From syllogism to common sense: a tour through the logical landscape

Propositional logic 2

Mehul Bhatt Oliver Kutz Thomas Schneider

1 December 2011

And now ...

- What happened so far?
- 2 Semantic equivalence and normal forms
- Tautologies and logical consequence
- 4 A calculus of natural deduction
- 5 Application of the compactness theorem
- 6 Hilbert calculi

Propositional logic . . .

- assumes that there are two truth values (bivalence)
- assumes that the truth value of a sentence depends only on the truth value of its parts (extensionality)
- connects atomic propositions using connectives that correspond to Boolean functions
 and, or, not, if-then, iff, nand, nor
- uses a recursive definition to define formulas
- uses the induction principle to prove properties of fma.s
- enjoys the unique formula reconstruction property, which allows to define functions over fma.s recursively

- is given by valuations $w : PV \rightarrow \{0, 1\}$, which can be extended to $w : \mathcal{F} \rightarrow \{0, 1\}$
- gives rise to the correspondence formulas \sim Boolean fct.s: $\alpha \in \mathcal{F}_n$ represents Boolean function $f \in \mathcal{B}_n$ if, for all valuations w, it holds that $w\alpha = f(wp_1, \dots, wp_n)$.

And now ...

Cutback

- 1 What happened so far?
- 2 Semantic equivalence and normal forms
- Tautologies and logical consequence
- 4 A calculus of natural deduction
- 5 Application of the compactness theorem
- 6 Hilbert calcul

Thomas Schneider Propositional logic 2

25

What's in this section?

Cutback

We want to ...

- define when two formulas are logically equivalent
- show that every Boolean function is representable by a formula
- establish the duality principle for two-valued logic

Hilbert calculi

Semantic equivalence

- Formulas α, β are (logically or semantically) equivalent, written $\alpha \equiv \beta$, if for all valuations w: $w\alpha = w\beta$.
- Obviously, $\alpha \equiv \beta$ iff α, β represent the same *n*-ary function for some $n \ge 0$
- Example: $\alpha \equiv \neg \neg \alpha$
- \rightarrow At most how many formulas in \mathcal{F}_n can be pairwise inequivalent?

(Note the difference between $\alpha \equiv \beta$ and $\alpha = \beta$. The latter denotes identity of the strings α , β .)

Hilbert calculi

Prominent examples of equivalences

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

$$\alpha \land \neg \alpha \equiv \bot \qquad \qquad \alpha \land \top \equiv \alpha$$

$$\alpha \lor \neg \alpha \equiv \top \qquad \qquad \alpha \lor \top \equiv \top$$

$$\alpha \to \beta \equiv \neg \alpha \lor \beta \equiv \neg(\alpha \land \neg \beta)$$

$$\alpha \to \beta \to \gamma \equiv \alpha \land \beta \to \gamma \equiv \beta \to \alpha \to \gamma$$

(Augustus De Morgan, 1806–1871, British math./logician, Cambridge/London)

Cutback

Hilbert calculi

A strange natural language example

Consider the two sentences:

- Students and pensioners pay half price.
- Students or pensioners pay half price.

They evidently have the same meaning – but why?

- Abbreviate student, pensioners, pay half price by S, P, H.
- The sentences can be put into propositions as follows.

• Now $\alpha \equiv \beta$ (check via truth tables)

Properties of semantic equivalence

• Obviously, \equiv is an equivalence relation:

```
\begin{array}{ll} \alpha \equiv \alpha & \text{(reflexivity)} \\ \text{if } \alpha \equiv \beta \text{, then } \beta \equiv \alpha & \text{(symmetry)} \\ \text{if } \alpha \equiv \beta \text{ and } \beta \equiv \gamma \text{, then } \alpha \equiv \gamma & \text{(transitivity)} \end{array}
```

• Also, \equiv is a congruence relation on \mathcal{F} : If $\alpha \equiv \alpha'$ and $\beta \equiv \beta'$, then $\alpha \wedge \beta \equiv \alpha' \wedge \beta'$, $\alpha \vee \beta \equiv \alpha' \vee \beta'$, and $\neg \alpha \equiv \neg \alpha'$

Consequence: Replacement theorem

Theorem

Cutback

Let $\alpha \equiv \alpha'$ and φ be formulas, and let φ' be obtained from φ by replacing one or several occurrences of α with α' .

Then $\varphi \equiv \varphi'$.

(Proof by induction on φ .)

Negation normal form

Cutback

• Consider the equivalences

$$\neg \neg \alpha \equiv \alpha$$
$$\neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$$
$$\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$$

- ullet Take an arbitrary formula φ , systematically apply these equivalences as replacement rules.
- \Rightarrow In the resulting formula $\varphi' \equiv \varphi$, negation only occurs in front of variables. φ' is in negation normal form (NNF)

Example:

$$\neg (p \land q \lor \neg r) \equiv \neg (p \land q) \land \neg \neg r \equiv (\neg p \lor \neg q) \land r$$

Cutback

Conjunctive and disjunctive normal forms

- A literal is an atomic formula or a negation thereof.
- A disjunctive normal form (DNF) is a disjunction $\alpha_1 \vee \cdots \vee \alpha_n$, where each α_i is a conjunction of literals.
- A conjunctive normal form (CNF) is a conjunction $\alpha_1 \wedge \cdots \wedge \alpha_n$, where each α_i is a disjunction of literals.
- Examples:
 - $(p \land \neg q \land r) \lor (q \land r) \lor (\neg p \land r)$ is a DNF.
 - $p \lor q$ is both a DNF and CNF.
 - $p \lor (q \land \neg p)$ is neither a DNF nor a CNF.
- Every fma can be transformed into an equivalent DNF (CNF).

Cutback

Hilbert calculi

Transforming a formula into an equivalent DNF (CNF)

Natural deduction

- Idea: for arbitrary *n*-ary Boolean fct. *f* in tabular form, compute a DNF α_f (CNF β_f) representing f
- Notation: $p^1 = p$ and $p^0 = \neg p$

• Then:
$$\alpha_f = \bigvee_{f(x_1, \dots, x_n) = 1} p_1^{x_1} \wedge \dots \wedge p_n^{x_n}$$

$$\beta_f = \bigwedge_{f(x_1,\dots,x_n)=0} p_1^{\neg x_1} \vee \dots \vee p_n^{\neg x_n}$$

- Example: exclusive-or function + has . . .
 - DNF $(p \land \neg q) \lor (\neg q \land q)$
 - CNF $(p \lor q) \land (\neg p \lor \neg q)$

Consequence

Every $\varphi \in \mathcal{F}$ is equivalent to a DNF and to a CNF.

Functional completeness

Cutback

- A logical signature S is called functional complete
 if every Boolean function is represented by some formula in S.
- By construction on previous slide: {¬, ∧, ∨} is functional complete.
- Can leave out either \wedge or \vee because of the equivalences $p \vee q \equiv \neg(\neg p \wedge \neg q)$ and $p \wedge q \equiv \neg(\neg p \vee \neg q)$

Consequence

Both $\{\neg, \land\}$ and $\{\neg, \lor\}$ are functional complete.

Cutback

Functional completeness

- Another functional complete signature: $\{\rightarrow, 0\}$ can express \neg , \land in $\{\rightarrow, 0\}$:
 - $\neg p \equiv p \to 0, \quad p \land q \equiv \neg(p \to \neg q)$
- Functional complete singleton signatures: {↑}, {↓}
 (see table on Slide 9 of the previous sets of slides, try yourself)
- A *not* functional complete signature: $\{\rightarrow, \land, \lor\}$
 - For every w with wp = 1 for all p, and every φ in $\{\rightarrow, \land, \lor\}$: $w\varphi = 1$.
 - \Rightarrow Never $\neg p \equiv \varphi$ for any such formula φ
 - $\Rightarrow \neg$ cannot be expressed in $\{\rightarrow, \land, \lor\}$

Duality for formulas

Cutback

• Given a formula φ , we obtain its dual formula φ^{δ} by interchanging \wedge and \vee :

$$p^{\delta} = p \qquad (\alpha \wedge \beta)^{\delta} = \alpha^{\delta} \vee \beta^{\delta}$$
$$(\neg \alpha)^{\delta} = \neg \alpha \qquad (\alpha \vee \beta)^{\delta} = \alpha^{\delta} \wedge \beta^{\delta}$$

Obviously:

$$\alpha$$
 is a DNF $\Rightarrow \alpha^{\delta}$ is a CNF α is a CNF $\Rightarrow \alpha^{\delta}$ is a DNF

Cutback

Hilbert calculi

Duality for Boolean functions

• Given a Boolean fct. $f \in \mathcal{B}_n$, we obtain its dual function f^{δ} by negating arguments and function value: (cf. de Morgan)

$$f^{\delta}(x_1,\ldots,x_n) = \neg f(\neg x_1,\ldots,\neg x_n)$$

- Obviously, $(f^{\delta})^{\delta} = f$.
- Observation:

That is, \neg is self-dual.

- As an aside:
 - There are no essentially binary self-dual Boolean functions.
 - Dedekind discovered the following ternary self-dual function.

$$d_3:(x,y,z)\mapsto x\wedge y\vee x\wedge z\vee y\wedge z$$

(Richard Dedekind, 1831–1916, German mathematician, BS, GÖ, B, Zürich)

Theorem

Cutback

If α represents the function f, then α^{δ} represents the dual function f^{δ} .

(Proof by induction on α .)

Consequences:

- We know that \leftrightarrow is represented by $p \land q \lor \neg p \land \neg q$. Hence + is represented by $(p \lor q) \land (\neg p \lor \neg q)$.
- If a canonical DNF α represents $f \in \mathcal{B}_n$, then the canonical CNF α^{δ} represents f^{δ} .
- Since Dedekind's d₃ is self-dual, it holds that:

$$p \wedge q \vee p \wedge r \vee q \wedge r \equiv (p \vee q) \wedge (p \vee r) \wedge (q \vee r)$$

And now ...

- 1 What happened so far?
- 2 Semantic equivalence and normal forms
- 3 Tautologies and logical consequence
- 4 A calculus of natural deduction
- 5 Application of the compactness theorem
- 6 Hilbert calculi

What's in this section?

We want to . . .

- define when a formula is "always true" (a tautology) or "can be true" (is satisfiable)
- look at the decision problem for tautologies/satisfiablity
- define when a set of fmas is a logical consequence of another
- examine properties of logical consequence

Hilbert calculi

Satisfiability and models

- instead of $w\alpha = 1$, write $w \models \alpha$, read w satisfies α
- for a set X of fmas, write $w \models X$ for " $w \models \alpha$ for all $\alpha \in X$ " read w is a (propositional) model for X
- α is satisfiable if $(w \models \alpha)$ for some w (analogously for X)
- satisfaction relation \models evidently has the following properties:

$$w \models p \qquad \Leftrightarrow wp = 1 \quad (p \in PV)$$
 $w \models \neg \alpha \qquad \Leftrightarrow w \not\models \alpha$
 $w \models \alpha \land \beta \iff w \models \alpha \text{ and } w \models \beta$
 $w \models \alpha \lor \beta \iff w \models \alpha \text{ or } w \models \beta$

(and can again be extended to other connectives, e.g., \rightarrow)

Tautologies

- α is logically valid or a tautology, written $\models \alpha$, if $w \models \alpha$ for all valuations w
- α is a contradiction if α is not satisfiable, i.e., if $w \not\models \alpha$ for all valuations w
- Examples for tautologies
 - p ∨ ¬p
 - even $\alpha \vee \neg \alpha$ for any formula α law of excluded middle (tertium non datur)
- Examples for contradictions
 - $\bullet \alpha \wedge \neg \alpha$
 - $\bullet \quad \alpha \leftrightarrow \neg \alpha$

Classical tautologies in \rightarrow

Cutback

$$\begin{array}{ll} p \to p & \text{(self-implication)}, \\ (p \to q) \to (q \to r) \to (p \to r) & \text{(chain rule)}, \\ (p \to q \to r) \to (q \to p \to r) & \text{(exchange of premises)}, \\ p \to q \to p & \text{(premise charge)}, \\ (p \to q \to r) \to (p \to q) \to (p \to r) & \text{(Frege's formula)}, \\ ((p \to q) \to p) \to p & \text{(Peirce's formula)}. \end{array}$$

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

Later: all tautologies in \rightarrow derivable from the last 3 fma.s

Thomas Schneider

Hilbert calculi

Decidability of the tautology and satisfiability problems

Decidable problems:

Cutback

- Given α , is α a tautology?
- Given α , is α satisfiable?

```
Decision procedure for satisfiability input \alpha for every valuation w of the variables of \alpha { if (w \models \alpha) /* polynomial-time subroutine */ then return "satisfiable" } return "unsatisfiable"
```

- Deterministic, exponential-time procedure
- Analogous procedure for tautology problem

Thomas Schneider Propositional logic 2 44

Complexity of tautology and satisfiability problems

Nondeterministic decision procedure for satisfiability

```
input \alpha
guess valuation w of the variables of \alpha
if (w \models \alpha)
   then return 1
   else return 0
```

- Nondeterministic, polynomial-time procedure
- Analogous procedure for tautology problem
- \Rightarrow SAT \in NP. TAUT \in coNP
 - SAT (TAUT) is NP-hard (coNP-hard) [Cook, Levin 1971–3]

Hilbert calculi

Reduction to the tautology problem

Semantic equiv.

Various questions such as checking the equivalence of formulas can be reduced to deciding tautologies:

Natural deduction

e.g.,
$$\alpha \equiv \beta$$
 iff $\models \alpha \leftrightarrow \beta$

Decision procedure for equivalence using tautology test

```
input \alpha, \beta
if \alpha \leftrightarrow \beta is a tautology
then return "equivalent"
else return "not equivalent"
```

Hilbert calculi

Logical consequence

Cutback

Let α be a formula and X a set of formulas.

- α is a logical consequence of X, written $X \models \alpha$, if every model of X satisfies α , i.e., $w \models X$ implies $w \models \alpha$ for all valuations w
- Overload the symbol ⊨: meaning "consequence" or "satisfies" or "tautology" (particular meaning is always clear from context)
- Clear: α is a tautology iff $\emptyset \models \alpha$ \sim " $\models \alpha$ " can be seen as abbreviation of " $\emptyset \models \alpha$ "

Some convenience notation

Cutback

- $X \models \alpha, \beta$ means " $X \models \alpha$ and $X \models \beta$ "
- $X \models Y$ means " $X \models \alpha$ for all $\alpha \in Y$ "
- $\alpha_1, \ldots, \alpha_n \models \beta$ means " $\{\alpha_1, \ldots, \alpha_n\} \models \beta$ "
- $X, \alpha \models \beta$ means " $X \cup \{\alpha\} \models \beta$ "

Hilbert calculi

Examples of logical consequence

- $\alpha, \beta \models \alpha \land \beta$ (consult truth table of \land)
- $\alpha \wedge \beta \models \alpha, \beta$ (ditto)
- α , $\alpha \to \beta \models \beta$ (truth table: if $1 \to x = 1$, then x = 1) modus ponens
- $X \models \bot$, then $X \models \alpha$ for each α (because $X \models \bot$ means that X has no model)
- If $X, \alpha \models \beta$ and $X, \neg \alpha \models \beta$, then $X \models \beta$ (Take $w \models X$. If $w \models \alpha$, conclude $w \models \beta$ from first assumption. If $w \not\models \alpha$, i.e., $w \models \neg \alpha$, conclude $w \models \beta$ from second assumption.) "proof by case distinction"

General properties of logical consequence

Reflexivity

Cutback

If $\alpha \in X$, then $X \models \alpha$.

Monotonicity

If $X \models \alpha$ and $X \subseteq X'$, then $X' \models \alpha$.

Transitivity

If $X \models Y$ and $Y \models \alpha$, then $X \models \alpha$.

Substitution invariance

If $X \models \alpha$, then $X^{\sigma} \models \alpha^{\sigma}$, where

- \bullet σ is a substitution, i.e., a mapping $\sigma: PV \to \mathcal{F}$
- σ is extended to formulas naturally: α^{σ} = result of replacing all variables p in α with $\sigma(p)$
- X^{σ} is "X with σ applied to all fmas in X"
- Example: from $p \lor \neg p$ being a tautology, we can infer that $\alpha \lor \neg \alpha$ is a taut., for every α

Hilbert calculi

Cutback

More properties of logical consequence

⊨ shares the previous 4 properties with almost all classical and non-classical (many-valued) propositional consequence relations.

Natural deduction

Special properties of \models :

Finitarity

If $X \models \alpha$, then $X_0 \models \alpha$ for some finite subset $X_0 \subseteq X$.

Deduction theorem

If
$$X, \alpha \models \beta$$
, then $X \models \alpha \rightarrow \beta$

makes it easy to prove tautologies:

$$\models p \rightarrow q \rightarrow p$$
 because $p \models q \rightarrow p$ because $p, q \models p$ (refl.)

Thomas Schneider

And now ...

- 1 What happened so far?
- 2 Semantic equivalence and normal forms
- Tautologies and logical consequence
- 4 A calculus of natural deduction
- 5 Application of the compactness theorem
- 6 Hilbert calculi

What's in this section?

We want to . . .

Cutback

- find a means to "compute" |= syntactically:
- define a derivability relation ⊢ by means of a calculus that operates solely on the structure of formulas
- prove that ⊢ and ⊨ are identical

The \vdash calculus is of the Gentzen type

(Gerhard Gentzen, 1909–1945, German mathematician/logician, GÖ, Prague)

Thomas Schneider

Basic notation

Cutback

- ullet Again, use α for formulas and X for sets thereof
- Write $X \vdash \alpha$ to denote: " α is derivable (provable) from X"
- Gentzen called the pairs (X, α) in the \vdash -relation sequents
- sequent calculus consists of 6 basic rules (for $\{\land, \neg\}$) of the form

premise conclusion

The basic rules

Cutback

(IS)
$$\frac{X \vdash \alpha}{\alpha \vdash \alpha}$$
 (initial sequent) (MR) $\frac{X \vdash \alpha}{X' \vdash \alpha}$ ($X' \supseteq X$),
($\land 1$) $\frac{X \vdash \alpha, \beta}{X \vdash \alpha \land \beta}$ ($\land 2$) $\frac{X \vdash \alpha \land \beta}{X \vdash \alpha, \beta}$
($\lnot 1$) $\frac{X \vdash \alpha, \lnot \alpha}{X \vdash \beta}$ ($\lnot 2$) $\frac{X, \alpha \vdash \beta \mid X, \lnot \alpha \vdash \beta}{X \vdash \beta}$

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

- use convenience notation as for ⊨, see Slide ▶⁴
- (IS) has no premises; initial sequences start derivations
- (MR): monotonicity rule
- (∧1), (¬1), (¬2) have two premises;
 (∧2) has two conclusions → is actually 2 rules

Thomas Schneider

Hilbert calculi

Using the calculus

- derivation = finite sequence S_0, \ldots, S_n of sequents where every S_i is either
 - an initial sequent or
 - is obtained by applying some basic rule to elements from S_0, \ldots, S_{i-1}
- α is derivable (or provable) from X, written $X \vdash \alpha$, if there is a derivation with $S_n = X \vdash \alpha$.

Examples

Cutback

Thomas Schneider

Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi

. . .

. . .

And now ...

Cutback

- 1 What happened so far?
- 2 Semantic equivalence and normal forms
- 3 Tautologies and logical consequence
- 4 A calculus of natural deduction
- 5 Application of the compactness theorem
- 6 Hilbert calcul

Thomas Schneider Propositional logic 2

59

Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi

. . .

. . .

And now ...

- 1 What happened so far?
- 2 Semantic equivalence and normal forms
- 3 Tautologies and logical consequence
- 4 A calculus of natural deduction
- 5 Application of the compactness theorem
- 6 Hilbert calculi

Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi

. . .

. . .

62

- 1 What happened so far?
- 2 Semantic equivalence and normal forms
- 3 Tautologies and logical consequence
- 4 A calculus of natural deduction
- 5 Application of the compactness theorem
- 6 Hilbert calculi

Summary and outlook

. . .