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Summary Propositional Logic

‣ We introduced the basic problems, notions and ideas related to 
classical propositional logic, i.e. syntax and semantics, Boolean 
functions, Truth tables.

‣ The notion of proof, Hilbert systems, natural deduction
‣ The notion of entailment, truth in a model, satisfaction
‣ Completeness: 
‣ Satisfaction vs. Consistency
‣ equivalence of finitary proof theoretic notion and semantic 

notion of satisfiability
‣ Essential idea: models are built from syntactic material



Outline of Lectures 7 & 8

‣ Logical Pluralism in modern KR & AI
‣ we sketch the line from Aristotle via Frege to logical pluralism
‣ introduce intuitionistic propositional logic (IPC)
‣ some standard propositional modal logics (MLs)

‣ Non-classical logics
‣ we give in particular some Hilbert and other proof systems
‣ and discuss translations between logics, the Glivenko and Gödel 

embeddings of intuitionistic logic.
‣ Admissible vs. Derivable Rules
‣ we will introduce the notion of admissible rules and give examples



From Aristotle And Boole 
to Carnap’s Pluralism

O r ,  F r o m  S y l l o g i s t i c  t o  C l a s s i c a l 
L o g i c  t o  A n  E x p l o s i o n  o f  L o g i c a l 

C a l c u l i  i n  M o d e r n  K R  a n d  A I



The Rise of Classical Logic 
• Classical first-order logic (FOL) is an expressive, general purpose language

• Important historically in axiomatising foundational theories in mathematics

• With historical roots in

• Aristotelian Syllogisms

• e.g. conclusions inferred from two (quantificational) premises

• Boole’s logic

• e.g. the basic algebraic rules governing conjunction, negation, etc. (1854)

• Frege’s Begriffsschrift  

• a fully formal notation for logic encompassing modern first-order (1879)

• Peirce’s logical investigations 

• e.g. the distinction between first- and second-order quantifier (1885)



Aristotle’s Organon

‣ Aristotelian Syllogisms
‣ e.g. conclusions inferred 

from two (quantificational) 
premises.

‣ Modal logic, propositional 
and quantificational

Aristotle



Boolean Logic

‣ the basic algebraic 
rules governing 
conjunction, negation, 
etc. (1854)

‣ De Morgan’s Laws
‣ basis for modern 

propositional calculus George Boole Augustus De Morgan



Frege’s Begriffsschrift

‣ 1879: Introduction of 
`quantified variables’

‣ Essentially a formal system 
for classical, bivalent 
second-order logic with 
identity

Gottlob Frege



Frege’s Begriffsschrift

‣ 1879: Introduction of 
`quantified variables’

‣ Essentially a formal system 
for classical, bivalent 
second-order logic with 
identity

‣ From the modern 
viewpoint, using a highly 
unusual `two-dimensional’ 
notation.

‣ Hilbert systems = Frege 
systems

Gottlob Frege



Peirce’s Logic

‣ e.g. the distinction between 
first- and second-order 
quantifier (1885)

‣ the distinction between 
modes of reasoning: 
abduction, deduction, 
induction

Charles Sanders Peirce



Logical Monism
• Roughly: “There is only one true (correct/best/legitimate) logic”.

• Candidates: 

• Classical Logic,

• Intuitionistic Logic, ...

• Some problems: 

• Shouldn’t a ‘universal’ logic contain semantic concepts, yielding 
paraconsistency? 

• What is the intuitionists metalogic to argue that it is the one true logic?



Carnap’s Pluralism
• It is not our business to set up 

prohibitions, but to arrive at 
conventions. [...] 
In logic there are no morals. Everyone 
is at liberty to build up his own logic, i.e. 
his own language, as he wishes.  All that 
is required of him is that, if he wishes to 
discuss it, he must state his methods 
clearly, and give syntactical rules instead 
of philosophical arguments.

• RUDOLF CARNAP 
The Logical Syntax of Language, 1934



Logical Pluralism ≈ no one true logic
• Only later, when I became acquainted with the 

entirely different language forms of Principia 
Mathematica, the modal logic of C. I. Lewis, the 
intuitionistic logic of Brouwer and Heyting, and the 
typeless systems of Quine and others, did I recognise 
the infinite variety of possible language forms. On the 
one hand, I became aware of the problems connected 
with the finding of language forms suitable for given 
purposes; on the other hand, I gained the insight that 
one cannot speak of “the correct language form”, 
because various forms have different advantages in 
different respects. The latter insight led me to the 
principle of tolerance.

• RUDOLF CARNAP, Intellectual Autobiography, 1963



Logical Pluralism ≈ a universe of logics
• There is a population explosion among the logical systems used in computing science. 

[...] However, it seems that many general results used in the applications are actually 
completely independent of what underlying logic is chosen.

• JOSEPH A. GOGUEN AND ROD M. BURSTALL, Institutions: Abstract Model 
Theory for Specification and Programming, 1992

• [...] it is a fact of life that no single perspective, no single formalization or level of 
abstraction suffices to represent a system and reason about its behavior. [...] no logical 
formalism [...] will be best for all purposes. What exists is a space of possibilities (the 
universe of logics) in which careful choice of the formalisms that best suit some given 
purposes can be exercised. 

• JOSEPH MESEGUER and N.  MARTÍ-OLIET, From abstract data types to 
logical frameworks, 1995



Early 20th Century: Syntactic Era

‣ The early 20th century saw 
an explosion of  studies in 
non-classical logics

‣ Intuitionism, Modal Logic, 
Many-valued logic, etc.

‣ Syntactic Era: Logics were 
designed by studying 
axiomatic principles; 
methods employed mostly 
algebraic

Jan Łukasiewicz Clarence Irving Lewis

Luitzgen Egbertus Jan Brouwer



Mid 20th Century: Semantic Era

‣ Around 1960, the mid 20th 
century saw the development 
of “proper model theory” for 
non-classical logic, i.e. the 
advent of Kripke Semantics

‣ Semantic Era: Logics were 
studied by applying purely 
semantic arguments, which 
led to a dramatic progress in 
understanding their formal 
properties.

‣ Other important figures: 
BJARNI JÓNSSON, ARTHUR 
PRIOR, RICHARD MONTAGUE. 

Saul Kripke Jaakko Hintikka

Alfred Tarski Stig Kanger



Pluralism in Scope and Purpose
• Simple ‘domain’ / ‘application’ ontologies: Pizza, Family, FOAF, etc.

• NCI Thesaurus

• about 34.000 concepts arranged in 20 taxonomic trees, reference 
terminology for cancer research, sub-Boolean description logic EL.

• Galen

• medical domain ontology, relatively large, but also relatively complex 
axiomatisation in a more expressive DL, namely OWL-DL.

• Dolce, GFO, BFO, GUM

• Foundational ontologies, first-order, higher-order, first-order modal 
logic being used. Complex axiomatisations. 



Pluralism in Reasoning
• Various reasoning ‘modes’ and scenarios

• deductive: consistency, entailment, instance checking, etc.

• inductive: concept learning, etc.

• abductive: explanation of (desired) entailment, etc.

• ‘modal’: temporal, spatial, epistemic extensions, etc.

• non-monotonic: closed-world reasoning; defaults; rules, etc.

• para-consistent: reasoning over inconsistent data, etc.

• fuzzy/probabilistic/uncertain: vague concept membership, etc.



Logical Pluralism in AI & KR

‣ Knowledge Representation in general is a prime example for logical pluralism: 
all kinds of (non-classical) logics or reasoning are being used in different areas 
of KR, being hand-tailored to the task at hand.

‣ Modal and Temporal Logics
‣ Fuzzy and many-valued logics
‣ Non-monotonic logics and abduction, etc.
‣ DLs of various expressivity, FOL and various extensions thererof
‣ in general, combining closed and open world reasoning

‣ Universal logic is to logic what universal algebra is to algebra: it is concerned 
with studying the most general features of logics or classes of logics.



Logical Pluralism Today
• JC Beall and G. Restall’s: ‘Cases’ and generalized Tarski thesis (2000):

• V: A conclusion A follows from premises, ∑, if and only if any case in 
which each premise in ∑ is true is also a case in which A is true. 

• logis-as-modelling view (Cook/Shapiro): “there can be multiple, 
incompatible, competing models of the same phenomenon”

• Carnapian pluralism ->  pragmatic, no pluralism within a fixed 
‘framework’; incompatible with substantial pluralism?

• Logical Pluralism conference in Tartu, 2008;
St. Andrews Arché  Course ‘Logic or Logics’, 2010, etc.



Universal Logic

• Signatures: (non-logical symbols) propositions; predicates; functions, 
constants, terms.

• Grammar: (logical symbols) variables and quantifiers; modalities; 
identity symbol; substitution.

• Models: possible world; domains of discourse; accessibility 
(counterpart relations) ; object (individual)

• Satisfaction: vary the truth conditions for quantifiers; Booleans; 
Modalities; vary conditions for identity statements, etc.

Items that can be varied according to universal logic: 

Benefits: Borrowing and combination of logics and reasoners, structuring, etc.  



Modality, Quantification, and Identity

• modal predicate logic

• quantified modal logic

• first-order modal logic

• first-order intensional logic, 

• free logic, etc.

QML

Objectual
Domain

Conceptual
Domain

Substantial
Domain

Rigid
Terms

Non-rigid
Terms

Fixed
Domain

World-relative
Domains

Standard
Predicates

Intensional
Predicates

Fixed
Domain

World-relative
Domains

Global
Terms

Local
Terms

Free Logic Classical Logic

Eliminate Terms Truth-value gaps

Nested Domains No Restrictions
on Domains

B1

(Parks)
QS

(Garson)
Q2

(Thomason)
QC

Q3L

(Bowen)
Q3

(Thomason)Q1

(Kripke)

Q1R

Qk

(Kripke)

QPL

(Hughes & 
Cresswell)

QK

(Gabbay)

A combination of 2 (or 3) logical theoriesGarson (1984)

Modify: Models / Syntax & Grammar / Satisfaction
Extension (Modality) vs. Restriction (Intuitionism)



Intuitionistic Logic
M o t i v a t i o n  a n d  K r i p k e  S e m a n t i c s



Overview of this Part

‣ Kripke semantics for intuitionistic logic 
‣ Hilbert System 

‣ Kripke semantics for modal logic and correspondence theory
‣ Tableaux Calculus

‣ Logic translations
‣ Relations between IPC and CPC, and ML
‣ transfer of properties between logics.
‣ Glivenko’s Theorem and the Gödel translation.



Intuitionistic Logic as Calculus

‣ Intuitionistic propositional logic IPC in an attempt to provide a 
formal explication of LUITZEN EGBERTUS JAN BROUWER’S philosophy 
of intuitionism (1907/8). 

‣ One of BROUWER’S main positions was a rejection of the tertium:
‣ [To the Intuitionist] the dogma of the universal validity of the 

principle of excluded third is a phenomenon in the history of 
civilisation, like the former belief in the rationality of π, or in the 
rotation of the firmament about the earth. (BROUWER 1952)

‣ The propositional calculus was devised by KOLMOGOROV (1925), 
ORLOV (1928), and GLIVENKO (1929). The first-order version by 
AREND HEYTING (1930)  

‣ A main idea in HEYTING’S formalisation was to preserve not truth (as 
in classical logic), but justifications.



Hilbert system for Intuitionistic  Logic

‣ A Frege system for IPC

The semantics of other modal logics is defined via suitable restrictions of
the class of all Kripke frames, for example !4 consists of all modal formulas
which are true over all transitive frames (i. e., the relation " is transitive) and
KB is the class modal formulas which are true over all symmetric frames.

5.2 Frege Systems for Intuitionistic Logics

While modal logics extend the classical propositional calculus, intuitionistic
logics are restrictions thereof. A typical Frege system for intuitionistic logic is
the system depicted in Table 3 which is derived from the classical Frege system
in Section 3.1.

Axioms !1 → (!2 → !1)
(!1 → !2) → (!1 → (!2 → !3)) → (!1 → !3)
!1 → !1 ∨ !2
!2 → !1 ∨ !2
(!1 → !3) → (!2 → !3) → (!1 ∨ !2 → !3)
⊥ → !1
!1 ∧ !2 → !1
!1 ∧ !2 → !2
!1 → !2 → !1 ∧ !2

Modus Ponens
!1 !1 → !2

!2

Table 3. A Frege systems for intuitionistic logic

6 Lower Bounds for Modal and Intuitionistic Logics

One of the first topics in proof complexity of non-classical logics was the inves-
tigation of the disjunction property in intuitionistic logic, stating that if # ∨ $
is an intuitionistic tautology, then either # or $ already is. Buss, Mints, and
Pudlák [BM99,BP01] showed that this disjunction property even holds in the
following feasible form:

Theorem 14 (Buss, Mints, Pudlák [BM99, BP01]). Intuitionistic logic
has the feasible disjunction property, i. e., for the standard natural deduction
calculus for intuitionistic logic (which is polynomially equivalent to the usual
intuitionistic Frege system) there is an algorithm A such that for each proof %
of a disjunction # ∨ $, the algorithm A outputs a proof of either # or $ in
polynomial time in the size of %.

Subsequently, Ferrari, Fiorentini, and Fiorino [FFF05] extended this result to
Frege systems and to further logics such as the modal logic &4.

A related property to feasible disjunction is the feasible interpolation prop-
erty. As mentioned in Sect. 1, feasible interpolation is one of the general ap-
proaches to lower bounds in proof complexity. This technique was developed by
Kraj́ıček [Kra97] and has been successfully applied to show lower bounds for
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‣ An important property is the disjunction property (which does not hold 
classically). It can be read in a constructive fashion:
‣ for every proof of a disjunction                   
‣ there exists a proof of either         or

A _B

A B



Non-Validities in IPC

p _ ¬p
¬¬p ! p
(p ! q) ! (¬p _ q)
¬(p ^ q) ! (¬p _ ¬q)
(¬p ! q) ! (¬q ! p)
(¬p ! ¬q) ! (q ! p)
((p ! q) ! p) ! p



Kripke Semantics for IPC: Intuition
‣ One of the main principles of intuitionism is that the truth of a 

statement can only be established by giving a constructive proof.
‣ When reading intuitionistic formulae, it is therefore instructive to read 

the connectives in terms of `proofs’ or `constructions’ as follows:
• A proof of a proposition ' ⇤  consists of a proof of ' and a proof of  .

• A proof of ' ⌅  is given by presenting either a proof of ' or a proof  .

• A proof of ' �  is a construction which, given a proof of ', returns a

proof of  .

• ⇥ has no proof and a proof of ¬' is a construction which, given a proof

of ', would return a proof of ⇥.

‣ The law of excluded middle is clearly not valid in this interpretation.



Kripke Semantics for IPC: Intuition

‣ The Kripke semantics for IPC can be understood to interpret this intuition 
in an epistemic way as follows: (see CHAGROV & ZAKHARYASCHEV 1997)
‣ possible worlds are ‘states of knowledge’
‣ moving from one world to the next preserves the current knowledge 
‣ a proposition not true now can become true at a later stage

• ⇥ ⇤ � is true at a state x if both ⇥ and � are true at x.

• ⇥ ⌅ � is true at x if either ⇥ or � is true at x.

• ⇥ � � is true at a state x if, for every subsequent possible state y, in
particular x itself, ⇥ is true at y only if � is true at y.

• ⇥ is true nowhere.



Kripke Semantics for IPC
‣ With this idea in mind, intuitionistic propositional logic IPC  can 

now be elegantly characterised via Kripke semantics by modifying 
the notion of satisfaction:

M

x

⇧|= ⌃
M

x

|= p ⌥ q ⇤⌅ M

x

|= p and M

x

|= q

M

x

|= p � q ⇤⌅ M

x

|= p or M

x

|= q

M

x

|= p ⇥ q ⇤⌅ for any y � x : if M

y

|= p then M

y

|= q

M

x

|= ¬p ⇤⌅ for no y � x : M

y

|= p ( ⇤⌅ M

x

|= p ⇥ ⌃)

A Kripke frame for IPC is a frame hW,i, where  is a partial order (i.e.
reflexive, antisymmetric, and transitive). The notions of valuation however is
di�erent:

�(p) ✓ W such that: for every x 2 �(p) and y 2 W with xRy: we have y 2 �(p)
Upward Closed Valuations



Non-Validities in IPC

p _ ¬p
¬¬p ! p
(p ! q) ! (¬p _ q)
¬(p ^ q) ! (¬p _ ¬q)
(¬p ! q) ! (¬q ! p)
(¬p ! ¬q) ! (q ! p)
((p ! q) ! p) ! p

‣ FOR THE FIRST: Assume a point x 
where p does not hold, and a later point 
y where it becomes known that p.

‣ FOR THE SECOND: Assume a point x 
which falsifies the implicatioin. Then at 
some point y the double implication will 
hold, but p does not hold. Then not p 
will never hold later, but at some later 
point z (after y) it becomes known that p.



Kripke Semantics for IPC
‣ Generation Theorem: The truth of a formula at a point x depends 

only on that part of the model that can “be seen” from x.
‣ Need the notions of (-> whiteboard):
‣ frame / subframe / root / generated subframe / submodel

‣ Compare: Coincidence Lemma: truth depends only on the variables 
that appear in a formula:

‣ v1, v2, v3 ... b1, ... b2,... v34,...
‣ Proof: ...

‣ Corollaries: 
‣ (1) Truth is invariant under the formation of disjoint unions.
‣ (2) It always suffices to consider generated (rooted) submodels.



Logic Translations

‣ How do we move from one logic to another?
‣ change of syntax
‣ change of semantics

‣ Requirements
‣ preserve the meaning of the original formalisation
‣ models of the original formulas should be ‘obtainable’  from 

the models of the translated formulas 



Translating IPC: Glivenko’s Theorem
‣ We can embed CPC into IPC by simply adding a double negation:
‣ The following is called Glivenko’s Theorem 

‣ Such embeddings from L1 to L2 have several useful features, e.g.:
‣ (1) logical connectives in L1  can be understood in terms of those of L1.
‣ (2) various properties of logics may be preserved along an embedding, 

e.g.:
‣ if L2  is a decidable logic, then so is L1.

For every formula ' ⇤ CPC �⇥ ¬¬' ⇤ IPC.

p _ ¬p 2 CPC () ¬¬(p _ ¬p) 2 IPC

Example



Glivenko’s Theorem: Proof

‣ Glivenko’s Theorem. 
For every formula ' ⇤ CPC �⇥ ¬¬' ⇤ IPC.

‣ Proof. (Easy direction)

Suppose ¬¬' ⇤ IPC.

Then ¬¬' ⇤ CPC.

Thus, by the classical law of double negation, i.e.

¬¬' �⇥ ' ⇤ CPC

we obtain ' ⇤ CPC.



Glivenko’s Theorem: Proof
‣ Glivenko’s Theorem. 

For every formula ' ⇤ CPC �⇥ ¬¬' ⇤ IPC.
‣ Proof. (Not so easy direction)

By contraposition, assume ¬¬� ⇧⌅ IPC.
Then there are a finite model M and a point x in M such that M

x

⇧|= ¬¬�.
Hence there is a y ⌅ x � for which y |= ¬�.
Let z be some final point in the set y �.

Because truth is propagated upwards, we have: z |= ¬� and so z ⇧|= ¬¬�.
Let M 0 be the submodel of M generated by z, i.e., M 0

z

|= p ⇥⇤ M
z

|= p, for
every variable p.
According to the generation theorem, M 0 refutes ¬¬�. But since this model
contains only one point, it follows that ¬¬� ⇧⌅ CPC, which, by the law of
double negation, implies � ⇧⌅ CPC.
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