FROM SYLLOGISM TO COMMON SENSE

MEHUL BHATT OLIVER KUTZ THOMAS SCHNEIDER

DEPARTMENT OF COMPUTER SCIENCE & RESEARCH CENTER ON SPATIAL COGNITION (SFB/TR 8) UNIVERSITY OF BREMEN

NORMAL MODAL LOGIC

KRIPKE SEMANTICS COMPLETENESS AND CORRESPONDENCE THEORY

LECTURE 9

EXAMPLES OF MODAL LOGICS

Classic Distinctions between Modalities

- Alethic modality: necessity, possibility, contingency, impossibility
 - distinguish further: logical physical metaphysical, etc.
- **Temporal modality:** always, some time, never
- **Deontic modality:** obligatory, permissible
- **Epistemic modality:** it is known that
- **Doxastic modality:** it is believed that

Technically, all these modalities are treated in the same way, by using unary modal operators

EXAMPLES OF MODAL LOGICS

Modern interpretations of modalities

- **Mathematical Logic:**
 - The logic of proofs **GL**: [] A means: In PA it is provable that 'A'.
- **Computer Science:**
 - Linear Temporal Logic LTL: Formal Verification
 - \mathbf{X} A : in the next moment 'A'
 - A **U** B: A is true until B becomes true
 - G = 'always', F = 'eventually',
 - liveness properties state that something good keeps happening:
 - **G F** A or also **G** (**B** -> **F** A)
- Linguistics / KR / etc.

MODAL LOGIC: SOME HISTORY

- Modern modal logic typically begins with the systems devised by C. I. LEWIS, intended to model strict implication and avoid the paradoxes of material implication, such as the '*ex falso quodlibet*'.
 - " If it never rains in Copenhagen, then Elvis never died."
 - (No variables are shared in example => relevant implication)
- For strict implication, we *define* **A** ~~> **B** by [] (**A** --> **B**)
- These systems are however mutually incompatible, and no **base** logic was given of which the other logics are extensions of.
- The modal logic **K** is such a base logic, named after SAUL KRIPKE, and which serves as a minimal logic for the class of all its (normal) extensions - defined next via a Hilbert system.

A HILBERT SYSTEM FOR MODAL LOGIC K

The following is the *standard Hilbert system* for the modal logic **K**.

Axioms

$$p_{1} \rightarrow (p_{2} \rightarrow p_{1})$$

$$(p_{1} \rightarrow p_{2}) \rightarrow (p_{1} \rightarrow (p_{2} \rightarrow p_{3})) \rightarrow (p_{1} \rightarrow p_{3})$$

$$p_{1} \rightarrow p_{1} \lor p_{2}$$

$$p_{2} \rightarrow p_{1} \lor p_{2}$$

$$(p_{1} \rightarrow p_{3}) \rightarrow (p_{2} \rightarrow p_{3}) \rightarrow (p_{1} \lor p_{2} \rightarrow p_{3})$$

$$(p_{1} \rightarrow p_{2}) \rightarrow (p_{1} \rightarrow \neg p_{2}) \rightarrow \neg p_{1} \longleftarrow two$$

$$\neg \neg p_{1} \rightarrow p_{1} \longleftarrow two$$

$$p_{1} \land p_{2} \rightarrow p_{1}$$

$$p_{1} \land p_{2} \rightarrow p_{2}$$

$$p_{1} \rightarrow p_{2} \rightarrow p_{1} \land p_{2}$$

$$\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \longleftarrow$$

$$\frac{p_1 \qquad p_1 \to p_2}{p_2} \qquad \qquad \frac{p}{\Box p} \longleftarrow \text{new}$$

Rules

o classical tautologies tead of $\bot \rightarrow p$ in INT

new axiom of **Box Distribution**

rule of **Necessitation**

SOME MORE MODAL FREGE SYSTEMS

Hilbert systems for other modal logics are obtained by adding axioms.

modal logic	axioms	
K4	K +	$\Box p \to \Box \Box p$
KB	K +	$p \to \Box \diamondsuit p$
GL	K +	$\Box(\Box p \to p) \to \Box p$
S4	K4 +	$\Box p \to p$
S4Grz	S4 +	$\Box(\Box(p\to\Box p)\to p) -$

- More generally, in a fixed language, the class of all **normal modal logics** is defined as any set of formulae that
 - (1) contains K (2) is closed under substitution and (3) Modus Ponens
- In particular, any normal extension of K contains the Axiom of Box-Distribution:

$$\Box(p \to q) \to (\Box p \to \Box q)$$

$\rightarrow \Box p$

KRIPKE SEMANTICS

A Kripke frame consists of a set **W**, the set of `possible worlds', and a binary relation **R** between worlds. A valuation β assigns propositional variables to worlds. A **pointed model** M_x is a frame, together with a valuation and a distinguished world **x**.

$$M_{x} \models p \land q \iff M_{x} \models p \text{ and } M_{x} \models p$$

$$M_{x} \models p \lor q \iff M_{x} \models p \text{ or } M_{x} \models q$$

$$M_{x} \models p \rightarrow q \iff \text{if } M_{x} \models p \text{ then } M_{x}$$

$$M_{x} \models \neg p \iff M_{x} \not\models p$$

$$M_{x} \models \Box p \iff \text{for all } xRy : M_{y} \models$$

$$M_{x} \models \Diamond p \iff \text{exists } xRy : M_{y} \models$$

- = q
- $x \models q$
- = *p*
- p

MODAL SAT / TAUT / VALIDITY

- Modal Sat: A modal formula is satisfiable if there *exists* a pointed model that satisfies it.
- Modal Taut: A formula is a modal tautology if it is satisfied in *all* pointed models.
- Modal Validity: A formula is valid in a class of frames if it a modal tautology relative to that class of frames.

Check validity of Box Distribution

$$\Box(p \to q) \to (\Box p \to \Box q)$$

A TABLEAUX SYSTEM FOR MODAL LOGIC K

- Hilbert systems are generally considered difficult to **use** in a practical way.
- There are many proof systems for Modal Logics. One of the most popular ones are **Semantic Tableaux**:
 - refutation based proof system
 - highly developed optimisation techniques
 - allows to extract models directly from proofs
 - popular in particular for Description Logic based formalisms
 - often used for establishing upper bounds for the complexity of a SAT problem for a logic.

A TABLEAUX SYSTEM FOR MODAL LOGIC K

- In prefixed tableaux, every formula starts with a prefix and a sign
 - $\blacktriangleright \sigma Z \phi$
- **Prefixes** (denoting possible worlds) keep track of accessibility.
 - A prefix σ is a finite sequence of natural numbers
 - Formulae in a tableaux are **labelled** with **T** or **F**.

Definition 1 (K prefix accessibility) For modal logic K, prefix σ' is accessible from prefix σ if σ' is of the form σn for some natural number n.

Example 1 4 7 9 is accessible from 1 4 7 which is accessible from 1 4 etc.

A TABLEAUX SYSTEM FOR MODAL LOGIC K

- A basic semantic tableaux for **K** is given as follows:
- We introduce **prefixes** (denoting possible worlds) that keep track of accessibility.
- Formulae in the tableaux are **labelled** with **T** or **F**.
- We differentiate the following four kinds of formulas:

lpha	$lpha_1$	$lpha_2$	β	β_1	eta_2	_	u
$TA \wedge B$	TA	TB	$TA \lor B$	TA	TB		$T\Box A$
$FA \lor B$	FA	FB	$FA \wedge B$	FA	FB		$F \Diamond A$
$FA \to B$	TA	FB	$TA \to B$	FA	TB		v
$F \neg A$	TA	TA	$T \neg A$	FA	FA		
Conju	nctiv	ve	Disju	inctiv	ve		Univ

These tables essentially encode the semantics of the logic.

 ν_0 TAFA

π	π_0
$T\Diamond A$	TA
$F\Box A$	FA

ersal

Existential

A TABLEAU SYSTEM FOR MODAL LOGIC K

- A tableau is now expanded according to the following rules.
- A proof starts with assuming the falsity of a formula, and succeeds if every branch of the tableau closes, i.e. contains a direct contradiction.

 σ' accessible from σ and σ' occurs on the branch already σ' is a simple unrestricted extension of σ , i.e., σ' is accessible from σ and no other prefix on the branch starts with σ'

Existential

$$(\pi) \quad \frac{\sigma\pi}{\sigma'\pi_0}^2$$

A TABLEAU SYSTEM FOR MODAL LOGIC K

- We give an example derivation of a valid formula:
 - $1 \ F(\Box A \land \Box B) \to \Box (A \land B) \quad (1)$ 1 $T \Box A \land \Box B$ (2) from 1 1 $F \square (A \land B)$ (3) from 1 (4) from 2 $1 T \Box A$ (5) from 2 $1 T \Box B$ 1.1 $FA \wedge B$ (6) from 3
- 1.1 FA (7) from 6 $1.1 \ FB$ (8) from 6 1.1 TA (9) from 4 1.1 TB(10) from 5 7 and 9 10 and 8 * *
- This shows **K**-validity of:

 $\Box A \land \Box B \to \Box (A \land B)$

A TABLEAU SYSTEM FOR MODAL LOGIC K

We give a refutation of a satisfiable, but non-valid formula:

> $1 \ F \Box (A \lor B) \to \Box A \lor \Box B$ (1)1 $T\Box(A \lor B)$ (2) from 1 1 $F \Box A \lor \Box B$ (3) from 1 (4) from 3 1 $F\Box A$ 1 $F \Box B$ (5) from 3 1.1 FA(6) from 41.2 FB(7) from 5 (8) from 2 1.1 $TA \lor B$ (9) from 2 1.2 $TA \lor B$

This shows K-satisfiability of:

 $\Box(A \lor B) \land \Diamond \neg A \land \Diamond \neg B$

KRIPKE SEMANTICS (AGAIN)

A Kripke frame consists of a set W, the set of `possible worlds', and a binary relation R between worlds. A valuation β assigns propositional variables to worlds. A pointed model M_x is a frame, together with a valuation and a distinguished world x.

$$M_{x} \models p \land q \iff M_{x} \models p \text{ and } M_{x} \models M_{x} \models p \lor q \iff M_{x} \models p \text{ or } M_{x} \models p$$

$$M_{x} \models p \lor q \iff \text{if } M_{x} \models p \text{ then } M$$

$$M_{x} \models \neg p \iff M_{x} \nvDash p$$

$$M_{x} \models \Box p \iff \text{for all } xRy : M_{y} \models$$

$$M_{x} \models \Diamond p \iff \text{exists } xRy : M_{y} \models$$

- *= q*
- $\begin{array}{c} q \\ I_x \models q \end{array}$
- = p
- *p*

MODAL SAT / TAUT / VALIDITY

- Modal Sat: A modal formula is satisfiable if there *exists* a pointed model that satisfies it.
- Modal Taut: A formula is a modal tautology if it is satisfied in *all* pointed models.
- Modal Validity: A formula is valid in a class of frames if it a modal tautology relative to that class of frames.

COMPLETENESS (SKETCH)

- **Soundness:** Every **K**-provable formula is valid in all frames.
- **Completeness:** Every **K**-valid formula is **K**-provable.
 - **Lindenbaum Lemma:** Every consistent set of formulae can be extended to a maximally one.
 - Canonical Models: Construct worlds, valuations, and accessibility from the MCSs
 - Truth Lemma: Every consistent set is satisfied in the canonical model.

CANONICAL MODELS & TRUTH LEMMA

- Worlds are maximally consistent sets MCSs
- **Valuations** are defined via membership in the MCSs
 - **Accessibility** is defined as follows

X **R** Y iff for every formula **A** we have [] $A \in X$ implies $A \in Y$

or equivalently

X **R** Y iff for every formula **A** we have $\langle \rangle A \in Y$ implies $A \in X$

CANONICAL MODELS & TRUTH LEMMA

- Worlds are maximally consistent sets MCSs
- **Valuations** are defined via membership in the MCSs
 - **Accessibility** is defined as follows

X **R** Y iff for every formula **A** we have $\langle \rangle A \in Y \text{ implies } A \in X$

Existence Lemma: For any MCS w, if $\langle \rangle \phi \in w$ then there is an accessible state v such that $\phi \in v$.

> **Note:** this is the main difference to the classical completeness proof.

CANONICAL MODELS & TRUTH LEMMA

- Worlds are maximally consistent sets MCSs
- Valuations are defined via membership in the MCSs
 - **Accessibility** is defined as follows

X **R** Y iff for every formula **A** we have $\langle \rangle A \in Y \text{ implies } A \in X$

Truth Lemma: In the canonical model M we have M, w $\models \phi$ iff $\phi \in w$.

> Proof is almost immediate from Existence Lemma and the Definition of R

CHARACTERISING MODAL LOGICS

- Most standard modal logics can be **characterised** via frame validity in certain classes of frames.
- A logic **L** is characterised by a class **F** of frames if **L** is **valid** in **F**, and any non-theorem $\phi \notin L$ can be **refuted** in a model based on a frame in **F**.

modal logic	characterising class of frames
Κ	all frames
$\mathbf{K4}$	all transitive frames
\mathbf{KB}	all symmetric frames
\mathbf{GL}	R transitive, R^{-1} well-founded
$\mathbf{S4}$	all reflexive and transitive frames
S4Grz	R reflexive and transitive, R^{-1} –

ld well-founded

CORRESPONDENCE THEORY: EXAMPLE

- We sketch as an example the correspondence between the modal logic axiom that defines the logic K4 and the first-order axiom that characterises the class of transitive frames:
- Let $\langle W, R \rangle$ be a frame. R is **transitive** if $\forall x, y, z \in W$. xRy and yRz imply xRz $\Box p \to \Box \Box p$ is valid in a frame $\langle W, R \rangle$ iff R is transitive Theorem.
 - **Proof.**
 - (1) It is easy to see that the **4-axiom** is valid in transitive frames.
 - (2) Conversely, assume the 4-axiom is refuted in a model $M_x = \langle W, D, \beta, x \rangle$

The frame can clearly **not be transitive**.

GÖDEL-TARSKI-MCKINSEY TRANSLATION

The Gödel–Tarski–McKinsey translation **T**, or simply **Gödel translation**, is an embedding of IPC into S4, or Grz.

$$T(p) = \Box p$$

$$T(\bot) = \bot$$

$$T(\varphi \land \psi) = T(\varphi) \land T(\psi)$$

$$T(\varphi \lor \psi) = T(\varphi) \lor T(\psi)$$

$$T(\varphi \rightarrow \psi) = \Box(T(\varphi) \rightarrow T(\psi))$$

Here, the Box Operator can be read as `it is provable' or `it is constructable'.

GÖDEL-TARSKI-MCKINSEY TRANSLATION

Theorem. The Gödel translation is an embedding of **IPC** into **S4** and **Grz**.

I.e. for every formula $\varphi \in \mathbf{IPC} \iff \mathsf{T}(\varphi) \in \mathbf{S4} \iff \mathsf{T}(\varphi) \in \mathbf{Grz}$

Applications:

> modal companions of superintuitionistic logics $L \in \operatorname{NExt}(\mathbf{S4}) : \rho(L) = \{A \mid L \vdash \mathsf{T}(A)\}$

RULES: ADMISSIBLE VS. DERIVABLE

- The distinction between admissible and derivable rules was introduced by PAUL LORENZEN in his 1955 book "Einführung in die operative Logik und Mathematik".
- Informally, a rule of inference A/B is **derivable** in a logic L if there is an L -proof of B from A.
- If there is an **L** -proof of **B** from **A**, by the rule of substitution there also is an **L**-proof of $\sigma(B)$ from $\sigma(A)$, for any substitution σ . For admissible rules this has to be made explicit.
- A rule **A**/**B** is **admissible** in **L** if the set of theorems is closed under the rule, i.e. if for every substitution σ : $L \vdash \sigma(A)$ implies $L \vdash \sigma(B)$. For this we usually write as: $A \sim B$

RULES: ADMISSIBLE VS. DERIVABLE

- Therefore the addition of admissible rules leaves the set of theorems of a logic intact. Whilst they are therefore `redundant' in a sense, they can significantly shorten proofs, which is our main concern here.
- **Example:** Congruence rules.
- The general form of a rule is the following:

$$\frac{\phi_1,\ldots,\phi_n}{\phi}$$

If our logic L has a 'well-behaved conjunction' (as in CPC, IPC, and most modal logics), we can always rewrite this rule by taking a conjunction and assume w.l.o.g. the following simpler form:

We are next going to show that in **CPC** (unlike many non-classical logics) the notions of admissible and derivable rule do indeed coincide!

CPC IS **POST** COMPLETE

- A logic L is said to be **Post complete** if it has no proper consistent extension.
- **Theorem.** Classical PC is Post complete
- **Proof.** (From CHAGROV & ZAKHARYASCHEV 1997)
 - Suppose L is a logic such that $CPC \subset L$ and pick some formula $\phi \in L$ -CPC.
 - Let **M** be a model refuting ϕ . Define a substitution σ by setting:

$$\sigma(p_i) := \begin{cases} \top & \text{if } M \models p_i \\ \bot & \text{otherwise} \end{cases}$$

- Then $\sigma(\phi)$ does not depend on **M**, and is thus false in every model.
- We therefore obtain $\sigma(\phi) \rightarrow \bot \in CPC$.
- But since $\sigma(\phi) \in L$, we obtain $\bot \in L$ by MP, hence L is inconsistent. QED

CPC IS **O**-REDUCIBLE

- A logic L is **0-reducible** if, for every formula $\phi \notin L$, there is a variable free substitution instance $\sigma(\phi) \notin L$.
- **Theorem.** Classical PC is 0-reducible.
- **Proof.**
 - Follows directly from the previous proof. **QED**
- **Note: K** is Post-incomplete and not 0-reducible.

CPC IS STRUCTURALLY COMPLETE

- A logic **L** is said to be **structurally complete** if the sets of admissible and derivable rules coincide.
- **Theorem.** Classical PC is structurally complete.
- **Proof.**
 - It is clear that every derivable rule is admissible.
 - $rac{\phi_1,\ldots,\phi_n}{\phi}$ Conversely, suppose the rule: is admissible in **CPC**, but not derivable.
 - This means that, by the Deduction Theorem $\phi_1 \land \ldots \land \phi_n \rightarrow \phi \notin CPC$
 - Since **CPC** is 0-reducible, there is a variable free substitution instance which is false in every model, i.e. we have $\sigma(\phi_1) \land \ldots \land \sigma(\phi_n) \rightarrow \sigma(\phi) \notin CPC$
 - This means that the formulae $\sigma(\phi_i)$ are all valid, while $\sigma(\phi)$ is not.
 - Therefore, we obtain:
 - But $\sigma(\phi) \notin CPC$, which is a contradiction to admissibility. **QED**

 $\sigma(\phi_1) \wedge \ldots \wedge \sigma(\phi_n) \in CPC$

ADMISSIBLITY IN CPC IS DECIDABLE

- **Corollary.** Admissibility in **CPC** is decidable.
- **Proof.** Pick a rule **A/B**. This rule is admissible if and only if it is derivable if and only if $\mathbf{A} \rightarrow \mathbf{B}$ is a tautology.
- Some Examples: Congruence Rules:

$p \leftrightarrow q$	$p \leftrightarrow q$	p \star
$p \wedge r \leftrightarrow q \wedge r$	$\overline{p \lor r \leftrightarrow q \land r}$	$p \to r \leftarrow$
$\underline{\qquad p \leftrightarrow q}$	$\underline{\qquad p \leftrightarrow q}$	<i>p</i> <
$r \wedge p \leftrightarrow r \wedge q$	$r \lor p \leftrightarrow r \land q$	$r \to p \not \leftarrow$

if these are admissible in a logic L (they are derivable in CPC, **IPC, K**), the principle of **equivalent replacement** holds i.e.:

 $\psi \leftrightarrow \chi \in L$ implies $\phi(\psi) \leftrightarrow \phi(\chi) \in L$

 $\frac{\leftrightarrow q}{\leftrightarrow q \to r}$

 $\leftrightarrow q$ $\leftrightarrow r \to q$

ADMISSIBLE RULES IN IPC AND MODAL K

- Intuitionistic logic as well as modal logics behave quite differently with respect to admissible vs. derivable rules (as well as many other meta-logical properties)
 - E.g., intuitionistic logic is not Post complete. Indeed there is a continuum of consistent extension of **IPC**, namely the class of **superintuitionistic** logics; the smallest Post-complete extension of IPC is CPC.
 - Unlike in CPC, the existence of admissible but not derivable rules is quite common in many well known non-classical logics, but there exist also examples of structurally complete modal logics, e.g. the Gödel-Dummett logic LC.
 - We next give some examples for **IPC** and modal **K**.
 - Finally, we will discuss how the sets of admissible rules can be presented in a finitary way, using the idea of a **base for admissible rules**.

- The following rule is admissible, e.g., in the modal logics **K**, **D**, **K**4, **S**4, **G**L.
- It is **derivable** in **S4**, but it is not derivable in **K**, **D**, **K4**, or **GL**.

- **Proof.** (Derivability in **S4** and **K**):
- It is derivable in S4 because $\Box p \rightarrow p$ is an axiom:
 - Assume a proof for $\Box p$ and apply MP once.
- It is not derivable in K: The formula $\square^n p \rightarrow p$ is refuted in the one point irreflexive frame.
- Note that the *classical Deduction Theorem* does not hold in modal logic!

- The following rules is **admissible**, e.g., in the modal logics **K**, **D**, **K**4, **S**4, **G**L.
- It is derivable in S4, but it is not derivable in K, D, K4, or GL.

Proof. (Admissibility in **K**):

Assume $\langle (F, R), \beta, x \rangle \not\models \sigma(p)$ for some frame (F, R). Pick some $y \notin F$, set $G = F \cup \{y\}$, $S = R \cup \{\langle y, x \rangle\}$, and $\gamma(p) = \beta(p)$ for all p. Then:

 $\langle (G,S),\gamma,y\rangle \models \neg \Box \sigma(p)$ whilst we still have $\langle (G, S), \gamma, x \rangle \models \neg \sigma(p)$

- The following rules is admissible, e.g., in the modal logics **K**, **D**, **K**4, **S**4, **G**L.
- It is derivable in S4, but it is not derivable in K, D, K4, or GL.
- It is **not admissible** in some extensions of **K**, e.g.: $\mathbf{K} \oplus \Box \perp$

- **Proof.** (Non-admissibility in $\mathbf{K} \oplus \Box \bot$):
 - $\mathbf{K} \oplus \Box \perp$ is consistent because it is satisfied in the one point irreflexive frame to the right.
 - It follows in particular that a rule admissible in a logic L need not be admissible in its extensions.

- The following rule is admissible in every normal modal logic.
- It is derivable in GL and S4.1, but it is not derivable in K, D, K4, S4, S5.

$$(\diamond) \qquad \frac{\diamond p \land \diamond \neg p}{\bot}$$

- Löb's rule (LR) is admissible (but not derivable) in the basic modal logic K.
- It is derivable in **GL**. However, **(LR)** is not admissible in **K4**.

$$(\mathbf{LR}) \qquad \frac{\Box p \to p}{p}$$

ADMISSIBLE RULES IN IPC

- The following rule is admissible in **IPC**, but not derivable:
 - Kreisel-Putnam rule (or Harrop's rule (1960), or independence of premise rule).

(KPR)
$$\frac{\neg p \to q \lor r}{(\neg p \to q) \lor (\neg p \to r)}$$

(KPR) is admissible in IPC (indeed in any superintuitionistic logic), but the formula:

$$(\neg p \to q \lor r) \to (\neg p \to q) \lor (\neg p \to$$

- is not an intuitionistic tautology, therefore (KPR) is not derivable, and **IPC** is not structurally complete.
- Note: **IPC** has a standard *Deduction Theorem* (only intuitionistically valid axioms are used in the classical proof)

r

(KPR) IS NOT DERIVABLE: PROOF

- Harrop's rule is derivable in **IPC** if the following is a tautology: $(\neg p \to q \lor r) \to (\neg p \to q) \lor (\neg p \to r)$
- The following Kripke model for **IPC** gives a counterexample:

DECIDABILITY OF ADMISSIBILITY

- Is admissibility **decidable**? I.e. is there an algorithm for recognizing admissibility of rules? (FRIEDMAN 1975)
- Yes, for many modal logics, as Rybakov 1997 and others showed.
- It is typically coNExpTime-complete (JEŘÁBEK 2007).
- Decidability of admissibility is a major open problem for modal logic **K**.
- Recent results by WOLTER and ZAKHARYASCHEV (2008) show e.g. the undecidability of admissibility for modal logic **K** extended with the universal modality.

SOME NOTES ON BASES

- Is admissibility decidable for **IPC**? RYBAKOV gave a first postive answer in 1984. He also showed:
 - admissible rules do not have a finite basis;
 - gave a semantic criterion for admissibility.
- Admissibility in intuitionistic logic can also be reduced to admissibility in Grz using the Gödel-translation.
- IEMHOFF 2001: there exists a recursively enumerable set of rules as a basis.

 $\langle \diamond \rangle$

Without proof, we mention that the rule below gives a singleton basis for the modal logic **S5**.

 $\frac{\Diamond p \land \Diamond \neg p}{}$

SUMMARY

- We have introduced the modal logic **K** and the intuitionistic calculus IPC.
- Have shown how they can be characterised by certain classes of Kripke frames.
- Discussed several proof systems for these logics.
- Introduced translations between logics and discussed how these can be used to transfer various properties of logics.
- Discussed the difference between admissible and derivable rules in modal, intuitionistic, and classical logic.

LITERATURE

- ALEXANDER CHAGROV & MICHAEL ZAKHARYASCHEV, Modal Logic, Oxford Logic Guides, Volume 35, 1997.
- MELVIN FITTING, Proof Methods for Modal and Intuitionistic Logic, *Reidel*, 1983.
- TILL MOSSAKOWSKI, ANDRZEJ TARLECKI, RAZVAN DIACONESCU, What is a logic translation?, Logica Universalis, 3(1), pp. 95–124, 2009.
- MARCUS KRACHT, Modal Consequence Relations, Handbook of Modal Logic, Elsevier, 2006.
- ROSALIE IEMHOFF, On the admissible rules of intuitionistic **propositional logic,** *Journal of Symbolic Logic, Vol. 66, 281–294, 2001.*