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Cutback

Propositional logic . ..

@ assumes that there are two truth values (bivalence)

@ assumes that the truth value of a sentence depends only on
the truth value of its parts  (extensionality)

@ connects atomic propositions using connectives that
correspond to Boolean functions

and, or, not, if-then, iff, nand, nor
@ uses a recursive definition to define formulas
@ uses the induction principle to prove properties of fma.s

@ enjoys the unique formula reconstruction property,
which allows to define functions over fma.s recursively
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Cutback

Semantics of Boolean formulas . ..

@ is given by valuations w : PV — {0, 1},
which can be extended to w : F — {0, 1}

@ gives rise to the correspondence formulas ~» Boolean fct.s:

a € F, represents Boolean function f € B,
if, for all valuations w, it holds that wae = f(wps, ..., wpp).
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Semantic equiv.

What's in this section?

We want to ...
@ define when two formulas are logically equivalent
@ show that every Boolean function is representable by a formula

@ establish the duality principle for two-valued logic

Thomas Schneider Propositional logic 2

26



Semantic equiv.

Semantic equivalence

e Formulas «, 3 are (logically or semantically) equivalent,
written o = [3,
if for all valuations w: wa = wp.

@ Obviously, a = 3 iff a, B represent the same n-ary function
for some n >0

e Example: a = =«

~» At most how many formulas in F,, can be pairwise
inequivalent?

(Note the difference between @ = 3 and o = 5.
The latter denotes identity of the strings «, 3.)
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Cutback Semantic equiv. Tautologies etc Natural deduction Compactness Hilbert calculi

Prominent examples of equivalences

ABAY) = anfry, av(Bvy) =av vy (associativity);
anB = Baa, avfp = pfva (commutativity);
ara = q, ava =« (idempotency);

an(avp) = q, avanf = « (absorption);

an(Bvy) = anfvany, ( A-distributivity);
av fBay = (avB)a(avy) (v-distributivity);
=(anfB) = ~a v -, —(av p) = mar—p (de Morgan rules).

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

alN-a=_1 aNT =«
aV-a=T aVT=T

a—>p = ~aVp = —|(Oz/\—|,3)

a—=>p—=7=aANf=>+y ==>a—7y

(Augustus De Morgan, 1806-1871, British math./logician, Cambridge/London)
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Semantic equiv.

A strange natural language example

Consider the two sentences:
@ Students and pensioners pay half price.
@ Students or pensioners pay half price.

They evidently have the same meaning — but why?

o Abbreviate student, pensioners, pay half price by S, P, H.

@ The sentences can be put into propositions as follows.
Qa=(S—>HAP—H
Q@ 3=(SvP)—H

e Nowa =g (check via truth tables)
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Semantic equiv.

Properties of semantic equivalence

@ Obviously, = is an equivalence relation:
a=a (reflexivity)
if « =, then 8 =« (symmetry)

if a = and 8 =, then a =~ (transitivity)

@ Also, = is a congruence relation on F:
Ifa =o' and 8 =/,
thena A=’ ANB, aV=d VR, and ma = —a’

@ Consequence: Replacement theorem

Theorem

Let o = o’ and ¢ be formulas,
and let ¢’ be obtained from ¢ by replacing one or several
occurrences of a with o’.

Then p = ¢’

(Proof by induction on ¢.)
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Semantic equiv.

Negation normal form

o Consider the equivalences

o= o
ﬁ(Oé/\ﬁ)E—!Oé\/—!ﬁ

ﬂ(aVﬂ)E—!a/\—!ﬂ

@ Take an arbitrary formula ¢,
systematically apply these equivalences as replacement rules.

= In the resulting formula ¢’ = ¢,

negation only occurs in front of variables.

¢’ is in negation normal form (NNF)

Example:

“(pAgV-r) = a(pAg)A—-r = (mpV ) AT
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Semantic equiv.

Conjunctive and disjunctive normal forms

@ A literal is an atomic formula or a negation thereof.

A disjunctive normal form (DNF) is a disjunction
a1V« -+ V ap, where each «; is a conjunction of literals.

@ A conjunctive normal form (CNF) is a conjunction
ai A - -+ A ap, where each «; is a disjunction of literals.

@ Examples:
o (pA—=gATr)V(gATr)V(—pAr)isaDNF.
e pV qis both a DNF and CNF.
e pV (g A —p) is neither a DNF nor a CNF.

e Every fma can be transformed into an equivalent DNF (CNF).

Thomas Schneider Propositional logic 2
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Semantic equiv.

Transforming a formula into an equivalent DNF (CNF)

@ ldea: for arbitrary n-ary Boolean fct. f in tabular form,
compute a DNF af (CNF Sf) representing f

e Notation: p! = p and p® = —p

@ Then: afF = \/ Pt A AP
f(X1,0,%n)=1
Bf: /\ p;xlv.-.\/p;x"
f(X1,..,%n)=0

@ Example: exclusive-or function + has ...
e DNF (p A —q) V (mg A q)
o CNF (p \% q) A\ (—|p \Y% —|q)

Consequence
Every ¢ € F is equivalent to a DNF and to a CNF.
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Semantic equiv.

Functional completeness

@ A logical signature S is called functional complete
if every Boolean function is represented by some formula in S.

@ By construction on previous slide:
{—, A, V} is functional complete.

@ Can leave out either A or V because of the equivalences
pVg = a(-pA—-qg) and pAg = —(-pV g)

Consequence
Both {—, A} and {—, V} are functional complete.

Thomas Schneider Propositional logic 2
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Semantic equiv.

Functional completeness

@ Another functional complete signature: {—,0}
can express 7, A in {—,0}:
p=p—>0, pAg=-(p— —q)

e Functional complete singleton signatures: {1}, {{}

(see table on Slide 9 of the previous sets of slides, try yourself)

@ A not functional complete signature: {—, A, V}

o For every w with wp = 1 for all p, and every ¢ in {—, A, V}:
wp = 1.
= Never =p = ¢ for any such formula ¢
= - cannot be expressed in {—, A, V}
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Semantic equiv.

Duality for formulas

@ Given a formula ¢, we obtain its dual formula ¢’
by interchanging A and V:

anpB)l =avpe
(V) =a’Ap°

—~

p
—a

p°
(ma)’

@ Obviously:
ais a DNF = af is a CNF
ais a CNF = af is a DNF
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Semantic equiv.

Duality for Boolean functions

@ Given a Boolean fct. f € B,,, we obtain its dual function f?
by negating arguments and function value: (cf. de Morgan)

FO(X1, ..y Xn) = = (mxq, . .., —1Xp)

@ Obviously, (f5)§ = f.
@ Observation:
A =V " P=1 =% ==
Vvi=A +0 =« M=
That is, — is self-dual.

@ As an aside:
e There are no essentially binary self-dual Boolean functions.
e Dedekind discovered the following ternary self-dual function.

d3:(x,y,z) = xAy V xAz V yAz

(Richard Dedekind, 1831-1916, German mathematician, BS, GO, B, Ziirich)
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Semantic equiv.

The duality principle for two-valued logic

Theorem

If v represents the function f,
then o represents the dual function f9.

(Proof by induction on a.)

Consequences:

@ We know that <> is represented by p A g V —p A —q.
Hence + is represented by (p V q) A (—p V —g).

@ If a canonical DNF « represents f € B,
then the canonical CNF o represents f°.

@ Since Dedekind’s d3 is self-dual, it holds that:

pAg NV pAr NV gAr = (pVag A(pVr)A(gVr)
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Tautologies etc.

What's in this section?

We want to ...

@ define when a formula is “always true” (a tautology)
or “can be true"” (is satisfiable)

@ look at the decision problem for tautologies/satisfiablity
@ define when a set of fmas is a logical consequence of another

@ examine properties of logical consequence
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Tautologies etc.

Satisfiability and models

@ instead of wa =1, write w = «, read w satisfies «

e for a set X of fmas, write w = X for “w |= « for all « € X"
read w is a (propositional) model for X

@ « is satisfiable if (w & «) for some w (analogously for X)

e satisfaction relation }= evidently has the following properties:

wEp & wp=1 (pePV)
w E -« S ow o

wEaANf & wiEkaandw S
wkEaV & wlkaowlkE/f

(and can again be extended to other connectives, e.g., —)

Thomas Schneider Propositional logic 2
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Tautologies etc.

Tautologies

@ « is logically valid or a tautology, written = «,
if w = « for all valuations w

@ « is a contradiction if « is not satisfiable, i.e.,
if w £ a for all valuations w

@ Examples for tautologies
e pV p
e even a V —a for any formula «
law of excluded middle (tertium non datur)

@ Examples for contradictions

o a/N\ "«
0 >
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Tautologies etc.

Classical tautologies in —

p—p (self-implication),
(p—q)—>(q—r)—>(P-—r) (chain rule),
(p—>q—r)—(qg—p—r) (exchange of premises),
p—=q—=p (premise charge),
(p—=q—r)—=(p—>q) = (p—r) (Frege’s formula),
((p—q) —=p) =p (Peirce’s formula).

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

Later: all tautologies in — derivable from the last 3 fma.s
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Tautologies etc.

Decidability of the tautology and satisfiability problems

Decidable problems:
e Given o, is « a tautology?

@ Given ¢, is « satisfiable?

Decision procedure for satisfiability
input «
for every valuation w of the variables of a {
if (w E a) /* polynomial-time subroutine */
then return “satisfiable”
}

return “unsatisfiable”

@ Deterministic, exponential-time procedure

@ Analogous procedure for tautology problem
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Tautologies etc.

Complexity of tautology and satisfiability problems

Nondeterministic decision procedure for satisfiability

input «
guess valuation w of the variables of «
if (w E «)

then return 1

else return 0

@ Nondeterministic, polynomial-time procedure
@ Analogous procedure for tautology problem
= SAT € NP, TAUT € coNP
e SAT (TAUT) is NP-hard (coNP-hard) [Cook, Levin 1971-3]

Thomas Schneider Propositional logic 2 45



Tautologies etc.

Reduction to the tautology problem

Various questions such as checking the equivalence of formulas
can be reduced to deciding tautologies:

eg,a=p iff Ea+p

Decision procedure for equivalence using tautology test
input o, 3
if « <> 3 is a tautology

then return “equivalent”

else return “not equivalent”

Thomas Schneider Propositional logic 2
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Tautologies etc.

Logical consequence

Let o be a formula and X a set of formulas.

@ « is a logical consequence of X, written X = «,
if every model of X satisfies «,
i.e., w = X implies w |= « for all valuations w

@ Overload the symbol = :
meaning “consequence” or “satisfies” or “tautology”

(particular meaning is always clear from context)

@ Clear: « is a tautology iff @ | «
~» “[= a" can be seen as abbreviation of “0 = «”

Thomas Schneider Propositional logic 2
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Tautologies etc.

Some convenience notation

e X = a,f means “X E aand X | 3"

@ X = Y means "X Eaforallae Y

@ a1,...,a, E S means “{ai,...,an} E 5"
e X,a = f means “X U {a} E 5"

Thomas Schneider Propositional logic 2
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Tautologies etc.

Examples of logical consequence

e o, E aA B (consult truth table of A)

e aNfBE [ (ditto)

@ a,« — S = (truthtable: if 1 — x =1, then x = 1)

modus ponens

e X | L, then X = « for each «
(because X = L means that X has no model)

o If X,a = and X, na | 3, then X = 5

(Take w = X. If w £ «, conclude w = 8 from first assumption.
If w £ «, ie., w |E —a, conclude w = 8 from second assumption.)

“proof by case distinction”

Thomas Schneider Propositional logic 2 49



Tautologies etc.

General properties of logical consequence

Reflexivity
If a € X, then X | «a.

Monotonicity
If X Eaand X C X/, then X’ = a.

Transitivity
If X EYand Y [ q, then X | a.

Substitution invariance
If X = «, then X7 = a“, where

@ o is a substitution, i.e., a mapping o : PV — F

@ o is extended to formulas naturally:
a’ = result of replacing all variables p in a with o(p)

@ X7 is “X with o applied to all fmas in X"

@ Example: from p V —p being a tautology,
we can infer that a V =« is a taut., for every «
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Tautologies etc.

More properties of logical consequence

= shares the previous 4 properties with almost all classical and
non-classical (many-valued) propositional consequence relations.

Special properties of |=:

Finitarity
If X E «a, then Xy |= « for some finite subset Xy C X.

Deduction theorem
If X,a = 8, then X Ea —

makes it easy to prove tautologies:
Ep— qg— p because p =g — p because p,q | p (refl.)

Thomas Schneider Propositional logic 2
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Natural deduction

What's in this section?

We want to ...
e find a means to “compute” |= syntactically:

@ define a derivability relation - by means of a calculus
that operates solely on the structure of formulas

@ prove that F and = are identical

The F calculus is of the Gentzen type

(Gerhard Gentzen, 1909-1945, German mathematician/logician, GO, Prague)

Thomas Schneider Propositional logic 2
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Natural deduction

Basic notation

@ Again, use « for formulas and X for sets thereof

e Write X F « to denote: “« is derivable (provable) from X"
@ Gentzen called the pairs (X, «) in the F-relation sequents

@ sequent calculus consists of 6 basic rules (for {A, —})

of the form )
premise

conclusion
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Natural deduction

The basic rules

S )
(IS) - (initial sequent)  (MR) S (X' 2 X),
XFap XFanp
(A)Xl—omﬁ (AQ)X}—a,B
XF o, a X,aFB | X,~akp
(—1) XF5 (—2) XF 5

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

@ use convenience notation as for =, see Slide

(IS) has no premises; initial sequences start derivations

(MR): monotonicity rule

(A1), (=1), (—2) have two premises;
(A2) has two conclusions ~» is actually 2 rules

Thomas Schneider Propositional logic 2
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Natural deduction

Using the calculus

@ derivation = finite sequence Sy, ..., S, of sequents
where every §; is either

e an initial sequent or
e is obtained by applying some basic rule to elements from
Soy -5 Si—1

@ « is derivable (or provable) from X, written X - «,
if there is a derivation with S, = X I «.
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Natural deduction

Examples

1 ab « (I1S)

2 o,f F « (MR) 1

3 B F 8 (1)

4 a0 F pB (MR) 3

5 a8 F anp (A1)2,4 = {a,8} F anp
1 pA—=p F+ pA—p (|S)

2 pA-p FEop (A2) 1

3 pA—-p F —p (A2) 1

4 pA-p F =(pA-p) (-1) 2,3

5 =(pA-p) E a(pA-p) (IS)

6 0 F —(pA-p) (m2)4,5 =H+T

Thomas Schneider Propositional logic 2
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