DNF nor a CNF.

Every fma can be transformed into an equivalent DNF (CNF).

Thomas Schneider Propositional logic 2 32
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Transforming a formula into an equivalent DNF (CNF)

Idea: for arbitrary n-ary Boolean fct. f in tabular form,
compute a DNF αf (CNF βf ) representing f

Notation: p1 = p and p0 = ¬p

Then: αf =
∨

f (x1,...,xn)=1
px1

1 ∧ · · · ∧ pxn
n

βf =
∧

f (x1,...,xn)=0
p¬x1

1 ∨ · · · ∨ p¬xn
n

Example: exclusive-or function + has . . .
DNF (p ∧ ¬q) ∨ (¬q ∧ q)
CNF (p ∨ q) ∧ (¬p ∨ ¬q)

Consequence
Every ϕ ∈ F is equivalent to a DNF and to a CNF.

Thomas Schneider Propositional logic 2 33
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Functional completeness

A logical signature S is called functional complete
if every Boolean function is represented by some formula in S.

By construction on previous slide:
{¬,∧,∨} is functional complete.

Can leave out either ∧ or ∨ because of the equivalences
p ∨ q ≡ ¬(¬p ∧ ¬q) and p ∧ q ≡ ¬(¬p ∨ ¬q)

Consequence
Both {¬,∧} and {¬,∨} are functional complete.

Thomas Schneider Propositional logic 2 34
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Functional completeness

Another functional complete signature: {→, 0}
can express ¬,∧ in {→, 0}:
¬p ≡ p → 0, p ∧ q ≡ ¬(p → ¬q)

Functional complete singleton signatures: {↑}, {↓}
(see table on Slide 9 of the previous sets of slides, try yourself)

A not functional complete signature: {→,∧,∨}

For every w with wp = 1 for all p, and every ϕ in {→,∧,∨}:
wϕ = 1.

⇒ Never ¬p ≡ ϕ for any such formula ϕ
⇒ ¬ cannot be expressed in {→,∧,∨}

Thomas Schneider Propositional logic 2 35
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Duality for formulas

Given a formula ϕ, we obtain its dual formula ϕδ
by interchanging ∧ and ∨:

pδ = p (α ∧ β)δ = αδ ∨ βδ

(¬α)δ = ¬α (α ∨ β)δ = αδ ∧ βδ

Obviously:
α is a DNF⇒ αδ is a CNF
α is a CNF⇒ αδ is a DNF

Thomas Schneider Propositional logic 2 36
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Duality for Boolean functions

Given a Boolean fct. f ∈ Bn, we obtain its dual function f δ
by negating arguments and function value: (cf. de Morgan)

f δ(x1, . . . , xn) = ¬f (¬x1, . . . ,¬xn)

Obviously, (f δ)δ = f .
Observation:

∧δ = ∨ ↔δ = + ↓δ = ↑ ¬δ = ¬
∨δ = ∧ +δ =↔ ↑δ = ↓

That is, ¬ is self-dual.
As an aside:

There are no essentially binary self-dual Boolean functions.
Dedekind discovered the following ternary self-dual function.

d3 : (x , y , z) 7→ x ∧ y ∨ x ∧ z ∨ y ∧ z

(Richard Dedekind, 1831–1916, German mathematician, BS, GÖ, B, Zürich)
Thomas Schneider Propositional logic 2 37
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The duality principle for two-valued logic

Theorem
If α represents the function f ,
then αδ represents the dual function f δ.

(Proof by induction on α.)

Consequences:

We know that↔ is represented by p ∧ q ∨ ¬p ∧ ¬q.
Hence + is represented by (p ∨ q) ∧ (¬p ∨ ¬q).

If a canonical DNF α represents f ∈ Bn,
then the canonical CNF αδ represents f δ.

Since Dedekind’s d3 is self-dual, it holds that:

p ∧ q ∨ p ∧ r ∨ q ∧ r ≡ (p ∨ q) ∧ (p ∨ r) ∧ (q ∨ r)

Thomas Schneider Propositional logic 2 38
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What’s in this section?

We want to . . .

define when a formula is “always true” (a tautology)
or “can be true” (is satisfiable)

look at the decision problem for tautologies/satisfiablity

define when a set of fmas is a logical consequence of another

examine properties of logical consequence

Thomas Schneider Propositional logic 2 40
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Satisfiability and models

instead of wα = 1, write w |= α, read w satisfies α

for a set X of fmas, write w |= X for “w |= α for all α ∈ X”
read w is a (propositional) model for X

α is satisfiable if (w |= α) for some w (analogously for X )

satisfaction relation |= evidently has the following properties:

w |= p ⇔ wp = 1 (p ∈ PV)
w |= ¬α ⇔ w 6|= α

w |= α ∧ β ⇔ w |= α and w |= β

w |= α ∨ β ⇔ w |= α or w |= β

(and can again be extended to other connectives, e.g.,→)

Thomas Schneider Propositional logic 2 41
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Tautologies

α is logically valid or a tautology, written |= α,
if w |= α for all valuations w

α is a contradiction if α is not satisfiable, i.e.,
if w 6|= α for all valuations w

Examples for tautologies
p ∨ ¬p
even α ∨ ¬α for any formula α
law of excluded middle (tertium non datur)

Examples for contradictions
α ∧ ¬α
α↔ ¬α

Thomas Schneider Propositional logic 2 6 · 9
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Classical tautologies in→

18 1 Propositional Logic

other hand, α∧¬α and α ↔ ¬α are always contradictions. The following
tautologies in → are mentioned in many textbooks on logic. Remember
our agreement about association to the right in formulas in which →
repeatedly occurs.

p →p (self-implication),
(p →q) → (q →r) → (p →r) (chain rule),
(p →q → r) → (q →p → r) (exchange of premises),
p →q →p (premise charge),
(p →q → r) → (p →q) → (p → r) (Frege’s formula),
((p → q) →p) →p (Peirce’s formula).

It will later turn out that all tautologies in → alone are derivable (in a
sense still to be explained) from the last three formulas.

Clearly, it is decidable whether a formula α is a tautology, in that one
tries out the valuations of the variables of α. Unfortunately, no essentially
more efficient method is known; such a method exists only for formulas
of a certain form. We will have a somewhat closer look at this problem
in 4.3. Various questions such as checking the equivalence of formulas
can be reduced to a decision about whether a formula is a tautology. For
notice the obvious equivalence of α ≡ β and ! α ↔ β.

Basic in propositional logic is the following

Definition. α is a logical consequence of X, written X ! α, if w ! α for
every model w of X. In short, w ! X ⇒ w ! α, for all valuations w.

While we use ! both as the symbol for logical consequence (which is a
relation between sets of formulas X and formulas α) and the satisfiability
property, it will always be clear from the context what ! actually means.
Evidently, α is a tautology iff ∅ ! α, so that ! α can be regarded as an
abbreviation for ∅ ! α.

In this book, X ! α, β will always mean ‘X ! α and X ! β’. More
generally, X ! Y is always to mean ‘X ! β for all β ∈ Y ’. We also write
throughout α1, . . . , αn ! β in place of {α1, . . . , αn} ! β, and more briefly,
X, α ! β in place of X ∪ {α} ! β.
Examples of logical consequence. (a) α, β ! α ∧β and α∧β ! α, β.
This is evident from the truth table of ∧ . (b) α, α →β ! β, because
1 →x = 1 ⇒ x = 1 according to the truth table of → .

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

Later: all tautologies in→ derivable from the last 3 fma.s

Thomas Schneider Propositional logic 2 43
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Decidability of the tautology and satisfiability problems

Decidable problems:
Given α, is α a tautology?
Given α, is α satisfiable?

Decision procedure for satisfiability
input α
for every valuation w of the variables of α {

if (w |= α) /* polynomial-time subroutine */
then return “satisfiable”

}
return “unsatisfiable”

Deterministic, exponential-time procedure

Analogous procedure for tautology problem

Thomas Schneider Propositional logic 2 44
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Complexity of tautology and satisfiability problems

Nondeterministic decision procedure for satisfiability
input α
guess valuation w of the variables of α
if (w |= α)

then return 1
else return 0

Nondeterministic, polynomial-time procedure

Analogous procedure for tautology problem

⇒ SAT ∈ NP, TAUT ∈ coNP

SAT (TAUT) is NP-hard (coNP-hard) [Cook, Levin 1971–3]

Thomas Schneider Propositional logic 2 45
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Reduction to the tautology problem

Various questions such as checking the equivalence of formulas
can be reduced to deciding tautologies:

e.g., α ≡ β iff |= α↔ β

Decision procedure for equivalence using tautology test
input α, β
if α↔ β is a tautology

then return “equivalent”
else return “not equivalent”

Thomas Schneider Propositional logic 2 46
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Logical consequence

Let α be a formula and X a set of formulas.

α is a logical consequence of X , written X |= α,
if every model of X satisfies α,
i.e., w |= X implies w |= α for all valuations w

Overload the symbol |= :
meaning “consequence” or “satisfies” or “tautology”
(particular meaning is always clear from context)

Clear: α is a tautology iff ∅ |= α
; “|= α” can be seen as abbreviation of “∅ |= α”

Thomas Schneider Propositional logic 2 47
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Some convenience notation

X |= α, β means “X |= α and X |= β”

X |= Y means “X |= α for all α ∈ Y ”

α1, . . . , αn |= β means “{α1, . . . , αn} |= β”

X , α |= β means “X ∪ {α} |= β”

Thomas Schneider Propositional logic 2 48
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Examples of logical consequence

α, β |= α ∧ β (consult truth table of ∧)

α ∧ β |= α, β (ditto)

α, α→ β |= β (truth table: if 1→ x = 1, then x = 1)
modus ponens

X |= ⊥, then X |= α for each α
(because X |= ⊥ means that X has no model)

If X , α |= β and X ,¬α |= β, then X |= β

(Take w |= X . If w |= α, conclude w |= β from first assumption.
If w 6|= α, i.e., w |= ¬α, conclude w |= β from second assumption.)
“proof by case distinction”

Thomas Schneider Propositional logic 2 49
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General properties of logical consequence

Reflexivity
If α ∈ X , then X |= α.

Monotonicity
If X |= α and X ⊆ X ′, then X ′ |= α.

Transitivity
If X |= Y and Y |= α, then X |= α.

Substitution invariance
If X |= α, then Xσ |= ασ, where

σ is a substitution, i.e., a mapping σ : PV→ F
σ is extended to formulas naturally:
ασ = result of replacing all variables p in α with σ(p)
Xσ is “X with σ applied to all fmas in X”
Example: from p ∨ ¬p being a tautology,
we can infer that α ∨ ¬α is a taut., for every α

Thomas Schneider Propositional logic 2 50
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More properties of logical consequence

|= shares the previous 4 properties with almost all classical and
non-classical (many-valued) propositional consequence relations.

Special properties of |=:

Finitarity
If X |= α, then X0 |= α for some finite subset X0 ⊆ X .

Deduction theorem
If X , α |= β, then X |= α→ β

makes it easy to prove tautologies:
|= p → q → p because p |= q → p because p, q |= p (refl.)

Thomas Schneider Propositional logic 2 51
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What’s in this section?

We want to . . .

find a means to “compute” |= syntactically:

define a derivability relation ` by means of a calculus
that operates solely on the structure of formulas

prove that ` and |= are identical

The ` calculus is of the Gentzen type

(Gerhard Gentzen, 1909–1945, German mathematician/logician, GÖ, Prague)

Thomas Schneider Propositional logic 2 53
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Basic notation

Again, use α for formulas and X for sets thereof

Write X ` α to denote: “α is derivable (provable) from X”

Gentzen called the pairs (X , α) in the `-relation sequents

sequent calculus consists of 6 basic rules (for {∧,¬})
of the form

premise
conclusion

Thomas Schneider Propositional logic 2 54
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The basic rules

22 1 Propositional Logic

1.4 A Calculus of Natural Deduction

We will now define a derivability relation ! by means of a calculus op-
erating solely with some structural rules. ! turns out to be identical to
the consequence relation !. The calculus ! is of the so-called Gentzen
type and its rules are given with respect to pairs (X, α) of formulas X

and formulas α. Another calculus for !, of the Hilbert type, will be con-
sidered in 1.6. In distinction to [Ge], we do not require that X be finite;
our particular goals here make such a restriction dispensable. If ! applies
to the pair (X, α) then we write X ! α and say that α is derivable or
provable from X (made precise below); otherwise we write X ! α.

Following [Kl1], Gentzen’s name for (X, α), Sequenz, is translated as
sequent. The calculus is formulated in terms of ∧ , ¬ and encompasses the
six rules below, called the basic rules. How to operate with these rules will
be explained afterwards. The choice of { ∧ , ¬} as the logical signature is
a matter of convenience and justified by its functional completeness. The
other standard connectives are introduced by the definitions

α ∨ β := ¬(¬α∧¬β), α →β := ¬(α∧¬β), α ↔ β := (α →β)∧ (β →α).

#, ⊥ are defined as on page 5. Of course, one could choose any other
functional complete signature and adapt the basic rules correspondingly.
But it should be observed that a complete calculus in ¬, ∧ , ∨, → , say,
must also include basic rules concerning ∨ and → , which makes induction
arguments on the basic rules of the calculus more lengthy.

Each of the basic rules below has certain premises and a conclusion.
Only (IS) has no premises. It allows the derivation of all sequents α ! α.
These are called the initial sequents, because each derivation must start
with these. (MR), the monotonicity rule, could be weakened. It becomes
even provable if all pairs (X, α) with α ∈ X are called initial sequents.

(IS)
α ! α

(initial sequent) (MR)
X ! α

X ′ ! α
(X ′ ⊇ X),

(∧1)
X ! α, β

X ! α∧β
(∧2)

X ! α ∧β

X ! α, β

(¬1)
X ! α,¬α

X ! β
(¬2)

X, α ! β X, ¬α ! β

X ! β

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

use convenience notation as for |=, see Slide 48

(IS) has no premises; initial sequences start derivations
(MR): monotonicity rule
(∧1), (¬1), (¬2) have two premises;
(∧2) has two conclusions ; is actually 2 rules

Thomas Schneider Propositional logic 2 55
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Using the calculus

derivation = finite sequence S0, . . . , Sn of sequents
where every Si is either

an initial sequent or
is obtained by applying some basic rule to elements from
S0, . . . , Si−1

α is derivable (or provable) from X , written X ` α,
if there is a derivation with Sn = X ` α.

Thomas Schneider Propositional logic 2 56
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Examples

1 α ` α (IS)
2 α, β ` α (MR) 1
3 β ` β (IS)
4 α, β ` β (MR) 3
5 α, β ` α ∧ β (∧1) 2, 4 ⇒ {α, β} ` α ∧ β

1 p ∧ ¬p ` p ∧ ¬p (IS)
2 p ∧ ¬p ` p (∧2) 1
3 p ∧ ¬p ` ¬p (∧2) 1
4 p ∧ ¬p ` ¬(p ∧ ¬p) (¬1) 2, 3
5 ¬(p ∧ ¬p) ` ¬(p ∧ ¬p) (IS)
6 ∅ ` ¬(p ∧ ¬p) (¬2) 4, 5 ⇒ ` >

Thomas Schneider Propositional logic 2 57
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. . .

. . .
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Summary and outlook

. . .
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