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Cutback

Propositional logic . ..

@ assumes that there are two truth values (bivalence)

@ assumes that the truth value of a sentence depends only on

the truth value of its parts  (extensionality)

@ connects atomic propositions using connectives that
correspond to Boolean functions

and, or, not, if-then, iff, nand, nor

@ uses a recursive definition to define formulas

@ uses the induction principle to prove properties of fma.s

@ enjoys the unique formula reconstruction property,
which allows to define functions over fma.s recursively
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Cutback

And

now ...

@ What happened so far?

Cutback
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Semantics of Boolean formulas . ..

@ is given by valuations w : PV — {0, 1},
which can be extended to w : F — {0, 1}

@ gives rise to the correspondence formulas ~» Boolean fct.s:

a € F, represents Boolean function f € B,
if, for all valuations w, it holds that wa = f(wps, ..., wpy).
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Semantic equiv.

And now . ..

© Semantic equivalence and normal forms
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Semantic equiv

Semantic equivalence

@ Formulas «, 8 are (logically or semantically) equivalent,
written o = f3,
if for all valuations w: wa = wg.

@ Obviously, a = 3 iff a, 3 represent the same n-ary function
for some n > 0

e Example: a = ——a«

~» At most how many formulas in F, can be pairwise
inequivalent?

(Note the difference between a = 3 and o = .
The latter denotes identity of the strings a, 8.)
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Semantic equiv.

What's in this section?

We want to ...
@ define when two formulas are logically equivalent
@ show that every Boolean function is representable by a formula

@ establish the duality principle for two-valued logic

25 Thomas Schneider Propositional logic 2

Semantic equiv.

Prominent examples of equivalences

an(Bay) = anBry, av(Bvy) =avpBvy (associativity);
anf = fra, avfp = Bva (commutativity);
ara = a, ava =« (idempotency);
an(avpP) = a, avanrf = «a (absorption);
an(Bvy) = anfvany, (A-distributivity);
av pBry = (avB)(avy) (v-distributivity);
—(arB) = —a v -p, —(avp) = ~ar—p (de Morgan rules).

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

alN—-a=_1
aV-aa=T

aNT =«

aVT=T
a—=f = ~aVp = -(aAp)

a—= =y = aNf—o>y = —oa—7y

(Augustus De Morgan, 1806-1871, British math./logician, Cambridge/London)

27 Thomas Schneider Propositional logic 2

26

28



Semantic equiv.

A strange natural language example

Consider the two sentences:
@ Students and pensioners pay half price.
@ Students or pensioners pay half price.

They evidently have the same meaning — but why?

e Abbreviate student, pensioners, pay half price by S, P, H.

@ The sentences can be put into propositions as follows.
Q@ a=(S— H)A(P—H)
Q@38=(SvP)—>H

e Nowa =4 (check via truth tables)
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Semantic equiv

Negation normal form

@ Consider the equivalences
= o
_|(0é/\/8) =-aVp
“(aVp)=-an-p

@ Take an arbitrary formula ¢,
systematically apply these equivalences as replacement rules.

= In the resulting formula ¢’ = ¢,

negation only occurs in front of variables.

¢ is in negation normal form (NNF)

Example:

—|(p/\q\/—|r) = —|(p/\q)/\—|—|r = (—|pV—|q)/\r
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Semantic equiv.

Properties of semantic equivalence

@ Obviously, = is an equivalence relation:
a=aw (reflexivity)
if « = 3, then 8 = « (symmetry)
if « = and § =+, then « =7 (transitivity)

@ Also, = is a congruence relation on F:
Ifa=ao and g = p,
thenaAB=d' NS, aVB=d VE, and ~a = -’

@ Consequence: Replacement theorem

Theorem

Let @ = o and ¢ be formulas,
and let ¢’ be obtained from ¢ by replacing one or several
occurrences of a with o’.

Then ¢ = ¢'.

(Proof by induction on ¢.)
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Semantic equiv.

Conjunctive and disjunctive normal forms

@ A literal is an atomic formula or a negation thereof.

A disjunctive normal form (DNF) is a disjunction
ai V -+« V ap, where each a; is a conjunction of literals.

A conjunctive normal form (CNF) is a conjunction
ai A -+« A ap, where each «; is a disjunction of literals.

o Examples:
o (pAgATr)V(gATr)V (opAr)isaDNF.
e pV qis both a DNF and CNF.
e pV (g A —p) is neither a DNF nor a CNF.

@ Every fma can be transformed into an equivalent DNF (CNF).
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Semantic equiv.

Transforming a formula into an equivalent DNF (CNF)

o lIdea: for arbitrary n-ary Boolean fct. f in tabular form,
compute a DNF ar (CNF jf) representing f
@ Notation: p! = p and p® = —p
@ Then: af = \/ PN AR
f(X150..3%n)=1
Br= N\ VeV
f(X15...,%n)=0
o Example: exclusive-or function + has ...
e DNF (p A —=q) V (—g A q)
e CNF (pV q) A (—-pV 1q)
Consequence

Every ¢ € F is equivalent to a DNF and to a CNF.
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Semantic equiv.

Functional completeness

@ Another functional complete signature: {—, 0}
can express =, A in {—,0}:
—p=p—0, pAg=-(p— q)

e Functional complete singleton signatures: {1}, {l}
(see table on Slide 9 of the previous sets of slides, try yourself)

@ A not functional complete signature: {—, A, V}

o For every w with wp = 1 for all p, and every ¢ in {—, A, V}:

wp = 1.
= Never =p = ¢ for any such formula ¢

= - cannot be expressed in {—, A, V}
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Semantic equiv.

Functional completeness

@ A logical signature S is called functional complete
if every Boolean function is represented by some formula in S.

@ By construction on previous slide:
{—, A, V} is functional complete.

o Can leave out either A or V because of the equivalences
pVg = ~(-pA-g) and pAg = —(-pVg)

Consequence
Both {—, A} and {—, V} are functional complete.
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Semantic equiv.

Duality for formulas

o Given a formula ¢, we obtain its dual formula ¢/
by interchanging A and V:

p’=p (aAB)Y =a’Vvp
(=)’ = -a (V) =o' A B

@ Obviously:
ais a DNF = o is a CNF
ais a CNF = of is a DNF

Thomas Schneider Propositional logic 2
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Semantic equiv.

Duality for Boolean functions

@ Given a Boolean fct. f € B,, we obtain its dual function %
by negating arguments and function value: (cf. de Morgan)

f[s(xlr v 7Xn) = _'f(ﬂxlv EEN) _‘Xn)
@ Obviously, (f5)5 =f.
@ Observation:
AN =v o =4 PY=1 ==
Ve=A +0 =& P=1

That is, — is self-dual.

@ As an aside:
o There are no essentially binary self-dual Boolean functions.
o Dedekind discovered the following ternary self-dual function.

d3:(x,y,2) = xAy V xANzV yAz

(Richard Dedekind, 1831-1916, German mathematician, BS, GO, B, Ziirich)
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Tautologies etc

And now . ..

© Tautologies and logical consequence
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Semantic equiv.

The duality principle for two-valued logic

Theorem

If o represents the function f,
then o represents the dual function f9.

(Proof by induction on «.)

Consequences:

@ We know that <> is represented by p A g V —p A —g.
Hence + is represented by (p V q) A (—p V —q).

@ If a canonical DNF « represents f € B,
then the canonical CNF o9 represents 9.

@ Since Dedekind's d3 is self-dual, it holds that:
pAG NV pAr vV gAr = (pV@A(pVr)A(qVr)

37 Thomas Schneider Propositional logic 2 38

Tautologies etc.

What's in this section?

We want to ...

o define when a formula is “always true” (a tautology)
or “can be true” (is satisfiable)

@ look at the decision problem for tautologies/satisfiablity
@ define when a set of fmas is a logical consequence of another

@ examine properties of logical consequence
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Tautologies etc,

Satisfiability and models

o instead of wa =1, write w = «, read w satisfies «

o for a set X of fmas, write w = X for “w |= a for alla € X"
read w is a (propositional) model for X

@ « is satisfiable if (w &= «) for some w  (analogously for X)

o satisfaction relation |= evidently has the following properties:

wEp & wp=1 (p €PV)
w E —a &S wha

wEaAf & wlkaandwkEgf
wkEaVf & wlkaowkEp

(and can again be extended to other connectives, e.g., —)
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Tautologies etc

Classical tautologies in —

p—=Dp (self-implication),
(p—q)—=(qg—7r)—=(—>r) (chain rule),
(p—q—r)—=(qg—p—r) (exchange of premises),
pP—q—=p (premise charge),
(p—q—7) > —=g) = (p =) (Frege’s formula),
((p—=q) —p)—p (Peirce’s formula).

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

Later: all tautologies in — derivable from the last 3 fma.s
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Tautologies etc,

Tautologies

o « is logically valid or a tautology, written |= «,
if w = « for all valuations w

@ « is a contradiction if « is not satisfiable, i.e.,
if w £ « for all valuations w

@ Examples for tautologies
e pV p
e even a V —a for any formula o
law of excluded middle (tertium non datur)

@ Examples for contradictions
o a N\
e o >
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Tautologies etc.

Decidability of the tautology and satisfiability problems

Decidable problems:
@ Given q, is a a tautology?

@ Given q, is « satisfiable?

Decision procedure for satisfiability
input o
for every valuation w of the variables of o {
if (w = a) /* polynomial-time subroutine */
then return “satisfiable”
}

return “unsatisfiable”

o Deterministic, exponential-time procedure

@ Analogous procedure for tautology problem
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Tautologies etc, Tautologies etc,

Complexity of tautology and satisfiability problems Reduction to the tautology problem

Nondeterministic decision procedure for satisfiability

input Various questions such as checking the equivalence of formulas
guess valuation w of the variables of « can be reduced to deciding tautologies:
if (w E a) .

then return 1 eg,.a=p iff Fa+vp

else return 0

Decision procedure for equivalence using tautology test

@ Nondeterministic, polynomial-time procedure input o, 8
if @ <> (3 is a tautology
then return “equivalent”

— SAT € NP. TAUT € coNP else return “not equivalent”

@ Analogous procedure for tautology problem

@ SAT (TAUT) is NP-hard (coNP-hard) [Cook, Levin 1971-3]
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Logical consequence Some convenience notation

Let o be a formula and X a set of formulas.

@ «is a logical consequence of X, written X = «,

if every model of X satisfies «, ° X | a,f means "X |z aand X |= 3
i.e., w = X implies w |= « for all valuations w o X = Y means “X = aforalla € Y”
@ Overload the symbol |= : o au,...,an = B means “{ar,...,an} E 8"
meaning “consequence” or “satisfies” or “tautology”
(particular meaning is always clear from context) o X,a | fmeans "X U {a} £ f

o Clear: « is a tautology iff @ = «
~> "= " can be seen as abbreviation of “0 = o
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Tautologies etc,

Examples of logical consequence

e a,BE a A (consult truth table of A)
e aNfEa« B (dito)
e a,a— B (truthtable: if 1 — x =1, then x = 1)

modus ponens

e X = L, then X = « for each «
(because X = L means that X has no model)

o If X,a =B and X,—a |E 8, then X E

(Take w = X. If w = «, conclude w |= 3 from first assumption.
If w £ «, ie., w | —a, conclude w = 3 from second assumption.)

“proof by case distinction”
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Tautologies etc

More properties of logical consequence

|= shares the previous 4 properties with almost all classical and
non-classical (many-valued) propositional consequence relations.

Special properties of [=:

Finitarity
If X E «, then Xp = « for some finite subset Xo C X.

Deduction theorem
If X,a B, then X Ea— 3

makes it easy to prove tautologies:
Ep—qg— p because p|= g — p because p,q = p (refl.)
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Tautologies etc,

General properties of logical consequence

Reflexivity
If « € X, then X [ a.

Monotonicity
If X E aand X C X/, then X’ E a.

Transitivity
If X E Yand Y | a, then X | a.

Substitution invariance
If X = o, then X7 |= o, where
@ o is a substitution, i.e., a mapping o : PV — F

@ o is extended to formulas naturally:
a’ = result of replacing all variables p in a with o(p)

@ X7 is “X with o applied to all fmas in X"

@ Example: from p V —p being a tautology,
we can infer that a V =« is a taut., for every o
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Natural deduction

And now . ..

O A calculus of natural deduction
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Natural deduction Natural deduction

What's in this section? Basic notation

We want to ...

o find a means to “compute” = syntactically @ Again, use « for formulas and X for sets thereof

o define a derivability relation F by means of a calculus © Write X = a to denote:  “a is derivable (provable) from X"

that operates solely on the structure of formulas o Gentzen called the pairs (X, «) in the -relation sequents
o prove that - and |= are identical @ sequent calculus consists of 6 basic rules (for {A, —})
of the form )
premise
The F calculus is of the Gentzen type conclusion
(Gerhard Gentzen, 1909-1945, German mathematician/logician, GO, Prague)
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Natural deduction Natural deduction
The basic rules Using the calculus
s , XFa
(IS) Ta (initial sequent)  (MR) YT (X' 2 X),
(1)X|—a.,/3 (Q)X}—a/\ﬁ o -
A) —— A2) —
XFanp X o B @ derivation = fm_lte sequence So, - .., Sy of sequents
where every S; is either
X Foa, o X, aF 8 ‘ X,-at 8 e an initial sequent or
(=1) XF B (=2) XFpB ° E obtainsed by applying some basic rule to elements from
05 -+ -5 Di—1

From W. Rautenberg: A Concise Introduction to Mathematical Logic, Springer, 2010.

@ « is derivable (or provable) from X, written X F «,
@ use convenience notation as for |=, see Slide if there is a derivation with S, = X  a.

(IS) has no premises; initial sequences start derivations

(MR): monotonicity rule

(A1), (—1), (—2) have two premises;
(A2) has two conclusions ~ is actually 2 rules
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Examples
1 ab «
2 o, F «
3 BF 3
4 o8 F 8
5 a,f F aNp

ST W=

And

pA—-p F pA-p
pA—-p F p
pA—-p F —p
pA-p F =(pA-p)

=(pA=p) = =(pA-p)

0+ —|(p/\ —|p)

Thomas Schneider

now ...

Natural deduction

Propositional logic 2

Compactness

© Application of the compactness theorem
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Natural deduction
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Compactness
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