

Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi Negation normal form

• Consider the equivalences

$$\neg \neg \alpha \equiv \alpha$$
$$\neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$$
$$\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$$

- Take an arbitrary formula φ, systematically apply these equivalences as replacement rules.
- $\Rightarrow \text{ In the resulting formula } \varphi' \equiv \varphi,$ negation only occurs in front of variables. φ' is in negation normal form (NNF)

Example:

```
\neg (p \land q \lor \neg r) \equiv \neg (p \land q) \land \neg \neg r \equiv (\neg p \lor \neg q) \land r
```


• Obviously, \equiv is an equivalence relation:

 $\begin{array}{l} \alpha \equiv \alpha & (reflexivity) \\ \text{if } \alpha \equiv \beta, \text{ then } \beta \equiv \alpha & (symmetry) \\ \text{if } \alpha \equiv \beta \text{ and } \beta \equiv \gamma, \text{ then } \alpha \equiv \gamma & (transitivity) \end{array}$

- Also, \equiv is a congruence relation on \mathcal{F} : If $\alpha \equiv \alpha'$ and $\beta \equiv \beta'$, then $\alpha \land \beta \equiv \alpha' \land \beta'$, $\alpha \lor \beta \equiv \alpha' \lor \beta'$, and $\neg \alpha \equiv \neg \alpha'$
- Consequence: Replacement theorem

Theorem

Cutback Semantic equiv. Tautologies etc. Natural deduction Comp Conjunctive and disjunctive normal forms

- A literal is an atomic formula or a negation thereof.
- A disjunctive normal form (DNF) is a disjunction $\alpha_1 \vee \cdots \vee \alpha_n$, where each α_i is a conjunction of literals.
- A conjunctive normal form (CNF) is a conjunction $\alpha_1 \wedge \cdots \wedge \alpha_n$, where each α_i is a disjunction of literals.
- Examples:
 - $(p \land \neg q \land r) \lor (q \land r) \lor (\neg p \land r)$ is a DNF.
 - $p \lor q$ is both a DNF and CNF.
 - $p \lor (q \land \neg p)$ is neither a DNF nor a CNF.
- Every fma can be transformed into an equivalent DNF (CNF).

Propositional logic 2

31

Hilbert calcul

Cutback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi
Functio	onal comple	eteness			

- Another functional complete signature: $\{\rightarrow, 0\}$ can express \neg, \land in $\{\rightarrow, 0\}$: $\neg p \equiv p \rightarrow 0, \quad p \land q \equiv \neg(p \rightarrow \neg q)$
- Functional complete singleton signatures: {^}, {↓}
 (see table on Slide 9 of the previous sets of slides, try yourself)
- A not functional complete signature: $\{\rightarrow, \land, \lor\}$
 - For every w with wp = 1 for all p, and every φ in $\{\rightarrow, \land, \lor\}$: $w\varphi = 1$.
 - $\Rightarrow~{\rm Never}~\neg p\equiv\varphi$ for any such formula φ
 - $\Rightarrow \neg$ cannot be expressed in $\{\rightarrow, \wedge, \lor\}$

- if every Boolean function is represented by some formula in S.
- By construction on previous slide: {¬, ∧, ∨} is functional complete.
- Can leave out either \land or \lor because of the equivalences $p \lor q \equiv \neg(\neg p \land \neg q)$ and $p \land q \equiv \neg(\neg p \lor \neg q)$

Consequence

Both $\{\neg, \land\}$ and $\{\neg, \lor\}$ are functional complete.

Thomas Schneider

34

Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi
Duality for formulas

Propositional logic 2

• Given a formula φ , we obtain its dual formula φ^{δ} by interchanging \wedge and \vee :

$p^{\delta}=p$	$(\alpha \wedge \beta)^{\delta} = \alpha^{\delta} \vee \beta^{\delta}$
$(\neg \alpha)^{\delta} = \neg \alpha$	$(\alpha \lor \beta)^{\delta} = \alpha^{\delta} \land \beta^{\delta}$

Obviously:

 α is a DNF $\Rightarrow \alpha^{\delta}$ is a CNF α is a CNF $\Rightarrow \alpha^{\delta}$ is a DNF

33

Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness

Duality for Boolean functions

• Given a Boolean fct. $f \in \mathcal{B}_n$, we obtain its dual function f^{δ} by negating arguments and function value: (cf. de Morgan)

$$f^{\delta}(x_1,\ldots,x_n)=\neg f(\neg x_1,\ldots,\neg x_n)$$

- Obviously, $(f^{\delta})^{\delta} = f$.
- Observation:

That is, \neg is self-dual.

• As an aside:

- There are no *essentially* binary self-dual Boolean functions.
- Dedekind discovered the following ternary self-dual function.

$$d_3:(x,y,z) \mapsto x \wedge y \vee x \wedge z \vee y \wedge z$$

(Richard Dedekind, 1831–1916, German mathematician, BS, GÖ, B, Zürich)

Thomas Schneider	Propositional logic 2	37

Cutback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi
And n	ow				

Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi The duality principle for two-valued logic Theorem If α represents the function f, then α^{δ} represents the dual function f^{δ} . (Proof by induction on α .) Consequences:

- We know that \leftrightarrow is represented by $p \land q \lor \neg p \land \neg q$. Hence + is represented by $(p \lor q) \land (\neg p \lor \neg q)$.
- If a canonical DNF α represents f ∈ B_n, then the canonical CNF α^δ represents f^δ.
- Since Dedekind's d_3 is self-dual, it holds that:

$$p \land q \lor p \land r \lor q \land r \equiv (p \lor q) \land (p \lor r) \land (q \lor r)$$

Thomas Schneider Propositional logic 2

Cutback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi
What's	s in this see	ction?			

We want to ...

- define when a formula is "always true" (a tautology) or "can be true" (is satisfiable)
- look at the decision problem for tautologies/satisfiablity
- define when a set of fmas is a logical consequence of another
- examine properties of logical consequence

Thomas Schneider

41

Hilbert calculi

- Examples for contradictions
 - $\alpha \wedge \neg \alpha$
 - $\alpha \leftrightarrow \neg \alpha$

Thomas Schneider

Propositional logic 2

6 • 9

Tautologies etc. Hilbert calcul Decidability of the tautology and satisfiability problems

Decidable problems:

Thomas Schneider

- Given α , is α a tautology?
- Given α , is α satisfiable?

Decision procedure for satisfiability input α for every valuation w of the variables of α { if $(w \models \alpha)$ /* polynomial-time subroutine */ then return "satisfiable" return "unsatisfiable"

- Deterministic, exponential-time procedure
- Analogous procedure for tautology problem

Propositional logic 2

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

Later: all tautologies in \rightarrow derivable from the last 3 fma.s

 $w \models \alpha \lor \beta \iff w \models \alpha \text{ or } w \models \beta$

(and can again be extended to other connectives, e.g., \rightarrow)

Propositional logic 2

Natural deduction

(self-implication),

(premise charge),

(Frege's formula),

(Peirce's formula).

(exchange of premises),

(chain rule),

Tautologies etc

Thomas Schneider

Semantic equiv

 $p \rightarrow p$

 $p \rightarrow q \rightarrow p$

Thomas Schneider

 $((p \rightarrow q) \rightarrow p) \rightarrow p$

Classical tautologies in \rightarrow

 $(p \to q) \to (q \to r) \to (p \to r)$

 $(p \to q \to r) \to (p \to q) \to (p \to r)$

 $(p \to q \to r) \to (q \to p \to r)$

mplexity of tautology and satisfiability problems	Reduction to the tautology problem
Nondeterministic decision procedure for satisfiability input α guess valuation w of the variables of α if $(w \models \alpha)$ then return 1 else return 0	Various questions such as checking the equivalence of formulas can be reduced to deciding tautologies: e.g., $\alpha \equiv \beta$ iff $\models \alpha \leftrightarrow \beta$
 Nondeterministic, polynomial-time procedure Analogous procedure for tautology problem ⇒ SAT ∈ NP, TAUT ∈ coNP 	Decision procedure for equivalence using tautology test input α, β if $\alpha \leftrightarrow \beta$ is a tautology then return "equivalent" else return "not equivalent"
Thomas Schneider Propositional logic 2 45	Thomas Schneider Propositional logic 2
ck Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi gical consequence	Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert
ck Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert calculi gical consequence Let α be a formula and X a set of formulas.	Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilbert Some convenience notation
Tautologies etc. Natural deduction Compactness Hilbert calculi gical consequence Let α be a formula and X a set of formulas. • α is a logical consequence of X , written $X \models \alpha$, if every model of X satisfies α , i.e., $w \models X$ implies $w \models \alpha$ for all valuations w	Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilber Some convenience notation • $X \models \alpha, \beta$ means " $X \models \alpha$ and $X \models \beta$ " • $X \models Y$ means " $X \models \alpha$ for all $\alpha \in Y$ "
Tautologies etc. Natural deduction Compactness Hilbert calculi gical consequence Let α be a formula and X a set of formulas. • α is a logical consequence of X , written $X \models \alpha$, if every model of X satisfies α , i.e., $w \models X$ implies $w \models \alpha$ for all valuations w • Overload the symbol \models : meaning "consequence" or "satisfies" or "tautology" (particular meaning is always clear from context)	Cutback Semantic equiv. Tautologies etc. Natural deduction Compactness Hilber Some convenience notation • $X \models \alpha, \beta$ means " $X \models \alpha$ and $X \models \beta$ " • $X \models Y$ means " $X \models \alpha$ for all $\alpha \in Y$ " • $\alpha_1, \ldots, \alpha_n \models \beta$ means " $\{\alpha_1, \ldots, \alpha_n\} \models \beta$ " • $X, \alpha \models \beta$ means " $X \cup \{\alpha\} \models \beta$ "

tback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi
enera	al properties	s of logical	consequence	5	
Reflexivity If $\alpha \in X$, then $X \models \alpha$. Monotonicity If $X \models \alpha$ and $X \subseteq X'$, then $X' \models \alpha$. Transitivity If $X \models Y$ and $Y \models \alpha$, then $X \models \alpha$. Substitution invariance If $X \models \alpha$, then $X^{\sigma} \models \alpha^{\sigma}$, where • σ is a substitution, i.e., a mapping $\sigma : PV \rightarrow F$ • σ is extended to formulas naturally: $\alpha^{\sigma} =$ result of replacing all variables p in α with $\sigma(p)$ • X^{σ} is "X with σ applied to all fmas in X" • Example: from $p \lor \neg p$ being a tautology,					
	 Example: we can in 	from $p \lor \neg p$ to from $p \lor \neg p$ to for that $\alpha \lor \neg a$	being a tautology, α is a taut., for ev	very $lpha$	
Th	omas Schneider	Proposit	ional logic 2		50
tback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi
nd n	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi

- 2 Semantic equivalence and normal forms
- 3 Tautologies and logical consequence

A calculus of natural deduction

5 Application of the compactness theorem

Propositional logic 2

6 Hilbert calculi

Thomas Schneider

Cutback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi
Exam	ples				
1 2 3 4 5	$\begin{array}{ccc} \alpha \vdash \alpha \\ \alpha, \beta \vdash \alpha \\ \beta \vdash \beta \\ \alpha, \beta \vdash \beta \\ \alpha, \beta \vdash \alpha \land \end{array}$	3	(IS) (MR) 1 (IS) (MR) 3 (∧1) 2,4 ⇒	$\rightarrow \underline{\{\alpha, \beta\}} \vdash$	$\alpha \wedge \beta$
1 2 3 4 5 6	$p \land \neg p \vdash p$ $p \land \neg p \vdash p$ $p \land \neg p \vdash -p$ $p \land \neg p \vdash$ $\neg (p \land \neg p) \vdash -$ $\neg (p \land \neg p) \vdash \emptyset \vdash \neg (p \land \neg p)$	$ \wedge \neg p $ $ p $ $ (p \land \neg p) $ $ - \neg (p \land \neg p) $ $ \neg p) $	(IS) $(\land 2) 1$ $(\land 2) 1$ $(\neg 1) 2, 3$ (IS) $(\neg 2) 4, 5 \Rightarrow$	> <u>- T</u>	
Т	homas Schneider	Propositi	ional logic 2		57
Cutback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi

Natural deduction

Hilbert calculi

Compactness

Tautologies etc.

Cutback

Semantic equiv.

Thomas Schneider Propositional logic 2	58

Cutback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi
And no	ow				

Propositional logic 2

59

3.4.71	
What	so tar(
vviiau	

2 Semantic equivalence and normal forms

3 Tautologies and logical consequence

4 A calculus of natural deduction

6 Application of the compactness theorem

6 Hilbert calculi

Thomas Schneider

Cutback	Semantic equiv.	Tautologies etc.	Natural deduction	Compactness	Hilbert calculi

•••