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Examples of Modal Logics

‣ Alethic modality: necessity, possibility, contingency, impossibility
‣ distinguish further: logical - physical - metaphysical, etc.

‣ Temporal modality: always, some time, never
‣ Deontic modality: obligatory, permissible
‣ Epistemic modality: it is known that
‣ Doxastic modality: it is believed that 

Classic Distinctions between Modalities

Technically, all these modalities are treated 
in the same way, by using unary modal operators



Examples of Modal Logics

‣ Mathematical Logic:
‣ The logic of proofs GL: [] A means: In PA it is provable that ‘A’. 

‣ Computer Science:
‣ Linear Temporal Logic LTL: Formal Verification
‣ X A : in the next moment ‘A’
‣ A U B: A is true until B becomes true
‣ G = ‘always’ , F = ‘eventually’, 
‣ liveness properties state that something good keeps happening:

‣   G F A    or also  G (B -> F A)
‣ Linguistics / KR / etc.

Modern interpretations of modalities

http://en.wikipedia.org/w/index.php?title=Liveness&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Liveness&action=edit&redlink=1


Modal Logic: Some History  

‣ Modern modal logic typically begins with the systems devised by 
C. I. LEWIS, intended to model strict implication and avoid the 
paradoxes of material implication, such as the ‘ex falso quodlibet’.
‣ “ If it never rains in Copenhagen, then Elvis never died.”
‣ (No variables are shared in example => relevant implication)

‣ For strict implication, we define A ~~> B by [] (A --> B)
‣ These systems are however mutually incompatible, and no base 

logic was given of which the other logics are extensions of.
‣ The modal logic K is such a base logic, named after SAUL KRIPKE, 

and which serves as a minimal logic for the class of all its (normal) 
extensions - defined next via a Hilbert system. 



A Hilbert system for Modal Logic K

‣ The following is the standard Hilbert system for the modal logic K.

Axioms !1 → (!2 → !1)
(!1 → !2) → (!1 → (!2 → !3)) → (!1 → !3)
!1 → !1 ∨ !2
!2 → !1 ∨ !2
(!1 → !3) → (!2 → !3) → (!1 ∨ !2 → !3)
(!1 → !2) → (!1 → ¬!2) → ¬!1
¬¬!1 → !1
!1 ∧ !2 → !1
!1 ∧ !2 → !2
!1 → !2 → !1 ∧ !2
□(! → ") → (□! → □")

Rules
!1 !1 → !2

!2

!

□!

Table 1. A Frege systems for the modal logic #

modal logic axioms
#4 # + □! → □□!
KB # + ! → □♢!
GL # + □(□! → !) → □!
$4 #4 + □! → !
$4Grz $4 + □(□(! → □!) → !) → □!

Table 2. Frege systems for important modal logics

As in classical logic, if we augment frames with assignments, we arrive at the
notion of a model.

Definition 12. A model for the modal language is a pair (!, # ) where

– ! = ($,%) is a frame and
– # : Var !→ #($ ) is a mapping assigning to each propositional variable & a

set # (&) of worlds (#($ ) denotes the power set of $ ).

With the notion of models we can now define the semantics of modal for-
mulas:

Definition 13. Let ',( be modal formulas, let ) = ($,%, # ) be a model and
* ∈ $ be a world. Inductively we define the notion of a formula to be satisfied
in ) at world *:

– ),* ∣= & if * ∈ # (&) where & ∈ Var,
– ),* ∣= ¬' if not ),* ∣= ',
– ),* ∣= ' ∧ ( if ),* ∣= ' and ),* ∣= (
– ),* ∣= ' ∨ ( if ),* ∣= ' or ),* ∣= (
– ),* ∣= □' if for all + ∈ $ with (*, +) ∈ % we have ),+ ∣= '.

A modal formula ' is satisfiable if there exists a model ) = ($,%, # ) and
a world * ∈ $ such that ),* ∣= '. Dually, ' is a modal tautology if for every
model ) = ($,%, # ) and every * ∈ $ we have ),* ∣= '.

It can be shown that the Frege system from the previous section is indeed a
proof system for the modal logic ,, i. e., it is sound and complete for all modal
tautologies.

14

two classical tautologies 
instead of ⊥ → p in INT

new axiom of 
Box Distribution

new rule of Necessitation



Some More Modal frege systems

modal logic axioms

K4 K + 2p ! 22p
KB K + p ! 23p
GL K + 2(2p ! p) ! 2p
S4 K4 + 2p ! p
S4Grz S4 + 2(2(p ! 2p) ! p) ! 2p

‣ Hilbert systems for other modal logics are obtained by adding axioms.

‣ More generally, in a fixed language, the class of all normal modal logics is defined 
as any set of formulae that 
‣ (1) contains K (2) is closed under substitution and (3) Modus Ponens

‣ In particular, any normal extension of K contains the Axiom of Box-Distribution:
2(p ! q) ! (2p ! 2q)



Kripke Semantics

‣ A Kripke frame consists of a set W, the set of `possible worlds’, and a 
binary relation R between worlds. A valuation ! assigns 
propositional variables to worlds. A pointed model  Mx is a frame, 
together with a valuation and a distinguished world x. 

M

x

|= p ⇧ q ⇥⇤ M

x

|= p and M

x

|= q

M

x

|= p ⌃ q ⇥⇤ M

x

|= p or M

x

|= q

M

x

|= p � q ⇥⇤ if M

x

|= p then M

x

|= q

M

x

|= ¬p ⇥⇤ M

x

⌅|= p

M

x

|= 2p ⇥⇤ for all xRy : M

y

|= p

M

x

|= 3p ⇥⇤ exists xRy : M

y

|= p



Modal Sat / Taut / Validity

‣ Modal Sat: A modal formula is satisfiable if there 
exists a pointed model that satisfies it.

‣ Modal Taut: A formula is a modal tautology if it is 
satisfied in all pointed models.

‣ Modal Validity: A formula is valid in a class of 
frames if it a modal tautology relative to that class of 
frames.

Check validity of 
Box Distribution 2(p ! q) ! (2p ! 2q)



A Tableaux system for Modal Logic K

‣ Hilbert systems are generally considered difficult to use in a 
practical way.

‣ There are many proof systems for Modal Logics. One of the most 
popular ones are Semantic Tableaux:
‣ refutation based proof system
‣ highly developed optimisation techniques
‣ allows to extract models directly from proofs
‣ popular in particular for Description Logic based formalisms 
‣ often used for establishing upper bounds for the complexity of a 

SAT problem for a logic.



A Tableaux system for Modal Logic K

‣ In prefixed tableaux, every formula starts with a prefix and a sign
‣ σ Z φ 

‣ Prefixes (denoting possible worlds) keep track of accessibility.
‣ A prefix σ is a finite sequence of natural numbers
‣ Formulae in a tableaux are labelled with T or F.

L10.2 Modal Tableaux

(P) all propositional tautologies

(K) ⇤(�!  ) ! (⇤�! ⇤ )

(MP)
� �!  

 

(G)
�

⇤�

Figure 1: Modal logic K

T is system K plus (T) ⇤�! �

S4 is system T plus (4) ⇤�! ⇤⇤�

Figure 2: Some other modal logics

is a finite sequence of natural numbers. In addition, every formula on the
tableau has a sign Z 2 {F, T} that indicates the truth-value we currently
expect for the formula in our reasoning. That is, a formula in the modal
tableaux is of the form

�ZA

where the prefix � is a finite sequence of natural numbers, the sign Z is in
{F, T}, and F is a formula of modal logic. At this point, we understand a
prefix � as a symbolic name for a world in a Kripke structure.

Definition 1 (K prefix accessibility) For modal logic K, prefix �

0
is accessible

from prefix � if �

0
is of the form �n for some natural number n.

For every formula of a class ↵ with a top level operator and sign (T or
F for true and false) as indicated, we define two successor formulas ↵1 and
↵2:

↵ ↵1 ↵2

TA ^B TA TB

FA _B FA FB

FA ! B TA FB

F¬A TA TA

� �1 �2

TA _B TA TB

FA ^B FA FB

TA ! B FA TB

T¬A FA FA

For the following cases of formulas we define one successor formula

LECTURE NOTES FEBRURARY 18, 2010

‣ Example 1 4 7 9 is accessible from 1 4 7 which is accessble from 1 4 etc.



A Tableaux system for Modal Logic K

‣ A basic semantic tableaux for K is given as follows:
‣ We introduce prefixes (denoting possible worlds) that keep track of accessibility.
‣ Formulae in the tableaux are labelled with T or F.
‣ We differentiate the following four kinds of formulas:

L10.2 Modal Tableaux

(P) all propositional tautologies

(K) �(⌅ � ⇧) � (�⌅ � �⇧)

(MP)
⌅ ⌅ � ⇧

⇧

(G)
⌅

�⌅

Figure 1: Modal logic K

T is system K plus (T) �⌅ � ⌅
S4 is system T plus (4) �⌅ � ��⌅

Figure 2: Some other modal logics

is a finite sequence of natural numbers. In addition, every formula on the
tableau has a sign Z ⇥ {F, T} that indicates the truth-value we currently
expect for the formula in our reasoning. That is, a formula in the modal
tableaux is of the form

⇤ZA

where the prefix ⇤ is a finite sequence of natural numbers, the sign Z is in
{F, T}, and F is a formula of modal logic. At this point, we understand a
prefix ⇤ as a symbolic name for a world in a Kripke structure.

Definition 1 (K prefix accessibility) For modal logic K, prefix ⇤� is accessible
from prefix ⇤ if ⇤� is of the form ⇤n for some natural number n.

For every formula of a class � with a top level operator and sign (T or
F for true and false) as indicated, we define two successor formulas �1 and
�2:

� �1 �2

TA ⇤B TA TB
FA ⌅B FA FB
FA � B TA FB
F¬A TA TA

⇥ ⇥1 ⇥2
TA ⌅B TA TB
FA ⇤B FA FB
TA � B FA TB
T¬A FA FA

For the following cases of formulas we define one successor formula

LECTURE NOTES FEBRURARY 18, 2010

Modal Tableaux L10.3

⇤ ⇤0
T⇤A TA
F⌃A FA

⌅ ⌅0
T⌃A TA
F⇤A FA

Every combination of top-level operator and sign occurs in one of the
above cases. Tableau proof rules by those classes are shown in Figure 3. A
tableau is closed if every branch contains some pair of formulas of the form
⇧TA and ⇧FA. A proof for modal logic formula consists of a closed tableau
starting with the root 1FA.

(�)
⇧�

⇧�1

⇧�2

(⇥)
⇧⇥

⇧⇥1 ⇧⇥2
(⇤⇤)

⇧⇤

⇧0⇤0
1 (⌅)

⇧⌅

⇧0⌅0
2

1�0 accessible from � and �0 occurs on the branch already
2�0 is a simple unrestricted extension of �, i.e., �0 is accessible from � and no other prefix

on the branch starts with �0

Figure 3: Tableau proof rules for QML

The tableau rules can also be used to analyze F⇤A ⇥ ⌃A as follows:

1 F⇤A ⇥ ⌃A (1)
1 T⇤A (2) from 1
1 F⌃A (3) from 1
stop

No more proof rules can be used because the modal formulas are ⇤ rules,
which are only applicable for accessible prefixes that already occur on the
branch. If we drop this restriction, we can continue to prove and close the
tableau:

1 F⇤A ⇥ ⌃A (1)
1 T⇤A (2) from 1
1 F⌃A (3) from 1

1.1 TA (4) from 2
1.1 FA (5) from 3

�

But this is bad news, because the formula ⇤A ⇥ ⌃A that we set out to
prove in the first place is not even valid in K. Consequently, the side condi-
tion on the ⇤ rule is necessary for soundness!

As an example proof in K-tableaux we prove ⇤A ⇤⇤B) ⇥ ⇤(A ⇤B):

LECTURE NOTES FEBRURARY 18, 2010

‣ These tables essentially encode the semantics of the logic.

Conjunctive Disjunctive Universal Existential



A Tableau system for Modal Logic K

‣ A tableau is now expanded according to the following rules. 
‣ A proof starts with assuming the falsity of a formula, and succeeds if every 

branch of the tableau closes, i.e. contains a direct contradiction.

Modal Tableaux L10.3

⇤ ⇤0
T⇤A TA
F⌃A FA

⌅ ⌅0
T⌃A TA
F⇤A FA

Every combination of top-level operator and sign occurs in one of the
above cases. Tableau proof rules by those classes are shown in Figure 3. A
tableau is closed if every branch contains some pair of formulas of the form
⇧TA and ⇧FA. A proof for modal logic formula consists of a closed tableau
starting with the root 1FA.

(�)
⇧�

⇧�1

⇧�2

(⇥)
⇧⇥

⇧⇥1 ⇧⇥2
(⇤⇤)

⇧⇤

⇧0⇤0
1 (⌅)

⇧⌅

⇧0⌅0
2

1�0 accessible from � and �0 occurs on the branch already
2�0 is a simple unrestricted extension of �, i.e., �0 is accessible from � and no other prefix

on the branch starts with �0

Figure 3: Tableau proof rules for QML

The tableau rules can also be used to analyze F⇤A ⇥ ⌃A as follows:

1 F⇤A ⇥ ⌃A (1)
1 T⇤A (2) from 1
1 F⌃A (3) from 1

stop

No more proof rules can be used because the modal formulas are ⇤ rules,
which are only applicable for accessible prefixes that already occur on the
branch. If we drop this restriction, we can continue to prove and close the
tableau:

1 F⇤A ⇥ ⌃A (1)
1 T⇤A (2) from 1
1 F⌃A (3) from 1

1.1 TA (4) from 2
1.1 FA (5) from 3

�

But this is bad news, because the formula ⇤A ⇥ ⌃A that we set out to
prove in the first place is not even valid in K. Consequently, the side condi-
tion on the ⇤ rule is necessary for soundness!

As an example proof in K-tableaux we prove ⇤A ⇤⇤B) ⇥ ⇤(A ⇤B):

LECTURE NOTES FEBRURARY 18, 2010

Conjunctive Disjunctive Universal Existential



A Tableau system for Modal Logic K
‣ We give an example derivation of a valid formula:

L10.4 Modal Tableaux

1 F (�A ⇤�B) ⇥ �(A ⇤B) (1)
1 T�A ⇤�B (2) from 1
1 F�(A ⇤B) (3) from 1
1 T�A (4) from 2
1 T�B (5) from 2

1.1 FA ⇤B (6) from 3

1.1 FA (7) from 6
1.1 TA (9) from 4

� 7 and 9

1.1 FB (8) from 6
1.1 TB (10) from 5

� 10 and 8

Let us prove the converse �(A ⇤B) ⇥ (�A ⇤�B) in K-tableaux:

1 F�(A ⇤B) ⇥ (�A ⇤�B) (1)
1 T�(A ⇤B) (2) from 1
1 F�A ⇤�B (3) from 1

1 F�A (4) from 3
1.1 FA (6) from 4
1.1 TA ⇤B (7) from 2
1.1 TA (8) from 7
1.1 TB (9) from 7

� 6 and 8

1 F�B (5) from 3
1.1 FB (10) from 5
1.1 TA ⇤B (11) from 2
1.1 TA (12) from 11
1.1 TB (13) from 11

� 10 and 13

Let us try to prove �(A ⌅B) ⇥ �A ⌅�B:

1 F�(A ⌅B) ⇥ �A ⌅�B (1)
1 T�(A ⌅B) (2) from 1
1 F�A ⌅�B (3) from 1
1 F�A (4) from 3
1 F�B (5) from 3

1.1 FA (6) from 4
1.2 FB (7) from 5
1.1 TA ⌅B (8) from 2
1.2 TA ⌅B (9) from 2

1.1 TA (10) from 8
� 10 and 6

1.1 TB (11) from 8
open

1.2 TA (12) from 9
open

1.2 TB (13) from 9
� 13 and 7

This tableau does not close but remains open, which is good news because
the formula we set out to prove is not valid in K.

LECTURE NOTES FEBRURARY 18, 2010

‣ This shows K-validity of: 2A ^2B ! 2(A ^B)

1

1.1 



A Tableau system for Modal Logic K
‣ We give a refutation of a satisfiable, but non-valid formula:

L10.4 Modal Tableaux

1 F (�A ⇤�B) ⇥ �(A ⇤B) (1)
1 T�A ⇤�B (2) from 1
1 F�(A ⇤B) (3) from 1
1 T�A (4) from 2
1 T�B (5) from 2

1.1 FA ⇤B (6) from 3

1.1 FA (7) from 6
1.1 TA (9) from 4

� 7 and 9

1.1 FB (8) from 6
1.1 TB (10) from 5

� 10 and 8

Let us prove the converse �(A ⇤B) ⇥ (�A ⇤�B) in K-tableaux:

1 F�(A ⇤B) ⇥ (�A ⇤�B) (1)
1 T�(A ⇤B) (2) from 1
1 F�A ⇤�B (3) from 1

1 F�A (4) from 3
1.1 FA (6) from 4
1.1 TA ⇤B (7) from 2
1.1 TA (8) from 7
1.1 TB (9) from 7

� 6 and 8

1 F�B (5) from 3
1.1 FB (10) from 5
1.1 TA ⇤B (11) from 2
1.1 TA (12) from 11
1.1 TB (13) from 11

� 10 and 13

Let us try to prove �(A ⌅B) ⇥ �A ⌅�B:

1 F�(A ⌅B) ⇥ �A ⌅�B (1)
1 T�(A ⌅B) (2) from 1
1 F�A ⌅�B (3) from 1
1 F�A (4) from 3
1 F�B (5) from 3

1.1 FA (6) from 4
1.2 FB (7) from 5
1.1 TA ⌅B (8) from 2
1.2 TA ⌅B (9) from 2

1.1 TA (10) from 8
� 10 and 6

1.1 TB (11) from 8
open

1.2 TA (12) from 9
open

1.2 TB (13) from 9
� 13 and 7

This tableau does not close but remains open, which is good news because
the formula we set out to prove is not valid in K.

LECTURE NOTES FEBRURARY 18, 2010

‣ This shows K-satisfiability of: 2(A ⇥B) �3¬A �3¬B

1

1.1 1.2 
AB



Kripke Semantics (Again)

‣ A Kripke frame consists of a set W, the set of `possible worlds’, and a 
binary relation R between worlds. A valuation ! assigns 
propositional variables to worlds. A pointed model  Mx is a frame, 
together with a valuation and a distinguished world x. 

M

x

|= p ⇧ q ⇥⇤ M

x

|= p and M

x

|= q

M

x

|= p ⌃ q ⇥⇤ M

x

|= p or M

x

|= q

M

x

|= p � q ⇥⇤ if M

x

|= p then M

x

|= q

M

x

|= ¬p ⇥⇤ M

x

⌅|= p

M

x

|= 2p ⇥⇤ for all xRy : M

y

|= p

M

x

|= 3p ⇥⇤ exists xRy : M

y

|= p



Modal Sat / Taut / Validity

‣ Modal Sat: A modal formula is satisfiable if there 
exists a pointed model that satisfies it.

‣ Modal Taut: A formula is a modal tautology if it is 
satisfied in all pointed models.

‣ Modal Validity: A formula is valid in a class of 
frames if it a modal tautology relative to that class of 
frames.



Completeness (Sketch)

‣ Soundness: Every K-provable formula is valid in all 
frames.

‣ Completeness: Every K-valid formula is K-provable.
‣ Lindenbaum Lemma: Every consistent set of 

formulae can be extended to a maximally one. 
‣ Canonical Models: Construct worlds, valuations, 

and accessibility from the MCSs
‣ Truth Lemma: Every consistent set is satisfied in 

the canonical model.



Canonical Models & Truth Lemma

‣ Worlds are maximally consistent sets MCSs
‣ Valuations are defined via membership in the MCSs
‣ Accessibility is defined as follows 

X R Y iff for every formula A we have 
[] A     X implies A    Y∈ ∈

X R Y iff for every formula A we have 
<> A ∈ Y implies A ∈ X

‣ or equivalently



Canonical Models & Truth Lemma

‣ Worlds are maximally consistent sets MCSs
‣ Valuations are defined via membership in the MCSs
‣ Accessibility is defined as follows 

X R Y iff for every formula A we have 
<> A ∈ Y implies A ∈ X

‣ Existence Lemma: For any MCS w, if  <> φ ∈ w then there is an accessible 
state v such that φ ∈ v.

Note: this is the main difference to the 
classical completeness proof.



Canonical Models & Truth Lemma

‣ Worlds are maximally consistent sets MCSs
‣ Valuations are defined via membership in the MCSs
‣ Accessibility is defined as follows 

X R Y iff for every formula A we have 
<> A ∈ Y implies A ∈ X

‣ Truth Lemma: In the canonical model M we have
                                           M, w ⊧ φ  iff φ ∈ w.

Proof is almost immediate 
from Existence Lemma and 

the Definition of R



Characterising Modal Logics

‣ Most standard modal logics can be characterised via frame validity in 
certain classes of frames.

‣ A logic L is characterised by a class F of frames if  L is valid in F, and 
any non-theorem " ∉ L can be refuted in  a model based on a frame in F.

modal logic characterising class of frames

K all frames

K4 all transitive frames

KB all symmetric frames

GL R transitive, R�1
well-founded

S4 all reflexive and transitive frames

S4Grz R reflexive and transitive, R�1 � Id well-founded



Correspondence Theory: Example

‣ We sketch as an example the correspondence between the modal logic 
axiom that defines the logic K4 and the first-order axiom that characterises 
the class of transitive frames:

Let hW,Ri be a frame. R is transitive if 8x, y, z 2 W . xRy and yRz imply xRz

Theorem. 2p ! 22p is valid in a frame hW,Ri i� R is transitive

‣ Proof. 
‣ (1) It is easy to see that the 4-axiom is valid in transitive frames.
‣ (2) Conversely, assume the 4-axiom is refuted in a model Mx = <W,D, ! ,x>

‣ The frame can clearly not be transitive.
2p �33¬p

p �3¬p

¬p
x

y z



Gödel–Tarski–McKinsey translation

‣ The Gödel–Tarski–McKinsey translation T, or simply Gödel  translation, 
is an embedding of IPC into S4, or Grz.  

‣ Here, the Box Operator can be read as `it is provable’ or `it is constructable’.

T(p) = 2p

T(?) = ?
T(⇥ ^ �) = T(⇥) ^ T(�)

T(⇥ _ �) = T(⇥) _ T(�)

T(⇥ ! �) = 2(T(⇥) ! T(�))



Gödel–Tarski–McKinsey translation

‣ Theorem. The Gödel translation is an embedding of IPC into S4 and Grz.

‣ Applications: 
‣ modal companions of superintuitionistic logics

I.e. for every formula ' 2 IPC () T(') 2 S4 () T(') 2 Grz

L � NExt(S4) : �(L) = {A | L ⇥ T(A)}



Rules: Admissible vs. Derivable

‣ The distinction between admissible and derivable rules was introduced 
by PAUL LORENZEN in his 1955 book “Einführung in die operative Logik 
und Mathematik”. 

‣ Informally,  a rule of inference A/B is derivable in a logic L if there is an 
L -proof of B from A. 

‣ If there is an L -proof of B from A, by the rule of substitution there also 
is an  L -proof of #(B) from #(A), for any substitution #. For admissible 
rules this has to be made explicit.

‣ A rule A/B is admissible in L if the set of theorems is closed under the 
rule, i.e. if for every substitution #:   L ⊢ #(A) implies L ⊢ #(B) . For this 
we usually write as:

A |⇠ B

http://en.wikipedia.org/wiki/Paul_Lorenzen
http://en.wikipedia.org/wiki/Paul_Lorenzen
http://en.wikipedia.org/wiki/Rule_of_inference
http://en.wikipedia.org/wiki/Rule_of_inference


Rules: Admissible vs. Derivable
‣ Therefore the addition of admissible rules leaves the set of theorems of a 

logic intact. Whilst they are therefore`redundant’ in a sense, they can 
significantly shorten proofs, which is our main concern here.

‣ Example: Congruence rules.
‣ The general form of a rule is the following:

‣ If our logic L has a ‘well-behaved conjunction’ (as in CPC, IPC, and most 
modal logics), we can always rewrite this rule by taking a conjunction 
and assume w.l.o.g. the following simpler form:

�1, . . . ,�n

�

 

�
‣ We are next going to show that in CPC (unlike many non-classical logics) 

the notions of admissible and derivable rule do indeed coincide!



CPC is Post complete
‣ A logic L is said to be Post complete if it has no proper consistent extension.
‣ Theorem. Classical PC is Post complete
‣ Proof. (From CHAGROV & ZAKHARYASCHEV 1997) 
‣ Suppose L is a logic such that CPC ⊂ L and pick some formula " ∈ L - 

CPC.
‣ Let M be a model refuting ". Define a substitution # by setting:

‣ Then #(") does not depend on M, and is thus false in every model.
‣ We therefore obtain #(") ➝ ⟘ ∈ CPC.
‣ But since #(") ∈ L, we obtain ⟘ ∈ L by MP, hence L is inconsistent. QED   

�(pi) :=

(
� if M |= pi
⇥ otherwise



CPC is 0-reducible

‣ A logic L is 0-reducible if, for every formula " ∉ L, there is a 
variable free substitution instance #(") ∉ L. 

‣ Theorem. Classical PC is 0-reducible.
‣ Proof. 
‣ Follows directly from the previous proof. QED 

‣ Note: K is Post-incomplete and not 0-reducible.



CPC is Structurally Complete
‣ A logic L is said to be structurally complete if the sets of admissible and 

derivable rules coincide. 
‣ Theorem. Classical PC is structurally complete.
‣ Proof. 
‣ It is clear that every derivable rule is admissible.
‣ Conversely, suppose the rule:                                                                                     

is admissible in CPC, but not derivable.
‣ This means that, by the Deduction Theorem
‣ Since CPC is 0-reducible, there is a variable free substitution instance which is 

false in every model, i.e. we have 
‣ This means that the formulae            are all valid, while          is not. 
‣ Therefore, we obtain: 
‣ But                           , which is a contradiction to admissibility. QED

�1, . . . ,�n

�

�1 ^ . . . ^ �n ! � 62 CPC

�(⇥1) ^ . . . ^ �(⇥n) ! �(⇥) 62 CPC

�(⇥1) ^ . . . ^ �(⇥n) 2 CPC

�(⇥) 62 CPC

�(�)�(�i)



Admissiblity in CPC is decidable
‣ Corollary. Admissibility in CPC is decidable.
‣ Proof. Pick a rule A/B. This rule is admissible if and only if it 

is derivable if and only if A ➝ B is a tautology.
‣ Some Examples: Congruence Rules:  

‣ if these are admissible in a logic L (they are derivable in CPC, 
IPC, K), the principle of equivalent replacement holds i.e.: 

p $ q

p ^ r $ q ^ r

p $ q

p _ r $ q ^ r

p $ q

p ! r $ q ! r

p $ q

r ^ p $ r ^ q

p $ q

r _ p $ r ^ q

p $ q

r ! p $ r ! q

⇤ $ ⇥ 2 L implies �(⇤) $ �(⇥) 2 L



Admissible Rules in IPC and Modal K

‣ Intuitionistic logic as well as modal logics behave quite differently with 
respect to admissible vs. derivable rules (as well as many other meta-logical 
properties)
‣ E.g., intuitionistic logic is not Post complete. Indeed there is a continuum 

of consistent extension of IPC, namely the class of superintuitionistic 
logics; the smallest Post-complete extension of IPC is CPC.

‣ Unlike in CPC, the existence of admissible but not derivable rules is quite 
common in many well known non-classical logics, but there exist also 
examples of structurally complete modal logics, e.g. the Gödel-Dummett 
logic LC.

‣ We next give some examples for IPC and modal K.
‣ Finally, we will discuss how the sets of admissible rules can be presented 

in a finitary way, using the idea of a base for admissible rules. 



Admissible Rules in Modal Logic

‣ The following rule is admissible, e.g., in the modal logics  K, D, K4, S4, GL. 
‣ It is derivable in S4, but it is not derivable in K, D, K4, or GL.

(2)
2p

p

‣ Proof. (Derivability in S4 and K):
‣ It is derivable in S4 because                    is an axiom: 

‣ Assume a proof for ◻p and apply MP once.
2p ! p

‣ It is not derivable in K: The formula ◻n p ➝ p 
is  refuted in the one point irreflexive frame.

‣ Note that the classical Deduction Theorem 
does not hold in modal logic!

¬p ◻p

2p ! p



Admissible Rules in Modal Logic

‣ The following rules is admissible, e.g., in the modal logics  K, D, K4, S4, GL. 
‣ It is derivable in S4, but it is not derivable in K, D, K4, or GL.

(2)
2p

p

‣ Proof. (Admissibility in K):

F

G

Assume ⌅(F,R),�, x⇧ ⇥|= ⇤(p) for some frame (F,R).

Pick some y ⇥� F , set G = F ⇤ {y},
S = R ⇤ {⌅y, x⇧}, and ⇥(p) = �(p) for all p. Then:

⌅(G,S), ⇥, y⇧ |= ¬2⇤(p) whilst we still have

⌅(G,S), ⇥, x⇧ |= ¬⇤(p)

¬�(p)x

y ¬2�(p)



Admissible Rules in Modal Logic
‣ The following rules is admissible, e.g., in the modal logics  K, D, K4, S4, GL. 
‣ It is derivable in S4, but it is not derivable in K, D, K4, or GL.
‣ It is not admissible in some extensions of K, e.g.: K⨁◻⊥ 

(2)
2p

p

‣ K⨁◻⊥ is consistent because it is satisfied in the 
one point irreflexive frame to the right.

‣ It follows in particular that a rule admissible in a 
logic L need not be admissible in its extensions.

‣ Proof. (Non-admissibility in K⨁◻⊥):

K�2?



Admissible Rules in Modal Logic

‣ The following rule is admissible in every normal modal logic. 
‣ It is derivable in GL and S4.1, but it is not derivable in K, D, K4, S4, S5.

(3)
3p ⇥3¬p

�

‣ Löb’s rule (LR) is admissible (but not derivable) in the basic modal logic K.
‣ It is derivable in GL. However, (LR) is not admissible in K4.

(LR)
2p ! p

p



Admissible Rules in IPC
‣ The following rule is admissible in IPC, but not derivable:
‣ Kreisel-Putnam rule (or Harrop’s rule (1960), or independence of premise rule).

(KPR)
¬p � q ⇥ r

(¬p � q) ⇥ (¬p � r)

‣ (KPR) is admissible in IPC (indeed in any superintuitionistic logic), 
but the formula:

(¬p � q ⇥ r) � (¬p � q) ⇥ (¬p � r)

‣ is not an intuitionistic tautology, therefore (KPR) is not derivable, 
and IPC is not structurally complete.

‣ Note: IPC has a standard Deduction Theorem (only intuitionistically 
valid axioms are used in the classical proof)



(KPR) is Not Derivable: Proof

‣ Harrop’s rule is derivable in IPC if the following is a tautology:
(¬p � q ⇥ r) � (¬p � q) ⇥ (¬p � r)

‣ The following Kripke model for IPC gives a counterexample:

¬p ¬p
q ¬q¬r r

¬p � q ⇥ r

¬r ¬q
p



 Decidability of Admissibility

‣ Is admissibility decidable? I.e. is there an algorithm for recognizing 
admissibility of rules? (FRIEDMAN 1975)

‣ Yes, for many modal logics, as Rybakov 1997 and others showed.
‣ It is typically coNExpTime-complete (JEŘÁBEK 2007). 
‣ Decidability of admissibility is a major open problem for modal logic K.
‣ Recent results by WOLTER and ZAKHARYASCHEV (2008) show e.g. the 

undecidability of admissibility for modal logic K extended with the 
universal modality.



‣ Is admissibility decidable for IPC? RYBAKOV gave a first postive answer 
in 1984. He also showed:
‣ admissible rules do not have a finite basis; 
‣ gave a semantic criterion for admissibility.

‣ Admissibility in intuitionistic logic can also be reduced to admissibility 
in Grz using the Gödel-translation.

‣ IEMHOFF 2001: there exists a recursively enumerable set of rules as a 
basis.

‣ Without proof, we mention that the rule below gives a singleton basis 
for the modal logic S5.

Some Notes on Bases

(3)
3p ⇥3¬p

�



Summary

‣ We have introduced the modal logic K and the intuitionistic 
calculus IPC.

‣ Have shown how they can be characterised by certain classes 
of Kripke frames. 

‣ Discussed several proof systems for these logics. 
‣ Introduced translations between logics and discussed how 

these can be used to transfer various properties of logics.
‣ Discussed the difference between admissible and derivable 

rules in modal, intuitionistic, and classical logic.
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