Logik

WiSe 2017/18
Thomas Schneider

Teil 1: Aussagenlogik

Homepage der Vorlesung: http://tinyurl.com/ws1718-logik

Übersicht Teil 1

- 1.1 Grundlagen
- 1.2 Normalformen und funktionale Vollständigkeit
- 1.3 Erfüllbarkeit, Gültigkeit, Folgerbarkeit, Horn-Formeln
- 1.4 Resolution
- 1.5 Kompaktheit

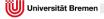
Aussagenlogik

- Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw.
- Jeder Aussage ist ein Wahrheitswert (wahr/falsch) zugeordnet.
- Man interessiert sich insbesondere für den Wahrheitswert zusammengesetzter Aussagen, z. B.:

"A oder B" wahr gdw. A wahr oder B wahr

A oder B könnten z.B. stehen für "Die Erde ist ein Planet" oder "Bremen liegt am Ganges". Davon wird abstrahiert.

- Die Ausdrucksstärke von Aussagenlogik ist sehr begrenzt.
- Es ergeben sich jedoch interessante algorithmische Probleme (z.B. das Erfüllbarkeitsproblem).



0

Syntax

Wir fixieren eine abzählbar unendliche Menge VAR = $\{x_1, x_2, x_3, \dots\}$ von *Aussagenvariablen*.

Intuitiv kann jedes x_i Wahrheitswert wahr oder falsch annehmen und repräsentiert eine Aussage wie "Bremen liegt am Ganges".

Definition 1.1 (Aussagenlogik, Syntax)

Die Menge AL der aussagenlogischen Formeln ist induktiv definiert durch

- $0, 1 \in AL$
- $VAR \subseteq AL$
- Wenn $\varphi, \psi \in AL$, dann auch $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$ in AL

Beispiele:

$$\neg x_1, \ \neg \neg x_3, \ (x_1 \land \neg x_4), \ ((x_1 \land x_3) \land 1), \ (\neg (x_1 \lor x_2) \land \neg (\neg x_1 \lor \neg x_2))$$

Sprechweisen und Konventionen

- $\neg \varphi$ sprechen wir "nicht φ " (Negation), $(\varphi \lor \psi)$ sprechen wir " φ oder ψ " (Disjunktion), $(\varphi \land \psi)$ sprechen wir " φ und ψ " (Konjunktion)
- 1 steht für "wahr", 0 für "falsch", 0,1 sind die Booleschen Konstanten
- Die atomaren Formeln sind $\{0,1\} \cup VAR$
- Alle anderen Formeln sind zusammengesetzt
- Statt x_1, x_2, \ldots verwenden wir manchmal auch andere Symbole für Variablen, insbesondere x, y, z

Sprechweisen und Konventionen

 Klammern werden weggelassen, wenn das Resultat eindeutig ist, wobei ¬ stärker bindet als ∧ und ∨

Also steht z. B.
$$\neg x \wedge y$$
 für $(\neg x \wedge y)$, nicht für $\neg (x \wedge y)$ $x \wedge y \vee x' \wedge y'$ ist nicht eindeutig, darum nicht erlaubt

• Iterierte Konjunktionen und Disjunktionen sind implizit linksgeklammert Also z.B. $x \wedge y \wedge z$ für $((x \wedge y) \wedge z)$

Semantik

Definition 1.2 (Aussagenlogik, Semantik)

Eine Belegung ist eine Abbildung $V: \mathsf{VAR} \to \{0,1\}$. Sie definiert einen Wahrheitswert $V(\varphi)$ für jede Formel φ :

- V(0) = 0 und V(1) = 1
- $V(\neg \varphi) = 1 V(\varphi)$
- $\bullet \ V(\varphi \wedge \psi) = \left\{ \begin{array}{ll} 1 & \text{ falls } V(\varphi) = 1 \text{ und } V(\psi) = 1 \\ 0 & \text{ sonst} \end{array} \right.$
- $\bullet \ V(\varphi \vee \psi) = \left\{ \begin{array}{ll} 1 & \text{falls } V(\varphi) = 1 \text{ oder } V(\psi) = 1 \\ 0 & \text{sonst} \end{array} \right.$

Wenn $V(\varphi) = 1$, dann sagen wir, dass φ von V *erfüllt* wird.

Wir schreiben dann auch $V \models \varphi$ und nennen V ein *Modell* von φ .

Semantik

Beispiel:

Belegung V mit $V(x_1) = 0$ und $V(x_i) = 1$ für alle i > 1

Dann z.B.

$$V(\neg x_1) = 1$$

$$V(\neg x_1 \land x_2) = 1$$

$$V(\neg(\neg x_1 \land x_2)) = 0$$

$$V(\neg(\neg x_1 \land x_2) \lor x_3) = 1$$

V ist also ein Modell von $\neg(\neg x_1 \land x_2) \lor x_3$.

Semantik

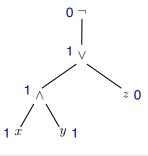
Die Semantik der Junktoren als Verknüpfungstafeln:

$V(\varphi)$	$V(\neg \varphi)$	$V(\varphi)$	$V(\psi)$	$V(\varphi \wedge \psi)$	$V(\varphi$
0	1	0	0	0	0
1	0	0	1	0	0
		1	0	0	1
		-1	1	4	4

Manuelle Auswertung bequem über Baumdarstellung von Formeln:

Beispiel
$$\neg((x \land y) \lor z),$$

$$V(x) = V(y) = 1, \ V(z) = 0:$$
 (alle anderen Variablen 0)



 $V(\psi) \mid V(\varphi \vee \psi)$

0

Universität Bremen

Universität Bremen

Implikation

Weitere interessante Junktoren sind als Abkürzung definierbar, z. B.:

Implikation $\varphi \to \psi$ steht für $\neg \varphi \lor \psi$

Biimplikation $\varphi \leftrightarrow \psi$ steht für $(\varphi \to \psi) \land (\psi \to \varphi)$

$V(\varphi)$	$V(\psi)$	$V(\varphi \to \psi)$	V(arphi)	$V(\psi)$	$V(\varphi \leftrightarrow \psi)$
0	0	1	0	0	1
0	1	1	0	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Wir nehmen an, dass \neg , \wedge , \vee stärker binden als \rightarrow und \leftrightarrow ,

$$x \wedge y \rightarrow z$$
 steht also für $(x \wedge y) \rightarrow z$

Iterierte Konjunktion / Disjunktion

Bemerkung zur Notation:

Wir schreiben

$$\bigwedge_{i=1..n} \varphi_i \ \ \text{für} \ \ \varphi_1 \wedge \cdots \wedge \varphi_n \ \text{(iterierte Konjunktion)}$$

$$\bigvee_{i=1}^{n} \varphi_i$$
 für $\varphi_1 \vee \cdots \vee \varphi_n$ (iterierte Disjunktion)

• Wenn n=0, dann

$$\bigwedge_{i=1..n} \varphi_i := 1 \qquad \qquad \text{(leere Konjunktion)}$$

$$\bigvee_{i=1..n} \varphi_i := 0 \qquad \qquad \text{(leere Disjunktion)}$$

Koinzidenzlemma

Oft ist es unpraktisch, alle (unendlich viele) Variablen belegen zu müssen.

Für den Wahrheitswert einer Formel φ ist nur die Belegung derjenigen Variablen von Bedeutung, die in φ vorkommen. Wir bezeichen diese mit $Var(\varphi)$.

Lemma 1.3 (Koinzidenzlemma)

Sei φ eine Formel und V_1 , V_2 Belegungen mit $V_1(x)=V_2(x)$ für alle $x\in {\rm Var}(\varphi)$. Dann ist $V_1(\varphi)=V_2(\varphi)$.

Beweis per Induktion über die Struktur von φ .

Wenn wir mit einer Formel φ arbeiten, so erlaubt uns das Koinzidenzlemma, in Belegungen nur die Variablen $Var(\varphi)$ (also endlich viele) zu betrachten.

Eine *Belegung für* φ ist eine Belegung, die nur die Variablen in $Var(\varphi)$ belegt.

Beispiel Repräsentation

Modellierung eines Zeitplanungs-Problems (Scheduling) in Aussagenlogik

An einer Schule gibt es drei Lehrerinnen mit folgenden Fächerkombinationen:

Es soll folgender Lehrplan erfüllt werden:

	Klasse a)	Klasse b)
Stunde I	Mathe	Deutsch
Stunde II	Deutsch	Deutsch
Stunde III	Mathe	Mathe

Dabei soll jede Lehrerin mindestens 2 Stunden unterrichten.

Universität Bremen

Auswertung

Formale Definition der Teilformeln:

Definition 1.6 (Teilformeln)

Sei φ eine Formel. Die Menge $\mathsf{TF}(\varphi)$ der *Teilformeln* von φ ist induktiv definiert wie folgt:

- $\mathsf{TF}(\varphi) = \{\varphi\}, \text{ wenn } \varphi \in \{0,1\} \cup \mathsf{Var}$
- $\mathsf{TF}(\neg \varphi) = \{\neg \varphi\} \cup \mathsf{TF}(\varphi)$
- $\mathsf{TF}(\varphi \wedge \psi) = \{\varphi \wedge \psi\} \cup \mathsf{TF}(\varphi) \cup \mathsf{TF}(\psi)$
- $\mathsf{TF}(\varphi \lor \psi) = \{\varphi \lor \psi\} \cup \mathsf{TF}(\varphi) \cup \mathsf{TF}(\psi)$

Also z. B.:

$$\mathsf{TF}(\neg((x \land y) \lor z)) = \{x, y, z, x \land y, (x \land y) \lor z, \neg((x \land y) \lor z)\}$$

Es ist nun einfach, die Details des Algorithmus auszuarbeiten (Übung!)

Auswertung

Definition 1.4 (Auswertungsproblem)

Das Auswertungsproblem der Aussagenlogik ist:

Gegeben: Aussagenlogische Formel φ , Belegung V für φ

Frage: Gilt $V(\varphi) = 1$?

Theorem 1.5 (Komplexität Auswertungsproblem)

Das Auswertungsproblem der Aussagenlogik ist in Linearzeit lösbar.

Idee Algorithmus für Polyzeit:

- Verwende rekursiven Algorithmus, der den Wahrheitswert aller *Teilformeln* von φ bestimmt
- ullet Der Wahrheitswert von atomaren Formeln ist durch V gegeben, zusammengesetzte Teilformeln per Rekursion + Verknüpfungstafel

Äquivalenz

Definition 1.7 (Äquivalenz)

Zwei Formeln φ und ψ sind *äguivalent*, wenn für alle Belegungen Vgilt, dass $V(\varphi) = V(\psi)$. Wir schreiben dann $\varphi \equiv \psi$.

Z. B. gilt $x \wedge y \equiv \neg(\neg x \vee \neg y)$

Einfacher Beweis mittels Wahrheitstafeln für *Formeln* φ :

V(x)	V(y)	$V(x \wedge y)$	V(x)	V(y)	$V(\neg(\neg x \vee \neg y))$
0	0	0	0	0	0
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Beachte: links stehen die Variablen aus $Var(\varphi)$, es gibt also $2^{|Var(\varphi)|}$ Zeilen

Äquivalenz

Äquivalente Formeln sind austauschbar:

Lemma 1.8 (Ersetzungslemma)

Seien φ and ψ äquivalente Formeln, ϑ eine Formel mit $\varphi \in \mathsf{TF}(\vartheta)$ und ϑ' eine Formel, die sich aus ϑ ergibt, indem ein beliebiges Vorkommen von φ durch ψ ersetzt wird. Dann gilt $\vartheta \equiv \vartheta'$.

T1.2

Beweis per Induktion über die Struktur von ϑ .

Allgemeines Vorgehen beim Induktionsbeweis:

Induktionsanfang:

Zeige die Aussage für alle atomaren Formeln $\vartheta \in \{0,1\} \cup VAR$.

Induktionsschritt: Zeige:

Wenn die Aussage für ϑ_1 und ϑ_2 gilt, (Induktionsvoraussetzung, IV) dann auch für $\neg \vartheta_1$, $\vartheta_1 \land \vartheta_2$ und $\vartheta_1 \lor \vartheta_2$. (Induktionsbehauptung)

Äquivalenz

Im Folgenden wollen wir einige nützliche Äquivalenzen etablieren

Genauer gesagt handelt es sich um Äquivalenzschemata, z.B.:

Für alle Formeln φ gilt: $\varphi \equiv \neg \neg \varphi$

Eliminieren doppelter Negation

Beweis per Wahrheitstafel

Universität Bremen

1

Äquivalenz

Folgende Äquivalenzen gelten für alle aussagenlogischen Formeln φ, ψ, ϑ :

- $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$ $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
- $\bullet \ \varphi \wedge \psi \equiv \psi \wedge \varphi$ $\varphi \vee \psi \equiv \psi \vee \varphi$
- $\varphi \wedge (\psi \wedge \vartheta) \equiv (\varphi \wedge \psi) \wedge \vartheta$ $\varphi \vee (\psi \vee \vartheta) \equiv (\varphi \vee \psi) \vee \vartheta$

De Morgansche Gesetze

Idempotenz von Konjunktion und Disjunktion

Kommutativität von Konjunktion und Disjunktion

Assoziativität von Konjunktion und Disjunktion

Äquivalenz

Mehr nützliche Äquivalenzen:

·

$$\bullet \ \varphi \wedge (\psi \vee \vartheta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \vartheta)$$

Distributivgesetze

 $\varphi \vee (\psi \wedge \vartheta) \equiv (\varphi \vee \psi) \wedge (\varphi \vee \vartheta)$

• $\varphi \wedge (\varphi \vee \psi) \equiv \varphi \equiv \varphi \vee (\varphi \wedge \psi)$ Absorption

• $\varphi \wedge 1 \equiv \varphi$ Neutrales Element für Konjunktion $\varphi \vee 0 \equiv \varphi$ und Disjunktion

• $\varphi \wedge \neg \varphi \equiv 0$ Kontradiktion und $\varphi \vee \neg \varphi \equiv 1$ Tautologie

Auch für die (Bi)implikation gibt es interessante Äquivalenzen, z. B.:

• $\varphi \to \psi \equiv \neg \psi \to \neg \varphi$

Kontraposition

Äquivalenz

Mittels dieser Äquivalenzen und dem Ersetzungslemma (EL) kann man durch Umformung neue Äquivalenzen nachweisen.

Zum Beispiel $\neg x \land \neg y \equiv \neg (x \lor (\neg x \land y))$

$$\neg(x \lor (\neg x \land y)) \; \equiv \; \neg x \land \neg(\neg x \land y) \qquad \qquad \mathsf{De} \; \mathsf{Morgan}$$

$$\equiv \neg x \wedge (\neg \neg x \vee \neg y)$$
 De Morgan + EL

$$\equiv \neg x \land (x \lor \neg y)$$
 doppelte Negation + EL

$$\equiv (\neg x \land x) \lor (\neg x \land \neg y)$$
 Distributivgesetz

$$\equiv 0 \lor (\neg x \land \neg y)$$
 Kontradiktion + EL

$$\equiv (\neg x \land \neg y) \lor 0$$
 Kommutativgesetz

$$\equiv \neg x \wedge \neg y$$
 Neutrales Element Disjunktion

- 1.1 Grundlagen
- 1.2 Normalformen und funktionale Vollständigkeit
- 1.3 Erfüllbarkeit, Gültigkeit, Folgerbarkeit, Horn-Formeln
- 1.4 Resolution
- 1.5 Kompaktheit

00

Boolesche Funktionen

Definition 1.9 (Boolesche Funktion)

Eine *n*-stellige Boolesche Funktion ist eine Funktion $f: \{0,1\}^n \to \{0,1\}$.

Für $n \geq 0$ bezeichne

- \mathcal{B}^n die Menge aller n-stelligen Booleschen Funktionen
- $\mathcal B$ die Menge $\bigcup_{n\geq 0} \mathcal B^n$ aller Booleschen Funktionen

Zum Beispiel:

 \mathcal{B}^0 besteht aus den beiden konstanten Funktionen 0 und 1.

 \mathcal{B}^1 besteht aus vier Funktionen $f_{00},\,f_{10},\,f_{01},\,f_{11}$:

Eingabe	f_{00}	f_{01}	f_{10}	f_{11}
0	0	0	1	1
1	0	1	0	1

Allgemein: \mathcal{B}^n besteht aus 2^{2^n} Funktionen

Boolesche Funktionen

Jede aussagenlogische Formel φ mit $|{\rm Var}(\varphi)|=n$ berechnet n-stellige Boolesche Funktion f_{φ} :

- O. B. d. A. sei $\operatorname{Var}(\varphi) = \{x_1, \dots, x_n\}$
- Belegung V für φ entspricht Eingabe für f_{φ} : i-ter Eingabewert ist $V(x_i)$
- \bullet Wert von f_φ bei Eingabe/Belegung V ist $V(\varphi)$

T1.4

Genau diese Funktion stellen wir in der Wahrheitstafel dar!

Umgekehrt findet sich zu jeder Booleschen Funktion auch eine Formel:

Theorem 1.10 (funktionale Vollständigkeit)

Zu jeder Booleschen Funktion $f \in \mathcal{B}$ gibt es eine Formel φ mit $f_{\varphi} = f$.

Normalformen

Der Beweis des Satzes hat als weitere interessante Konsequenz:

Jede Formel ist äguivalent zu einer Formel der Form

$$(\ell_{1,1} \wedge \cdots \wedge \ell_{1,m_1}) \vee \cdots \vee (\ell_{n,1} \wedge \cdots \wedge \ell_{n,m_n})$$

wobei die $\ell_{i,j}$ jeweils die Form x oder $\neg x$ haben.

Dies ist die sogenannte disjunktive Normalform.

Dual dazu gibt es auch die wichtige konjunktive Normalform.

Normalformen

Definition 1.11 (KNF, DNF)

Ein Literal ist eine Formel der Form

- x (positives Literal) oder
- ¬x (negatives Literal)

Eine Formel φ ist in *konjunktiver Normalform (KNF*), wenn sie eine Konjunktion von Disjunktionen von Literalen ist:

$$\varphi = \bigwedge_{i=1..n} \bigvee_{j=1..m_i} \ell_{i,j}$$

Eine Formel φ ist in *disjunktiver Normalform (DNF*), wenn sie eine Disjunktion von Konjunktionen von Literalen ist:

$$\varphi = \bigvee_{i=1..n} \bigwedge_{j=1..m_i} \ell_{i,j}$$

Normalformen

Theorem 1.12 (KNF/DNF-Umwandlung)

Jede Formel lässt sich effektiv in eine äquivalente Formel in KNF und DNF wandeln.

T1.6

Beispiel:

$$\varphi = (y \vee \neg (x \vee y)) \wedge \neg z$$

DNF:

$$\equiv (x \lor y \lor \neg z) \land (x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor z) \\ \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z)$$

Normalformen

Beachte:

- Sowohl DNF als auch KNF werden im Worst Case exponentiell groß (2ⁿ viele Disjunkte / Konjunkte, wobei $n = |Var(\varphi)|$)
- Das lässt sich auch nicht durch eine bessere Konstruktion verhindern. Man kann z.B. zeigen, dass für die *n*-äre Paritätsfunktion gilt:
 - sie kann mit einer Formel polynomieller Größe dargestellt werden
 - jede DNF hat mindestens 2^n Disjunkte
 - jede KNF hat mindestens 2ⁿ Konjunkte

(*n*-äre Paritätsfunktion: $p_n(t) = 1$ gdw. t ungeradzahlig oft 1 enthält)

• Es gibt sogar Familien von Booleschen Funktionen f_0, f_1, f_2, \dots mit $f_n \in \mathcal{B}^n$ für alle $n \geq 0$,

die sich gar nicht mit Formeln polynomieller Größe darstellen lassen. T1.x

Funktionale Vollständigkeit von Junktorenmengen

Wir haben gesehen:

Mittels der Junktoren \neg, \land, \lor kann man für jede Boolesche Funktion f eine "äquivalente" Formel φ konstruieren

Aus den De Morganschen Gesetzen folgt

$$\varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$$

$$\varphi \vee \psi \equiv \neg (\neg \varphi \wedge \neg \psi)$$

also gilt dasselbe für die Junktormengen \neg , \land und \neg , \lor

Allgemein stellt sich die Frage:

Welche Junktorenmengen sind in diesem Sinne vollständig?

Universität Bremen

Funktionale Vollständigkeit von Junktorenmengen

Die Konstanten 0,1 und die Junktoren \neg, \land, \lor können als Boolesche Funktionen aus \mathcal{B}^0 , \mathcal{B}^1 , bzw. \mathcal{B}^2 aufgefasst werden.

Umgekehrt liefert jede Boolesche Funktion $f \in \mathcal{B}^n$ einen n-ären Junktor: Zeile $t = (w_1, \dots, w_n) \in \{0, 1\}^n$ in Wahrheitstafel hat Wert f(t).

Wir werden im Folgenden nicht streng zwischen Junktoren und Booleschen Funktionen unterscheiden.

Weitere interessante Junktoren neben $0, 1, \neg, \land, \lor, \rightarrow, \leftrightarrow z.B.$:

Exklusives

Oder	$V(\varphi)$	$V(\psi)$	$V(\varphi \oplus \psi$
	0	0	0
	0	1	1
	1	0	1
	1	1	0

Nand

$V(\varphi)$	$V(\psi)$	$V(\varphi \mid \psi)$
0	0	1
0	1	1
1	0	1
1	1	0

Funktionale Vollständigkeit von Junktorenmengen

Definition 1.13 (funktionale Vollständigkeit)

Eine Menge $\Omega\subseteq\mathcal{B}$ von Booleschen Funktionen ist *funktional vollständig* wenn es für jede Boolesche Funktion $f\in\mathcal{B}^n,\,n\geq 1$ eine Formel φ mit Junktoren aus Ω gibt, so dass $f_{\varphi}=f$.

Wir wissen bereits, dass folgende Mengen funktional vollständig sind:

$$\{\neg, \land, \lor\} \qquad \qquad \{\neg, \land\} \qquad \qquad \{\neg, \lor\}$$

Weitere funktional vollständige Mengen:

- $\{\neg, \rightarrow\}$ Da $\{\neg, \lor\}$ funktional vollständig und $\varphi \lor \psi \equiv \neg \varphi \to \psi$
- $\{\land, \oplus, 1\}$ Da $\{\neg, \land\}$ funktional vollständig und $\neg \varphi \equiv 1 \oplus \varphi$

Funktionale Vollständigkeit von Junktorenmengen

Weitere funktional vollständige Menge:

 $\bullet \ \{|\}$ Da $\{\neg, \land\}$ funktional vollständig, $\neg \varphi \equiv \varphi \mid \varphi \text{ und } \varphi \land \psi \equiv (\varphi \mid \psi) \mid (\varphi \mid \psi)$ T1.8

Nicht funktional vollständig z. B. $\{\land,\lor,\rightarrow\}$:

- Jede mit \land, \lor, \rightarrow gebildete Formel φ erfüllt $f_{\varphi}(1, \ldots, 1) = 1$ Beweis per Induktion über die Struktur von φ :
 - wenn $\varphi = x$, dann $V_1(\varphi) = 1$
 - wenn $\varphi = \psi \wedge \vartheta$ und $V_1(\psi) = V_1(\vartheta) = 1$, dann $V_1(\varphi) = 1$
 - analog für $\varphi = \psi \vee \vartheta$ und $\varphi = \psi \rightarrow \vartheta$
- Es gibt also keine zu ¬x äquivalente Formel

Aussagenlogik

- 1.1 Grundlagen
- 1.2 Normalformen und funktionale Vollständigkeit

- 1.3 Erfüllbarkeit, Gültigkeit, Folgerbarkeit, Horn-Formeln
- 1.4 Resolution
- 1.5 Kompaktheit

Erfüllbarkeit, Gültigkeit

Definition 1.14 (Erfüllbarkeit, Gültigkeit)

Eine Formel heißt

- erfüllbar, wenn sie ein Modell hat (sonst unerfüllbar)
- gültig oder Tautologie, wenn jede Belegung ein Modell ist

Beispiele für unerfüllbare Formeln:

$$0 \quad x \land \neg x \quad x \land \neg y \land (x \to y) \quad (x \lor y) \land (\neg x \lor \neg y) \land (\neg x \lor y) \land (x \lor \neg y)$$

Beispiele für gültige Formeln:

1
$$x \vee \neg x \qquad \neg (x \wedge y) \leftrightarrow \neg x \vee \neg y$$

$$(x \wedge y) \vee (\neg x \wedge \neg y) \vee (\neg x \wedge y) \vee (x \wedge \neg y)$$

Universität Bremen

Erfüllbarkeit, Gültigkeit

Folgt direkt aus Definition Erfüllbarkeit/Tautologie + Semantik Negation:

Lemma 1.15 (Dualität Erfüllbarkeit, Gültigkeit)

Eine Formel φ ist

- gültig gdw. $\neg \varphi$ unerfüllbar ist.
- erfüllbar gdw. $\neg \varphi$ nicht gültig ist.

Alle Formeln $\varphi \qquad \qquad \begin{array}{c} \text{erfüllbare,} \\ \text{nicht gültige} \\ \text{Formeln} \\ \psi \qquad \neg \psi \end{array} \qquad \begin{array}{c} \text{Unerfüllbare} \\ \text{Formeln} \\ \neg \varphi \end{array}$

Erfüllbarkeit, Gültigkeit

Definition 1.16 (Erfüllbarkeitsproblem, Gültigkeitsproblem)

Das Erfüllbarkeitsproblem der Aussagenlogik ist:

Gegeben: Aussagenlogische Formel φ

Frage: Ist φ erfüllbar?

Das Gültigkeitsproblem der Aussagenlogik ist:

Gegeben: Aussagenlogische Formel φ

Frage: Ist φ eine Tautologie?

Offensichtlicher, naiver Algorithmus für das Gültigkeitsproblem:

Zähle alle 2^n Belegungen für φ auf (wobei $n = |Var(\varphi)|$).

Für jede Belegung V prüfe in Linearzeit, ob $V \models \varphi$

Erfüllbarkeitsproblem auf (Komplement des) Gültigkeitsproblem(s) in Polyzeit reduzierbar mit Lemma 1.15 (und umgekehrt).

Erfüllbarkeit, Gültigkeit

Theorem 1.17 (Komplexität)

Das Erfüllbarkeitsproblem der Aussagenlogik ist NP-vollständig.

Dies gilt auch für Formeln in KNF, sogar bei max. 3 Literalen pro Konjunkt.

Das Gültigkeitsproblem der Aussagenlogik ist coNP-vollständig.

Dies gilt auch für Formeln in DNF, sogar bei max. 3 Literalen pro Disjunkt.

Für Formeln in KNF ist Gültigkeit leicht (in Linearzeit) zu entscheiden, ebenso Erfüllbarkeit für Formeln in DNF (Beweis als Übung):

Lemma 1.18 (Einfache Fälle)

Eine DNF-Formel ist erfüllbar gdw. es ein Disjunkt gibt, das keine Literale der Form $x, \neg x$ enthält.

Eine KNF-Formel ist gültig gdw. jedes Konjunkt zwei Literale der Form $x, \neg x$ enthält.

__

T1.9

Universität Bremen

Folgerbarkeit

Definition 1.19 (Folgerbarkeit, Konsequenz)

Eine Formel ψ ist *folgerbar* aus einer Formel φ , wenn für alle Belegungen V mit $V \models \varphi$ auch gilt, dass $V \models \psi$.

Wir nennen ψ dann auch eine *Konsequenz* von φ und schreiben $\varphi \models \psi$.

Für eine (potentiell unendliche) Formel*menge* Γ schreiben wir $\Gamma \models \psi$, wenn für alle Beleg. V mit $V \models \Gamma$ (d. h. $V \models \varphi$ für alle $\varphi \in \Gamma$) gilt: $V \models \psi$.

Beispiele:
$$x \wedge y \models x$$
 $x \models x \vee y$

$$\varphi \wedge (\varphi \rightarrow \psi) \models \psi$$
 (Modus Ponens)

$$\{\varphi, \varphi \to \psi\} \models \psi$$
 (Modus Ponens)

Offensichtlich: $\varphi \equiv \psi$ gdw. $\varphi \models \psi$ und $\psi \models \varphi$

Wenn $|\Gamma|<\infty$, dann gilt: $\Gamma\models\psi$ gdw. $\bigwedge_{\varphi\in\Gamma}\varphi\models\psi$

Horn-Formeln

Eine wichtige Klasse von Formeln mit besseren Berechnungseigenschaften sind die Horn-Formeln (nach Alfred Horn).

Definition 1.21 (Horn-Formel)

Eine aussagenlogische Horn-Formel ist eine KNF-Formel $\varphi = \bigwedge_i \bigvee_j \ell_{i,j}$, wobei jede Disjunktion $\bigvee_i \ell_{i,j}$ höchstens ein positives Literal enthält.

Beispiel: $(\neg x \lor \neg y \lor z) \land (\neg y \lor \neg z) \land x$

Vier mögliche Formen von Konjunkten (Horn-Klauseln):

Negative Literale + 1 positives Literal Nur negative Literale

Nur ein positives Literal (Gar keine Literale

 $\equiv 0$, daher uninteressant)

Folgerbarkeit

Theorem 1.20 (Folgerbarkeit und Gültigkeit)

Für alle Formeln φ , ψ gilt:

1. $\varphi \models \psi$ gdw. $\varphi \rightarrow \psi$ gültig ist (aka *Deduktionstheorem*)

2. φ ist gültig gdw. $1 \models \varphi$.

Analog zum Erfüllbarkeits-/Gültigkeitsproblem kann man ein *Folgerbarkeitsproblem* definieren.

Das Lemma liefert auch wechselseitige Polyzeit-Reduktionen zwischen Gültigkeitsproblem und Folgerbarkeitsproblem.

Das Folgerbarkeitsproblem hat also dieselbe Komplexität wie das Gültigkeitsproblem (coNP-vollständig).

Horn-Formeln

Anschaulicher:

Fakt $\neg x_1 \lor \dots \lor \neg x_k \lor x \equiv x_1 \land \dots \land x_k \to x$ Regel $\neg x_1 \lor \cdots \lor \neg x_k \equiv x_1 \land \cdots \land x_k \to 0$ Constraint

Beispiel Horn-Formel: Konjunktion von

Schnee Regen Regen \rightarrow Niederschlag Schnee \rightarrow Niederschlag Regen \rightarrow Temp>0Schnee \rightarrow Temp<0 $\mathsf{Temp} {\ge} 0 \land \mathsf{Temp} {<} 0 \rightarrow 0$

Hierbei sind "Regen", "Schnee", "Temp>0", ... Aussagenvariablen

Horn-Formeln

Theorem 1.22 (Effiziente Erfüllbarkeit)

Das Erfüllbarkeitsproblem für Horn-Formeln kann in Linearzeit gelöst werden.

Polyzeit-Algorithmus für Eingabe φ :

 $V := \{x \in \mathsf{VAR} \mid x \text{ ist Konjunkt von } \varphi\}$ **while** es gibt Konjunkt $x_1 \wedge \cdots \wedge x_k \to x$ mit $\{x_1, \dots, x_k\} \subseteq V$ und $x \notin V$ do $V := V \cup \{x\}$

done

if es gibt ein Konjunkt $x_1 \wedge \cdots \wedge x_k \to 0$ mit $\{x_1, \dots, x_k\} \subseteq V$ then return "unerfüllbar" else

return "erfüllbar"

Beispiel | T1.10

UJ Universität Bremen

Horn-Formeln

Polyzeit-Algorithmus für Eingabe φ :

 $V := \{x \in \mathsf{VAR} \mid x \text{ ist Konjunkt von } \varphi\}$ **while** es gibt Konjunkt $x_1 \wedge \cdots \wedge x_k \to x$ mit $\{x_1, \dots, x_k\} \subseteq V$ und $x \notin V$ **do** $V := V \cup \{x\}$

done

if es gibt ein Konjunkt $x_1 \wedge \cdots \wedge x_k \to 0$ mit $\{x_1, \dots, x_k\} \subset V$ then return "unerfüllbar"

else

return "erfüllbar"

Wir unterscheiden im Folgenden nicht zwischen einer Belegung V(Abbildung VAR $\rightarrow \{0,1\}$) und der Menge $\{x \mid V(x)=1\}$

Lemma 1.23

Der Algorithmus ist korrekt und läuft in polynomieller Zeit.

Universität Bremen

Horn-Formeln

Für erfüllbare Horn-Formel φ ist die im Korrektheitsbeweis berechnete Belegung *V* ein *minimales* Modell in folgendem Sinne:

- 1. V ist Modell von φ
- 2. Wenn \widehat{V} Modell von φ , dann $V \subseteq \widehat{V}$

Wir erhalten also als Korollar:

Korollar 1.24

Jede erfüllbare Horn-Formel hat ein minimales Modell.

Minimale Modelle haben zahlreiche interessante Eigenschaften.

Wir können sie z.B. für Beweise der Nichtausdrückbarkeit verwenden.

Horn-Formeln

Ausdrucksstärke von Horn-Formeln:

Welche AL-Formeln kann man als Horn-Formel ausdrücken, welche nicht?

Ausdrückbar z. B.: $x \to y \land z \equiv (x \to y) \land (x \to z)$

$$x \lor y \to z \equiv (x \to z) \land (y \to z)$$

Nicht ausdrückbar z. B. $x \vee y$

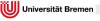
(Beispiel: wir können ausdrücken, dass Temp $<0 \land$ Temp $\ge 0 \to 0$, nicht aber, dass Temp $<0 \lor$ Temp ≥ 0)

Lemma 1.25 (Nicht-Horn-Ausdrückbarkeit)

Keine Horn-Formel ist äquivalent zu $x \vee y$.

T1.12

Intuitiv: Horn-Formeln sind der disjunktionsfreie Teil von Aussagenlogik.



Prädikatenlogik

2. Stufe

4

Aussagenlogik

- 1.1 Grundlagen
- 1.2 Normalformen und funktionale Vollständigkeit
- 1.3 Erfüllbarkeit, Gültigkeit, Folgerbarkeit, Horn-Formeln

- 1.4 Resolution
- 1.5 Kompaktheit

Zusammenfassung Schlussfolgerungsprobleme

	Auswertungs- problem	Erfüllbarkeits- problem	Gültigkeits- problem	Folgerbarkeits- problem
Horn-Formeln	in Linearzeit	in Polyzeit	in Linearzeit	in Polyzeit
Aussagenlogik	in Linearzeit	NP- vollständig	coNP- vollständig	coNP- vollständig
Prädikatenlogik 1. Stufe				

Resolution

Ein *Kalkül* besteht aus einer Sammlung rein syntaktischer *Umformungs- regeln*, mit denen man Formeln in andere Formeln transformieren kann.

Es gibt viele Kalküle für verschiedenste Logiken, z. B.

Sequenzenkalkül, Tableau-Kalkül, Hilbertsches Axiomensystem etc.

Zwei Arten von Kalkülen:

- Ausgehend von Axiomen und Schlussfolgerungsregeln, erzeuge genau die gültigen Formeln
- Ausgehend von einer gegebenen Formel, erzeuge durch Regelanwendung die Konstante 0 gdw. die Formel unerfüllbar ist

Wir betrachten einen wichtigen und eleganten Kalkül für Unerfüllbarkeit in Aussagenlogik: *Resolution*

Klauseln und Klauselmengen

Resolution arbeitet mit Formeln in KNF, jedoch in leicht anderer Darstellung

Definition 1.26 (Klausel, Klauselmenge)

Eine Klausel ist eine endliche Menge von Literalen. Die leere Klausel bezeichnen wir mit .

Einer KNF-Formel $\varphi = \bigwedge_{i=1..n} \bigvee_{j=1..m_i} \ell_{ij}$ wird Klauselmenge $M(\varphi)$ wie folgt zugeordnet:

- *i*-te Disjunktion $\bigvee_{i=1..m_i} \ell_{ij}$ erzeugt Klausel $C_i = \{\ell_{i1}, \ldots, \ell_{im_i}\}$
- $\bullet \ M(\varphi) = \{C_1, \dots, C_n\}.$

Beispiel: die Formeln

 $(x_1 \vee \neg x_2) \wedge x_3$, $(x_1 \vee x_1 \vee \neg x_2) \wedge (x_3 \vee x_3)$, $x_3 \wedge (x_1 \vee \neg x_2) \wedge (\neg x_2 \vee x_1)$

haben alle die Klauselmenge $M = \{\{x_1, \neg x_2\}, \{x_3\}\}.$

Klauseln und Klauselmengen

Umgekehrt entspricht eine Klausel C der Formel $\bigvee_{\ell \in C} \ell$ und eine endliche Klauselmenge M entspricht der Formel $\bigwedge_{C \in M} \bigvee_{\ell \in C} \ell$.

Dies gibt uns auch eine Semantik für Klauseln und Klauselmengen.

Wir können also Begriffe wie Erfüllbarkeit und Äquivalenz für Klauseln und Klauselmengen verwenden.

Beachte:

- entspricht der "leeren Disjunktion" und ist unerfüllbar
- jede Klauselmenge, die □ enthält, ist unerfüllbar
- die leere Klauselmenge entspricht der "leeren Konjunktion" und ist erfüllbar

Universität Bremen

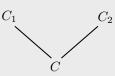
Resolvente

Zum Negieren von Literalen definiere $\overline{x} := \neg x$ und $\overline{\neg x} := x$

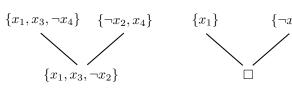
Definition 1.27 (Resolvente)

Seien C_1, C_2 Klauseln. Klausel C ist *Resolvente* von C_1 und C_2 gdw. es Literal ℓ gibt mit $\ell \in C_1$, $\bar{\ell} \in C_2$ und $C = (C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\bar{\ell}\})$.

Wir schreiben dann:



Beispiele:



Resolventenbildung

Lemma 1.28 (Resolutionslemma)

Sei M eine Klauselmenge, $C_1, C_2 \in M$ und C Resolvente von C_1 und C_2 . Dann $M \equiv M \cup \{C\}$.

T1.13

Folgende Notation beschreibt das wiederholte Bilden von Resolventen.

Definition 1.29 (Res)

Für jede Klauselmenge M sei

- $Res(M) := M \cup \{C \mid C \text{ Resolvente zweier Klauseln aus } M\}$
- $\operatorname{Res}^0(M) := M$, $\operatorname{Res}^{i+1}(M) := \operatorname{Res}(\operatorname{Res}^i(M))$
- $\operatorname{Res}^*(M) := \bigcup_{i>0} \operatorname{Res}^i(M)$

Beispiel: $\varphi = x_1 \wedge (\neg x_1 \vee x_2) \wedge (\neg x_2 \vee x_3) \wedge \neg x_3$

T1.14

Analyse des Resolutionskalküls

Im Allgemeinen:

- Ein Kalkül *terminiert*, wenn sich für jede Eingabe nur endlich viele Formeln erzeugen lassen.
- Ein Kalkül heißt *korrekt*, wenn sich nur gewünschte Formeln erzeugen lassen.
- Ein Kalkül heißt *vollständig,* wenn sich jede gewünschte Formel erzeugen lässt.

In diesem Fall: □ gewünscht gdw. Eingabeformel unerfüllbar

Universität Bremen

53

Universität Bremen

Analyse des Resolutionskalküls

Terminierung:

Lemma 1.30 (Terminierung)

Für jede endliche Klauselmenge M gibt es ein $i \ge 1$ mit $Res^*(M) = Res^i(M)$.

Beweis:

M hat nur endlich viele Literale.

Darüber lassen sich nur endlich viele Klauseln bilden.

Also ist $Res^*(M)$ endlich.

Daraus folgt: $Res^*(M) = Res^i(M)$ für ein $i \ge 1$.

Korrektheit und Vollständigkeit:

Theorem 1.31 (Resolutionssatz, Robinson 1965)

Eine endliche Klauselmenge M ist unerfüllbar gdw. $\square \in \text{Res}^*(M)$.

Der Satz kann auch für unendliche Klauselmengen bewiesen werden.

T1.15

idi dilendicile Mauseimengen bewiesen werder

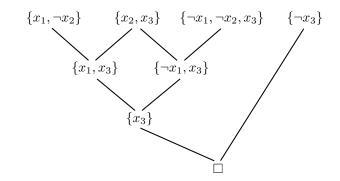
Resolutionsbeweise

Resolutionsbeweis:

Darstellung der Ableitung von □ mittels Resolventen als Graph

Beispiel:

$$\varphi = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge \neg x_3$$



Resolution als Algorithmus

Wegen Lemma 1.30 (Terminierung) stabilisiert sich die Folge

$$M = \mathsf{Res}^0(M) \subseteq \mathsf{Res}^1(M) \subseteq \cdots$$

nach höchstens 2^n Schritten.

Dies liefert den folgenden Algorithmus für Erfüllbarkeit in der Aussagenlogik:

$$\begin{split} R_0 &:= M \\ i &:= 0 \\ \textbf{repeat} \\ i &:= i+1 \\ R_i &:= \operatorname{Res}(R_{i-1}) \\ \textbf{if} &\: \Box \in R_i \textbf{ then return ,} \textbf{unerf\"ullbar''} \\ \textbf{until } R_i &= R_{i-1} \\ \textbf{return ,} \textbf{erf\"ullbar''} \end{split}$$

Resolutionsbeweise

Definition 1.32 (Resolutionsbeweis)

Sei M eine endliche Klauselmenge. Ein Resolutionsbeweis für M ist eine Folge C_1, \ldots, C_m von Klauseln, für die gilt:

- Für alle i < m ist entweder $C_i \in M$ oder C_i ist Resolvente zweier C_i , C_k mit i, k < i.
- \bullet $C_m = \square$.

Beachte:

 $Res^*(M)$ entspricht nicht *einem* Resolutionsbeweis, sondern enthält alle Resolutionsbeweise für die Unerfüllbarkeit von M (und auch Klauseln, die in keinem Resolutionsbeweis vorkommen)

Exkurs: Beweislänge

Für n + 1 Objekte und n Schubfächer, negiert, in KNF gewandelt:

$$\varphi_n = \bigwedge_{i=1..n+1} \bigvee_{j=1..n} x_{ij} \wedge \bigwedge_{1 \le i < i' \le n+1} \bigwedge_{j=1..n} (\neg x_{ij} \vee \neg x_{i'j})$$

Gibt Folge von Formeln $\varphi_1, \varphi_2, \varphi_3, \ldots$ Ohne Beweis:

Theorem 1.33 (Haken 1985)

Es gibt Konstanten $k_1, k_2 > 1$ so dass für alle $n > k_1$:

- φ_n hat $\mathcal{O}(n^3)$ Klauseln mit je höchstens n Variablen
- jeder Resolutionsbeweis für φ_n hat Länge $\geq (k_2)^n$

Andere Kalküle haben aber u. U. kurze Beweise für diese Formelklasse.

Exkurs: Beweislänge

Es gibt Klauselmengen, für die jeder Resolutionsbeweis exponentiell lang ist.

Schubfachprinzip: wenn man n+1 Objekte auf n Schubladen verteilt, enthält mindestens eine Schublade 2 Objekte

Als aussagenlogische Formel:

$$(x_{11} \lor x_{12}) \land (x_{21} \lor x_{22}) \land (x_{31} \lor x_{32}) \rightarrow (x_{11} \land x_{21}) \lor (x_{11} \land x_{31}) \lor (x_{21} \land x_{31})$$
$$\lor (x_{12} \land x_{22}) \lor (x_{12} \land x_{32}) \lor (x_{22} \land x_{32})$$

Da das Schubfachprinzip gültig ist, ist die Negation dieser Formel unerfüllbar.

Einheitsresolution

Definition 1.34 (Hornklausel)

Eine Klausel ist eine Hornklausel, wenn sie höchstens ein positives Literal enthält.

Beachte: \Box , $\{x\}$, $\{\neg x\}$ sind also (spezielle) Horn-Klauseln

Definition 1.35 (Einheitsresolvente)

Seien C_1, C_2, C Klauseln. C ist *Einheitsresolvente* von C_1 und C_2 , wenn C Resolvente von C_1 und C_2 ist und C_1 die Form $\{x\}$ hat. Wir setzen

 $\mathsf{ERes}(M) := M \cup \{C \mid C \; \mathsf{Einheits resolvente} \; \mathsf{zweier} \; \mathsf{Klause In} \; \mathsf{aus} \; M\}$ und definieren $\mathsf{ERes}^i(M)$ und $\mathsf{ERes}^*(M)$ analog zu $\mathsf{Res}^i(M)$ und $\mathsf{Res}^*(M)$.

Beispiel: $\{\{\neg x_1, \neg x_2, \neg x_3, x_4\}, \{x_1\}, \{x_2\}, \{x_3\}, \{\neg x_3, \neg x_4\}\}$

Einheitsresolution

Auf Hornklauseln ist Einheitsresolution ausreichend:

Theorem 1.36 (Resolutionssatz für Einheitsresolution)

Eine endliche Menge M von Hornklauseln ist unerfüllbar gdw. $\square \in \mathsf{ERes}^*(M)$

T1.17

Der Beweis zeigt auch, dass es für jede unerfüllbare Horn-Formel φ einen Resolutionsbeweis gibt, der höchstens $m\cdot (v+1)$ Schritte hat, wobei $m=\max\{|C|\mid C\in M(\varphi)\}$ und $v=|\mathrm{Var}(\varphi)|$:

- ullet die Anzahl Variablen in V^{st} ist begrenzt durch v
- für jede Variable in V^* und für \square jeweils Beweis der Länge m

Da $\mathsf{ERes}^*(M)$ alle Resolutionsbeweise für M enthält, ist der naive Einheits-Resolutionsalgorithmus dennoch kein Polyzeit-Verfahren

Man kann ihn aber durch eine weitere Einschränkung (Variablenordnung) zu einem Polyzeit-Algorithmus machen.

31 **((**

Universität Bremen

DPLL

Einfacher Backtracking-Algorithmus für SAT (Eingabe Klauselmenge M):

- Wähle Literal ℓ , weise Wahrheitswert 1 zu
- Vereinfache M zu M^+ (s. Beweis Resolutionssatz)
- Prüfe M^+ auf Erfüllbarkeit (rekursiver Aufruf) wenn ja, gib "erfüllbar" aus sonst wiederhole mit Wahrheitswert 0 für ℓ

DPLL benutzt Optimierungen, die den Suchraum wirksam beschränken, indem sie nichtdeterministische Entscheidungen frühzeitig vermeiden

- Unit Propagation (Einheitsresolution)
- Pure Literal Elimination
 (Löschen von Literalen, die nur positiv oder nur negativ in *M* auftreten)

SAT-Solver

Erfüllbarkeit in Aussagenlogik nennt man auch das SAT-Problem.

Obwohl SAT NP-vollständig ist, gibt es heute sehr effiziente *SAT-Solver*, die auch sehr große Formeln (Tausende von Variablen) lösen können.

Dies ist deshalb von großer Bedeutung, weil sich viele NP-vollständige Probleme in sehr natürlicher Weise als KNF kodieren lassen

Moderne SAT-Solver basieren auf der sogenannten DPLL-Methode (nach Davis-Putnam-Logemann-Loveland)

Wirklich effizient werden SAT-Solver aber erst durch zahlreiche raffinierte (und teils mathematisch recht anspruchsvolle) Optimierungen (Lingeling, Minisat, Glucose, zchaff, precosat, Sat4J – siehe SAT competitions)

DPLL - Hauptideen

Genauere Beschreibung der wesentlichen DPLL-Optimierungen

Unit Propagation (Einheitsresolution)

- \bullet Belege so früh wie möglich Einheitsklauseln $\{\ell\}$ entsprechend
- → Lösche alle Klauseln, die ℓ enthalten (Unit Subsumption)
- → Lösche ¬ℓ aus allen übrigen Klauseln (der eigentl. Resolutionsschritt!)

Pure Literal Elimination

- Literal ℓ ist pur in M, wenn M nur ℓ und nicht $\overline{\ell}$ enthält
- Pure Literale tragen nichts zur Unerfüllbarkeit von M bei (Setzen von $V(\ell)=1$ macht alle Klauseln mit ℓ wahr)
- \leadsto Lösche alle Klauseln, die ℓ enthalten

Optimierungen werden am Anfang jedes Unteraufrufs angewendet

Der DPLL-Algorithmus

```
Function DPLL(M):
   input : Klauselmenge M
   output: Wahrheitswert (true \( = \), erfüllbar", false \( = \), unerfüllbar")
   while M enthält Einheitsklausel \{\ell\} do
       Lösche alle Klauseln aus M, die \ell enthalten
                                                              //Unit Subs.
       Lösche ¬ℓ aus allen übrigen Klauseln
                                                               //Unit Res.
   if \square \in M then return false
   while M enthält pures Literal \ell do
       Lösche alle Klauseln aus M, die \ell enthalten //Pure Lit Elim.
   if M = \emptyset then return true
   Wähle nichtdeterministisch \ell in M
                                                //nichtdet. Verzweigung
   if DPLL(M \cup \{\{\ell\}\}\)) then return true
   else if DPLL(M \cup \{\{\neg \ell\}\}) then return true
   else return false
```

Beispiel: $M = \{\{x_1, \neg x_2, x_3\}, \{\neg x_1, x_2, \neg x_3\}, \{\neg x_1, x_3, \neg x_4\}, \{\neg x_1, x_3\}\}$

Universität Bremen

Universität Bremen

Hilbert-Kalkül

Wir betrachten noch kurz ein weiteres Beispiel für einen Kalkül.

Der Hilbert-Kalkül verwendet Formeln über der Junktormenge $\{\rightarrow, \neg\}$ und basiert auf den folgenden Axiomenschemata:

- 1. $\varphi \to (\psi \to \varphi)$
- 2. $(\varphi \to (\psi \to \vartheta)) \to ((\varphi \to \psi) \to (\varphi \to \vartheta))$
- 3. $(\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$
- 4. $\varphi \to (\neg \varphi \to \psi)$
- 5. $(\neg \varphi \rightarrow \varphi) \rightarrow \varphi$

Aus diesen Axiomenschemata kann man mittels einer einzigen Schlussfolgerungsregel, dem *Modus Ponens*, alle gültigen Formeln herleiten

Hilbert-Kalkül

Definition 1.37 (Herleitbarkeit im Hilbert-Kalkül)

Die Menge der herleitbaren Formeln ist die kleinste Menge, so dass:

- jede Instanz der Axiomenschemata 1–5 ist herleitbar (Instanz: Teilformeln φ , ψ , ϑ beliebig ersetzen)
- wenn φ herleitbar und $\varphi \to \psi$ herleitbar, dann ψ herleitbar (Modus Ponens)

Beispiel: die Formel $x \to x$ ist herleitbar

T1.19

Ohne Beweis:

Theorem 1.38 (Korrektheit & Vollständigkeit Hilbert-Kalkül)

Eine Formel φ ist gültig gdw. sie im Hilbert-Kalkül herleitbar ist.

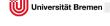
Resolutionskalkül vs. Hilbert-Kalkül

	Resolutionskalkül	Hilbert-Kalkül	
Arbeits- weise	zeigt Unerfüllbarkeit gegebener Formel	erzeugt alle gültigen Formeln	
Formeln	in KNF	über Junktormenge {→, ¬}	
"Ziel"	Herleitung der leeren Klausel mittels Resolventenbildung	Herleitung neuer Formeln aus Axiomen mittels Modus Ponens	
Vollständ beweis	recht einfach	recht aufwändig	
Anwendung	automatisches Entscheiden von Erfüllbarkeit	Modellierung mathematischen Schließens	

Aussagenlogik

- 1.1 Grundlagen
- 1.2 Normalformen und funktionale Vollständigkeit
- 1.3 Erfüllbarkeit, Gültigkeit, Folgerbarkeit, Horn-Formeln
- 1.4 Resolution

1.5 Kompaktheit



Kompaktheit – Beispielanwendung

Definition 1.41 (4-Färbbarkeit)

Ein (ungerichteter) *Graph* G = (V, E) besteht aus

- einer Menge $V \subseteq \{v_1, v_2, \dots\}$ von *Knoten* und
- einer Menge E von *Kanten*, also Teilmengen $\{v, v'\} \subseteq V$ mit $v \neq v'$.

G heißt *4-färbbar*, wenn es eine Abbildung $f:V \to \{c_1,c_2,c_3,c_4\}$ gibt, so dass $f(v) \neq f(v')$ für alle $\{v, v'\} \in E$. So ein f heißt 4-Färbung.

Der bekannte 4-Farben-Satz für endliche Graphen:

Theorem 1.42 (4-Farben-Satz, endliche Graphen)

Jeder endliche planare Graph ist 4-färbbar.

(planar = kann ohne sich überkreuzende Kanten gezeichnet werden)

Universität Bremen

Kompaktheit

Manchmal ist es nützlich, mit unendlichen statt mit endlichen Mengen aussagenlogischer Formeln zu arbeiten.

Definition 1.39 (Semantik Formelmengen)

Sei Γ eine (endliche oder unendliche) Formelmenge.

- Belegung V erfüllt Γ ($V \models \Gamma$), wenn $V \models \varphi$ für alle $\varphi \in \Gamma$.
- Γ ist *erfüllbar*, wenn es Belegung $V \models \Gamma$ gibt.
- Formel ψ folgt aus Γ ($\Gamma \models \psi$), wenn für alle $V \models \Gamma$ auch $V \models \psi$ gilt.

Ein zentrales Resultat zum Verständnis unendlicher Formelmengen ist der Kompaktheitssatz:

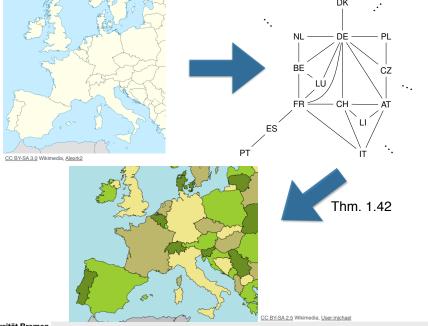
Theorem 1.40 (Kompaktheitssatz)

Für alle (potentiell unendlichen) Mengen $\Gamma \subseteq AL$ gilt:

 Γ ist erfüllbar gdw. jede endliche Teilmenge von Γ erfüllbar ist.

Wir betrachten zunächst eine Beispielanwendung.

Bedeutung des 4-Farben-Satzes



Kompaktheit – Beispielanwendung

Mittels des Kompaktheitssatzes kann man den 4-Farben-Satz von endlichen auf unendliche Graphen übertragen:

Theorem 1.43 (4-Farben-Satz, beliebige Graphen)

Jeder (möglicherweise unendliche) planare Graph ist 4-färbbar.

Beweis.

Sei G = (V, E) ein (möglicherweise unendlicher) planarer Graph.

Definiere Formelmenge

$$\Gamma = \{ x_{v1} \lor x_{v2} \lor x_{v3} \lor x_{v4} \mid v \in V \}$$

$$\cup \{ \neg (x_{vi} \land x_{vj}) \mid v \in V, \ 1 \le i < j \le 4 \}$$

$$\cup \{ \neg (x_{vi} \land x_{wi}) \mid \{v, w\} \in E, \ 1 \le i \le 4 \}$$

Behauptung: Jede endliche Teilmenge $\Delta\subseteq\Gamma$ ist erfüllbar.

T1.20

Mit Kompaktheitssatz folgt: Γ ist erfüllbar.

Jede erfüllende Belegung liefert eine 4-Färbung von G.

(Der Satz wurde ursprünglich direkt für beliebige Graphen bewiesen.)

Universität Bremen

Kompaktheit

Wir beweisen nun den Kompaktheitssatz.

Zur Erinnerung:

- Belegung V erfüllt Γ ($V \models \Gamma$), wenn $V \models \varphi$ für alle $\varphi \in \Gamma$.
- Γ ist *erfüllbar*, wenn es Belegung $V \models \Gamma$ gibt.
- Formel ψ folgt aus Γ ($\Gamma \models \psi$), wenn für alle $V \models \Gamma$ auch $V \models \psi$ gilt.

Theorem 1.40 (Kompaktheitssatz)

Für alle (potentiell unendlichen) Mengen $\Gamma \subseteq AL$ gilt:

 Γ ist erfüllbar gdw. jede endliche Teilmenge von Γ erfüllbar ist.

T1.21

Äquivalent (und manchmal natürlicher) ist die folgende Variante:

Theorem 1.44 (Kompaktheitssatz Variante 2)

Für alle (potentiell unendlichen) Mengen $\Gamma\subseteq \mathsf{AL}$ und Formeln $\varphi\in \mathsf{AL}$ gilt:

 $\Gamma \models \varphi$ gdw. endliches $\Delta \subseteq \Gamma$ existiert mit $\Delta \models \varphi$.

