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Abstract

Extracting a subset of a given ontology that captures all the on-
tology’s knowledge about a specified set of terms is a well-understood
task. This task can be based, for instance, on locality-based modules.
However, a single module does not allow us to understand neither top-
icality, connectedness, structure, or superfluous parts of an ontology,
nor agreement between actual and intended modeling.

The strong logical properties of locality-based modules suggest that
the family of all such modules of an ontology can support comprehen-
sion of the ontology as a whole. However, extracting that family is not
feasible, since the number of locality-based modules of an ontology can
be exponential w.r.t. its size.

In this paper we report on a new approach that enables us to effi-
ciently extract a polynomial representation of the family of all locality-
based modules of an ontology. We also describe the fundamental algo-
rithm to pursue this task, and report on experiments carried out and
results obtained.

1 Introduction

In software engineering, modularly structured systems are desirable, all
other things being equal. Given a well-designed modular program, it is
generally easier to process, modify, and analyze it and to reuse parts by
exploiting the modular structure. As a result, support for modules (or com-
ponents, classes, objects, packages, aspects) is a commonplace feature in
programming languages.

Ontologies are computational artefacts akin to programs and, in notable
examples, can get quite large and complex, which suggests that exploiting
modularity might be fruitful. Research into modularity for ontologies has
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been an active area for ontology engineering. Recently, a lot of effort has
gone into developing logically sensible modules, that is, modules which offer
strong logical guarantees for intuitive modular properties [CHKS08]. One
such guarantee is called coverage and means that the module captures all
the ontology’s knowledge about a given set of terms (signature)—a kind
of dependancy isolation or encapsulation. This guarantee is provided by
modules based on conservative extensions, but also by efficiently computable
approximations, such as locality-based modules.

The task of extracting one such module given a signature (GetOne) is well
understood and starting to be deployed in standard ontology development
environments, such as Protégé 4,1 and online.2 The extraction of locality-
based modules has already been effectively used in the field for ontology
reuse [JJBR08] as well as a subservice for incremental reasoning [CHKS10].
Now GetOne requires the user to know in advance the right set of terms
to input to the extractor: we call this a seed signature for the module and
note that one module can have several such seed signatures. Since there
are non-obvious relations between the final signature of a module and its
seed signature, users are often unsure how to generate a proper request and
confused by the results.

While GetOne is an important and useful service, it, by itself, tells us
nothing about the modular structure of the ontology as a whole. The modu-
lar structure is determined by the set of all modules and their inter-relations,
or at least a suitable subset thereof. The task of a-posteriori determining
the modular structure of an ontology is called GetStruct, and the task of ex-
tracting all modules is called GetAll. While GetOne is well-understood and
often computationally cheap, GetAll and GetStruct have not been examined
for module notions with strong logical guarantees, with a few preliminary
exceptions [CPSK06, DPSS10]. If ontology engineers had access to the over-
all modular structure of the ontology determined by GetStruct, they might
be able to use it to guide their extraction choices and, supported by the
experience described in [CPSK06], to understand its topicality, connected-
ness, structure, superfluous parts, or agreement between actual and intended
modeling. For example, by inspecting the modular structure and observing
un-connected parts that are intended to be connected, ontology designers
could learn of weakly modeled parts of their ontology.

In the worst case, however, the number of all modules of an ontology
is exponential in the number of terms or axioms in the ontology [DPSS10].

1http://www.co-ode.org/downloads/protege-x
2http://owl.cs.manchester.ac.uk/modularity
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More importantly, even for very small ontologies, the number of all modules
is far too large for them to be inspected by a user or even computed; e.g.,
Koala is an ontology with 42 axioms that has 3,660 modules, and GetAll fails
on many ontologies less than one hundred axioms.

In this paper, we report on new insights regarding the modular struc-
ture of ontologies which leads to a new, polynomial algorithm for GetStruct
(provided that module extraction is polynomial) that generates a linear (in
the size of the ontology), partially ordered set of modules and atoms which
succinctly represent all (potentially exponentially many) modules of an on-
tology. We also report on some experiments carried out with an implemen-
tation of this algorithm.

2 Related work

One solution to GetStruct is described in [CPSK06] via partitions related
to E-connections. When it succeeds, it divides an ontology into three kinds
of modules: (A) those which import vocabulary (and axioms) from others,
(B) those whose vocabulary (and axiom set) is imported, and (C) isolated
parts. In various experiments, the numbers of parts extracted were quite
low and the structure often corresponded usefully to user understanding.
For instance, the tutorial ontology Koala, consisting of 42 logical axioms, is
partitioned into one A-module about animals and three B-modules about
genders, degrees and habitats.

It has also been shown in [CPSK06] that certain combinations of these
parts provide coverage. For Koala, such a combination would still be the
whole ontology (though smaller parts have coverage as well).
E-connections are require rather strong conditions to ensure modular sep-

aration and have been observed to force together axioms and terms which are
logically separable. As a consequence, it has been observed that ontologies
with fairly elaborate modular structure have improverished E-connections
based structures: sometimes extraction resulted in a single partition even
though the ontology seemed well structured. Furthermore, the robustness
properties of the parts (e.g., under vocabulary extension) are not as well-
understood as those of locality-based modules. Partitions ensure, however,
a linear upper bound on the number of parts.

Differently, locality-based modules are finer-grained and can overlap. In
principle this could lead to an exponential number (w.r.t. the size of the
ontology) of modules; in [DPSS10] the trendline of the number of modu-
les has been empirically studied for a selection of different ontologies, and
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the exponentiality of the family of modules seems to be confirmed by the
experiments. However, the strong logical properties described in the intro-
duction suggest that it is worth investigating if, similarly to E-connections,
a partition-based approach can be applied by using locality-based modu-
les. The answer is positive under some mild requirements on properties of
modules, as we are going to show throughout this paper.

Another approach to GetStruct is described in [BFZE08]. It underlies the
tool ModOnto, which aims at providing support for working with ontology
modules that borrows intuitions from software modules. To the best of
our knowledge, however, it has not been examined whether such modules
provide coverage in the above sense. Furthermore, ModOnto does not aim
at obtaining all modules.

Another procedure for partitioning an ontology is described in [SK04].
However, this method only takes the concept hierarchy of the ontology into
account and can therefore not provide the strong logical guarantee of cove-
rage.

In [KLPW10], it was shown how to decompose the signature of an onto-
logy to obtain the dependencies between its terms. In contrast to previous
such approaches, this one is syntax-independent. While gaining information
about term dependencies is one goal of our approach, we are also interested
in the modules of the ontology.

Among the a-posteriori approaches to GetOne, some provide logical guar-
antees such as coverage, and others do not. The latter are not of interest
for this paper. The former are usually restricted to DLs of low expres-
sivity, where deciding conservative extensions—which underly coverage—is
tractable. Prominent examples are the module extraction feature of CEL
[Sun08] and the system MEX [KLWW08]. However, we aim at an approach
that covers DLs up to OWL 2.

There are a number of logic-based approaches to modularity that func-
tion a-priori, i.e., the modules of an ontology have to be specified in advance
by features that are added to the underlying (description) logic and whose se-
mantics is well-defined. These approaches often support distributed reason-
ing; they include C-OWL [SvB+04], E-connections [KLWZ04], Distributed
Description Logics [BS03], and Package-Based Description Logics [BVSH09].
Even in these cases, however, we may want to understand the modular
structure of the syntactically delineated parts. Furthermore, with imposed
structure, it is not always clear that that structure is correct. Decisions
about modular structure have to be taken early in the modeling which may
enshrine misunderstandings. Examples were reported in [CPSK06], where
user attempts to capture the modular structure of their ontology by sepa-
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rating the axioms into separate files were totally at odds with the analysed
structure.

3 Modules

We assume the reader to be familiar with Description Logics [BCM+03],
and only briefly sketch here some of the central notions around locality-based
modularity. We use L for a Description Logic, e.g., SHIQ, and O,M, etc.,
for a knowledge base, i.e., a finite set of axioms. Moreover, we use Õ for the
signature of O, i.e., the set of concept, role, and individual names used in
O.

Conservative extensions (CEs) are designed to capture the above de-
scribed encapsulation of knowledge. They are defined as follows.

Definition 3.1. Let L be a DL, M ⊆ O be L-ontologies, and Σ be a
signature.

1. O is a deductive Σ-conservative extension (Σ-dCE ) of M w.r.t. L if
for all axioms α over L with α̃ ⊆ Σ, it holds that M |= α if and only
if O |= α.

2. M is a dCE-based module for Σ of O if O is a Σ-dCE of M w.r.t. L.

Unfortunately, CEs are hard or even impossible to decide for many DLs,
see [GLW06, KLWW09, SSZ09]. Therefore, approximations have been de-
vised. We focus on syntactic locality (here for short: locality). Locality-
based modules can be efficiently computed and provide coverage; that is,
they capture all the relevant entailments, but not necessarily only those
[CHKS08, JRCS+08]. Although locality is defined for the DL SHIQ, it is
straightforward to extend it to SHOIQ(D) (see [CHKS08, JRCS+08]), and
a locality-based module extractor is implemented in the OWL API.3 In what
follows we introduce locality-based modules, and some of their properties.

Given an ontology O and a set of terms Σ we are interested in, we want
to select from O the set of all axioms that “say something” about Σ. To
efficiently extract such axioms, we define when an axiom is irrelevant (local)
w.r.t. a signature Σ: this happens because there is a way to satisfy it trivially,
i.e. an interpretation function that provides terms not in Σ with a “trivial”
meaning [CHKS08].

Definition 3.2. An axiom α is called:
3http://owlapi.sourceforge.net/
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(a) syntactically ⊥-local w.r.t. signature Σ if it is of one of the following
form:

C⊥ v C, C v C>, C⊥ ≡ C⊥, C> ≡ C>, R⊥ v R, Trans(R⊥),

where C means “arbitrary concept”, R means “arbitrary role name”,
R⊥ is a role name such that R⊥ 6∈ Σ, while C⊥ ∈ Bot(Σ) and C> ∈
Top(Σ) as defined in Table 1(a);

(b) syntactically >-local w.r.t. signature Σ if it is of one of the following
form:

C⊥ v C, C v C>, C⊥ ≡ C⊥, C> ≡ C>, R v R>, Trans(R>),

where C means “arbitrary concept”, R means “arbitrary role name”,
R> is a role name such that R> 6∈ Σ, while C⊥ ∈ Bot(Σ) and C> ∈
Top(Σ) as defined in Table 1(b).

(a) ⊥-locality Let n ∈ N \ {0}
Bot(Σ) ::= A⊥ | ⊥ | ¬C> | C u C⊥ |C⊥ u C | ∃R.C⊥ | ≤ n R.C⊥ | ∃R⊥.C | ≤ n R⊥.C
Top(Σ) ::= > |¬C⊥ |C>1 u C>2 | ≤ 0 R.C

(b) >-locality Let n ∈ N \ {0}
Bot(Σ) ::= ⊥ |¬C> | C u C⊥ |C⊥ u C | ∃R.C⊥ | ≤ n R.C⊥

Top(Σ) ::= A> | > | ¬C⊥ |C>1 u C>2 | ∃R>.C> | ≤ n R>.C> | ≤ 0 R.C

Table 1: Syntactic locality conditions

The set of > (or ⊥) locality-based axioms w.r.t. a set Σ of terms from
Õ is denoted by x-local(Σ,O), where x ∈ {>,⊥}.

Proposition 3.3. LetM⊆ O two ontologies such that all axioms in O\M
are ⊥-local (or >-local) w.r.t. Σ ∪ M̃. Then, O is a Σ-mCE of M.

Proof. See [CHKS08].

A simple but useful property of locality is anti-monotonicity : the larger
a seed signature Σ is, the smaller the set of local axioms is.

Corollary 3.4. Let Σ1 and Σ2 be two sets of terms, and let x ∈ {>,⊥}.
Then, Σ1 ⊆ Σ2 implies x-local(Σ2) ⊆ x-local(Σ1).

Proof. See [CHKS08].
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Remark 3.5. Some obvious tautologies are always local axioms, for any
choice of a seed signature Σ. Hence, they will not appear in locality-based
modules. Anyway, they do not add any knowledge to an ontology O.

A locality-based module can be computed as follows [CHKS08]: given
an ontology O, a signature Σ ⊆ Õ and an empty setM, every axiom α ∈ O
is tested whether it is Σ-local; if not, α is added to M, and the signa-
ture Σ is extended with all terms in α̃, and the test is re-run against the
extended signature. However, the resulting modules are sometimes quite
large; for example, given the ontology O = {Ci v D | 1 ≤ i ≤ n}, the
>-module >-mod(O,Σ) contains the whole ontology. In order to make mo-
dules smaller, we will nest alternatively ⊥- and >-locality on the previously
extracted module: the resulting sets are again mCE-based modules, called
⊥>- or >⊥-modules, depending on the type of the first extraction, ⊥ in the
first case, > in the second [SSZ09]. Moreover, we can keep nesting the ex-
traction until a fixpoint is reached. The number of steps needed to reach
this fixpoint can be at most as big as the number of axioms in O.

Lemma 3.6. For every integer n ≤ 1 and order of extraction x ∈ {>⊥,⊥>},
there exists an ALC-module M0 of size O(n) and a signature Σ of size
O(n) such that Mi+1 = x-mod(Σ,Mi), for each i = 0, . . . , n − 1, and
M0 ⊃ · · · ⊃ Mn.

Proof. See [SSZ09].

Notation 3.7. From now on, we will denote by x-mod(Σ,O) the x-module
M extracted from an ontology O by using the notion of x-locality w.r.t. Σ,
where x ∈ {>,⊥,⊥>,>⊥, . . . ,>⊥∗,⊥>∗}, including any alternate nesting of
these symbols.

We list here some results about modules that will be used later.

Proposition 3.8. The union of modules is not, in general, a module,

Proof. Consider, for example, the ontology

O = {A v B, B v C, B v D, C u D v E}.

Then,

>⊥∗-mod({A, C}) = {A v B, B v C}
>⊥∗-mod({A, D}) = {A v B, B v D}

but their union is not a module, because whenever we have both C and D in
a seed signature, we get into the module also the axiom C u D v E.
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Proposition 3.9. The intersection of modules is not, in general, a module.

Proof. Consider, for example, the ontology

O = {A v B, B u C v D, A v C, A v D}.

Then,

>⊥∗-mod({A, B, C}) = {A v B, B u C v D, A v C}
>⊥∗-mod({A, B, D}) = {A v B, B u C v D, A v D}

but their intersection is not a module, because both axioms A v B, Bu C v D
are in a module if, and only if, at least one of the axioms A v C, A v D is in
the module.

Proposition 3.10. The complement of a module is not, in general, a mo-
dule.

Proof. Consider, for example, the ontology

O = {A v B, B u C v A t D}.

Then,

>⊥∗-mod({A, B}) = {A v B}

But the set O \ {A v B} made by the axiom B u C v A t D is not a module
by itself.

The following properties of locality-based modules will be of interest for
our modularization.

Definition 3.11. Let O be an ontology, M ⊆ O a module, and Σ ⊆ Õ a
signature.

- M is called self-contained if it is indistinguishable from O w.r.t. the
set of terms in Σ ∪ M̃.

- M is called depleting if the set of axioms in O\M is indistinguishable
from the empty set w.r.t. Σ.

Proposition 3.12. If S is an inseparability relation that is robust under
replacement, then every depleting SΣ-module is a self-contained SΣ-module.

Proof. See Proposition 4, [KPS+09].
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Theorem 3.13. Let S be a monotone inseparability relation that is robust
under replacement, T a TBox, and Σ a signature. Then there is a unique
minimal depleting SΣ-module of T .

Proof. See Theorem 5, [KPS+09].

Remark 3.14. From now on, we use the notion of >⊥∗-locality from [SSZ09].
However, the results we obtain can be generalized to every notions of modu-
les that guarantee the existence of a unique and depleting module for each
signature Σ. In particular, the same conditions guarantee also that such
notions of modules satisfy self-containedness.

4 Algebraic background

We want to describe the relationships between an ontology O and a
family Fx(O) of subsets thereof by means of a well-understood structure.
To this end, we introduce in what follows some notions of algebra.

We will make use of partial order relations, defined as follows.

Definition 4.1. A partial order relation ≤ defined on a set X is a binary
relation over the elements x1, x2, . . . of X satisfying 3 properties:

- x1 ≤ x2
(reflexivity)

- x1 ≤ x2 and x1 6= x2 =⇒ x2 6≤ x1
(antisymmetry)

- x1 ≤ x2 and x2 ≤ x3 =⇒ x1 ≤ x3
(transitivity)

In this case, the pair (X,≤) is called partially ordered set or poset.

Definition 4.2. Two elements x, y of a poset (X,≤) are called comparable
if x ≤ y or y ≤ x. Otherwise they are incomparable.

Not all posets have minimal elements. However, if the number of ele-
ments is finite, then minimal elements can be defined.

Definition 4.3. Given a poset (X,≤), an element x ∈ X is called minimal
if there exists no element y of X with y ≤ x.

Definition 4.4. For an element x ∈ X, the set (x] := {y ∈ X | y ≤ x} is
called the principal ideal of x.

A less standard mathematical structure is the field of sets, defined as
follows.
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Definition 4.5. A field of sets is a pair (O,F ), where O is a set and F is an
algebra over O i.e., a non-empty subset of the power set of O closed under
intersection, union and complement of sets. Elements of O are called points
and are denoted by small letters as a, b, and those of F are called complexes
and are denoted by capital letters such as M,N .

Definition 4.6. Given a finite set O and a family F of subsets of O, we can
build the induced field of sets B(O,F ) by closing the family under union,
intersection and complement.

Remark 4.7. B(O,F ) is obviously a field of sets as in Definition 4.5 and
its elements are called induced complexes; B(O,F ) inherits a partial order
relation defined by the inclusion relation “⊆”, that satisfies the properties
listed in Definition 4.1.

Definition 4.8. A field of sets B(O,F ) where minimal elements can not
be defined is called atomless. Otherwise, the minimal elements of B(O,F )
with respect to the inclusion relation “⊆” are called atoms.

The minimal elements of the B(O,F ) \ ∅ with respect to the inclusion
relation “⊆” are called atoms.4

5 Modules and atoms

As we already say in Remark 3.14, we consider >⊥∗-locality based mo-
dules, but the approach we present can be applied to any notion of a mo-
dule that is monotonic, self-contained, and depleting, and we know from
[KPS+09] that robustness under replacement and depletingness implies self-
containedness. In particular, these properties guarantee the uniqueness of a
depleting module for any given signature [KPS+09].

Moreover, to make the presentation easier, we assume, without loss of
generality,5 that

O′ = x-mod(Õ,O) \ x-mod(∅,O). (1)

Next, we are going to define a correspondence among ontologies with
relative families of modules and fields of sets as defined in Definition 4.5.
Axioms correspond to points; however, only some complexes correspond

4Slightly abusing notation, we use B(O, F ) here for the set of complexes in B(O, F ).
5We can always remove those unwanted axioms that occur in either all or no module,

and consider them separately.
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to modules since the family Fx(O) of modules is not, in general, closed
under union, intersection and complement: given two modules, neither their
union nor their intersection nor the complement of a module is, in general, a
module. Hence, we introduce the (induced) field of modules, that is the field
of sets of the family Fx(O) of modules. This enables us to use properties of
fields of sets also for ontologies.

Definition 5.1. Given an ontology O and a notion of module x-mod( ,O),
we use Fx(O) for the set of all x-modules of O, and the (induced) field of
modules B(Fx(O)) is the closure of the set Fx(O) under union, intersection
and complement.

We define atoms of our field of modules as blocks of modules of an
ontology; recall that these are the ⊆-minimal complexes of B(Fx(O)) \ {∅}.

Definition 5.2. Given a field of modules B(Fx(O)) over an ontology O,
its atoms {a, b, . . .} are the minimal complexes in the set B(Fx(O)) \ {∅}
w.r.t. the partial order relation “⊆”. The family of atoms from B(Fx(O)) is
denoted by A(Fx(O)) and is called atomic decomposition.

Remark 5.3. The existence of atoms is guaranteed by the finiteness of O,
because then the algebra B(Fx(O)) is finite and consequently not atomless.
However, it is still possible that infinite ontologies induce a field of sets with
atoms.

An atom is a set of axioms such that, for any module, it either contains
all axioms in the atom or none of them. Moreover, every module is the union
of atoms. Next, we show how atoms can provide a succinct representation of
the family of modules. Before proceeding further, we summarize in Table 2
the four structures introduced so far and, for each, its elements, source,
maximal size, and structure.

O Fx(O) B(Fx(O)) A(Fx(O))

elements axioms modules Mi complexes Ki,j atoms a, b, . . .

source ontology locality closure of atoms of
engineers check Fx(O) B(Fx(O))

maximal size baseline exponential exponential linear
structure set family of sets complete lattice poset

Table 2: 4 ways for looking at ontologies fragments
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5.1 Atoms and their structure

The family A(Fx(O)) of atoms of an ontology, as in Definition 5.2, has
many properties of interest for us.

Lemma 5.4. The family A(Fx(O)) of atoms of an ontology O is a partition
of O, and thus #A(Fx(O)) ≤ #O.

Proof. Trivial, by Definition 4.8, and because atoms are disjoint by con-
struction.

Hence the atomic decomposition is succinct ; we will see next whether its
computation is tractable and whether it is indeed a representation of Fx(O).

The following definition aims at defining a notion of “logical dependence”
between axioms: the idea is that an axiom α depends on another axiom β
if, whenever α occurs in a module M then β also belongs to M. A slight
extension of this argument allows us to generalize this idea because, by
definition of atoms, whenever α occurs in a module, all axioms belonging to
α’s atom a occur. Hence, we can formalize this idea by defining a relation
between atoms.

Definition 5.5. (Relations between atoms) Let a and b be two distinct
atoms of an ontology O. Then:

- a is dependent on b (written a � b) if, for every module M ∈ Fx(O)
such that a ⊆M, we have b ⊆M.

- a and b are independent if there exist two disjoint modulesM1,M2 ∈
Fx(O) such that a ⊆M1 and b ⊆M2.

- a and b are weakly dependent if, they are neither independent, nor
dependent, and if there exists an atom c ∈ A(Fx(O)) which both a

and b are dependent on.

- a, b form a problematic pair if none of the previous cases holds for a

and b.

Problematic pairs are undesirable because they can hide the logical
dependence described above between atoms. As an example, let us con-
sider a notion of modules that could determine the following family of mo-
dules: Fx(O) = {M1,M2,M3,M4} where M1 = {a, b}, M2 = {a, c},
M3 = {a, b, d} and M4 = {a, c, d}. Every module that contains d contains
also a, so we want to infer that d depends on a. However, d does not directly
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depends on a, since there is no module containing a and d but not b or c. The
underlying idea is that, in order to deal with the content of d, we need a and
something more, but we can not uniquely determine what this “something
more” means. Fortunately, this does not happen to our modules.

Theorem 5.6. If a notion of module x-mod is monotonic, self-contained,
and depleting, there are no problematic pairs of atoms in the set A(Fx(O))
of atoms induced over an ontology O by x-mod.

Key point for proving Theorem 5.6 is the following lemma.

Lemma 5.7. Let x-mod be a notion of module as in Theorem 5.6 and
a ∈ A(Fx(O)) an atom induced by x-mod. Then, for every nonempty set of
axioms {α1, . . . , αk} ⊆ a we have that x-mod({α̃1, . . . , α̃k},O) is the smallest
module containing a.

Proof. Let α ∈ a be an axiom, and let us consider the module Mα :=
x-mod(α̃,O). We recall x-mod is self-contained and monotonic. Then:

(1) Mα is not empty since it contains α (recall Equation 1).

(2) Mα ⊇ a, by the definition of atoms.

(3) Mα is the unique and thus smallest module for the seed signature α̃.

(4) by monotonicity, enlarging the seed signature α̃ results in a superset
of Mα.

(5) by self-containedness and monotonicy, any module M′ that contains
α needs to contain also Mα, because

M′ = x-mod(M̃′,O) = x-mod(M̃′ ∪ α̃,O) ⊇ x-mod(α̃,O).

(6) because of (2), we have that Mα ⊇ x-mod(S̃,O) for every non empty
set of axioms S = {α1, . . . , αk} ⊆ a; in particular, this holds if S =
{αi} for any αi ∈ a.

(7) by the arbitrarity of choice of α in a, we have that also the inverted
inclusion x-mod(α̃i,O) ⊇Mα holds.

Corollary 5.8. Given an atom a, for any axiom α ∈ a we have Mα =
x-mod(ã,O). Moreover, a is dependent on all atoms belonging to Mα \ a.
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Proof. (of Theorem 5.6)

Let a and b be two distinct atoms in A(Fx(O)); then, there exist two distinct
axioms α ∈ a and β ∈ b. Let us consider the modules Mα := X-mod(α̃,O)
and Mβ := X-mod(β̃,O), with #Mα ≤ #Mβ without loss of generality.
Then, by Lemma 5.7 Mα (resp. Mβ) is the smallest module containing a

(resp. b).
Since a and b are distinct, we have that also Mα and Mβ are distinct.

Then there are 3 possibilities:

- Mα and Mβ are disjoint. In this case, a and b are independent by
definition.

- Mα ⊆ Mβ; then, since Mβ is the smallest containing b, by mono-
tonicity all modules containing b will contain a, in which case b is
dependent on a by definition.

- otherwise, the set C =Mα ∩Mβ is non empty. Then, by Lemma 5.7
a and b are dependent on the atoms belonging to C, and consequently
weakly dependent.

Theorem 5.6 has interesting consequences on the dependency relation on
atoms.

Proposition 5.9. The binary relation “ �” as in Definition 5.5 is a partial
order on the set A(Fx(O)) of atoms induced by a family of modules Fx(O)
of an ontology O.

Proof. � satisfies the following 3 properties:

- reflexivity: trivial;

- antisymmetry: let a be dependent on b; that is, every module contain-
ing a, contains also b; now, we set also the inverse to hold, that is,
every module containing b contains also a. This means that it does not
exist any module containing only one among a and b; by construction
of atoms, then, we have that a ≡ b.

- transitivity: let a � b and b � c; that is, every module containing a

contains also b; but since such module contains b, then it contains also
c. Hence, a is dependent on c.

Hence, � is a partial order.
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Definition 5.10. Given a notion x-mod of module as above, we call ordered
atomic decomposition the poset (A(Fx(O)),�). Slightly abusing notation,
the term “ordered” will be omitted when it will clear from the context that
we are referring to the poset structure.

Definition 5.5 and Proposition 5.9 allow us to draw a Hasse diagram also
for the atomic decomposition A(Fx(O)), where independent atoms belong
to different chains, see Figure 1 for the Hasse diagramm of Koala. As an
atom can be dependent on more that one atom; hence, we will have some
nodes with more than one outgoing edge.

6 Atoms as a module base

Given an atomic decomposition as in Definition 5.10, we want to be able
to recognize modules in it.

Lemma 6.1. A module is a disjoint finite union of atoms.

Proof. From construction of atoms as in Definition 5.2, we have that for any
atom a ∈ A(Fx(O)), there does not exist a moduleM such thatM∩ a $ a.
Moreover, atoms are disjoint. Finally, since any ontology O contains only
finitely many axioms, a module M ⊆ O can contain only finitely many
atoms.

Proposition 6.2. Every moduleM is determined by selecting in the atomic
Hasse diagram one suitable antichain a1, . . . ak, k ∈ N, and by taking the
union of principal ideals of these atoms:

M =
k⋃
i=1

(ai].

Proof. From Lemma 6.1, we have that every module M is a disjoint finite
union of atoms. Now, if M contains an atom a, then it contains also all
atoms which a is dependent on, that is, the set {b | a � b}; this set corre-
sponds exactly to the principal ideal (a].

Proposition 6.3. Arbitrary unions of atoms are not in general modules.

Proof. Trivial, because arbitrary union of modules is not a module, as stated
in Proposition 3.8.
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Figure 1: The atomic decomposition of Koala
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Principal ideals of modules have also another nice property, that is, they
are modules theirself; this is non trivial, since arbitrary intersections of
modules are non in general modules, as seen in Proposition 3.9.

Proposition 6.4. Principal ideals of atoms are modules.

Proof. Given an atom a ∈ A(Fx(O)), we want to compare its principal
ideal (a] = {b | a � b} with the module Mα. By the definition of atoms,
Mα ⊇ (a]. We still need to prove that the equality holds. By contrapo-
sition, let Mα be a proper superset of (a]. Then it contains at least one
atom b which a is not dependent on. Let β be an axiom in b, and let us
consider Mβ. By Theorem 5.7, Mβ is the smallest module containing b.
Then, Mβ is contained in Mα, and since the latter is the smallest module
containing a, this means that a is dependent on b. This last fact contradicts
the assumption set by contraposition.

To sum up, on the one hand modules are built as union of suitable
principal ideals of atoms in A(Fx(O)), and for every atom a, (a] is a module.
On the other hand, however, the converse of what stated in Proposition 6.5 is
false: not all such unions of atoms are modules. We can, however, compute
each module x-mod(Σ,O) from A(Fx(O)), and thus the latter is indeed a
succinct representation of all modules. For this computation, we need to
store, with each atom a, the ⊆-minimal seed signatures that lead to (a]: we
say that an atom a is relevant for Σ if there is a seed signature Σ′ for (a]
with Σ′ ⊆ Σ.

Proposition 6.5. Let a1, . . . ak, k ∈ N, be all atoms that are relevant for
Σ. Then the module x-mod(Σ,O) is the union of principal ideals of these
atoms: x-mod(Σ,O) =

⋃k
i=1 (ai].

7 Computing the atomic decomposition

As we have seen, the atomic decomposition is a succinct representation
of all modules of an ontology: its linearly many atoms represent all its worst
case exponentially many modules. Next, we will show how we can compute
the atomic decomposition in polynomial time, i.e., without computing all
modules, provided that module extraction is polynomial (which is the case,
e.g., for syntactic locality-based modules). Our approach relies on modules
“generated” by a single axioms, which can be used to generate all others.

Definition 7.1. A module M is called:

17



1) compact if there exists an atom a in the atomic decompositionA(Fx(O))
such that M = (a].

2) α-module if there is an axiom α ∈ O such that M = x-mod(α̃,O).

3) fake if there exist two uncomparable modules M1 6= M2 with M1 ∪
M2 =M; a module is called genuine if it is not fake.

Please note that our notion of genuinity is different from the one in
[PS10], where the uncomparable “building block” modules were also required
to be disjoint.

The following lemma provides the basis for our polynomial algorithm for
the computation of the atomic decomposition since it allows us to construct
A(Fx(O)) via α-modules only.

Lemma 7.2. The notions of compact, α and genuine modules coincide.

Proof. We will prove that compact modules coincide both with α-modules
and with genuine module.

1) ⇔ 2) The equivalence has been already proven, and it follows from
Corollary 5.8.

1) ⇒ 3) By contraposition, let M be a fake module. Then there are
two uncomparable modules M1 and M2 such that M =M1 ∪M2. From
Lemma 6.1, we have that there exist suitable atoms such thatM1 = a1∪. . .∪
aκ andM2 = b1∪ . . .∪b`; since the modules are uncomparable, then there is
at least one atom ak 6∈ {b1, . . . , bκ}; similarly, there is at least one atom bl 6∈
{a1, . . . , aκ}. Moreover, there is no atom c ∈ M = {a1, . . . , aκ, b1, . . . , b`}
dependent both on ak and on bl, otherwise these atoms would be both in
M1 and in M2; that is, M is not compact.

3) ⇒ 1) By contraposition, let M be a non compact module. Conse-
quently, there exist atoms a1, . . . , aκ such that M = (a1] ∪ . . . ∪ (aκ], with
κ ≥ 2. Without loss of generality, we can assume the atoms a1, . . . , aκ to
be pairwise independent. Then, by Lemma 6.4 we have that the principal
ideal of every atom is a module. Hence M = (a1] ∪ . . . ∪ (aκ] is a union of
uncomparable modules, and more in specific, fake.

Algorithm 1 sketches our algorithm for computing atomic decomposi-
tions that runs in polynomial time in the size of O (provided that module
extraction is polynomial), and calls a module extractor as many times as
there are axioms in O. It considers, in ToDoAxioms, all axioms that are
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neither tautologies nor global (as in Equation 1), and computes all genuine
modules, all atoms with their dependency relation and, for each module
and atom, their cardinality. For each axiom α “generating” a module, the
algorithm stores that module in Module(α) and the corresponding atom is
constructed in Atom(α); those functions are undefined for axioms outside
GeneratingAxioms.

8 Empirical evaluation

We have run the atomic decomposition algorithm on a selection of ontolo-
gies, including those that were used in [DPSS10, PS10], and indeed managed
to compute the atomic decomposition of all ontologies, even for ontologies
for which a complete modularisation was not possible so far. Table 3 shows
summary data for each ontology: size, expressivity, number of genuine mo-
dules, number of connected components, size of largest module and of largest
atom. Our tests were obtained on a 2.16 GHz Intel Core 2 Duo Macbook
with 2 GB of memory running Mac OS X 10.5.8; each atomic decomposition
was computed within a couple of seconds, apart from that for Galen, which
took less than 3 minutes.

We have also generated a graphical representation of our atomic decom-
positions which show atom size as node size, see Figure 1 for example. We
notice that it shows four isolated atoms, e.g., Atom 22 in the top right
corner, which consists of the axiom DryEucalyptForest v Forest. This
means that, even though other modules may use terms from Atom 22, they
do not “need” the axioms in Atom 22 for any entailments; i.e., removing
(the axioms in) these isolated atoms from the ontology would not result in
the loss of any entailments regarding other modules or terms. Of course,
for entailments regarding both DryEucalyptForest and Forest and possi-
bly other terms, this axiom is required. A similar structure is observable
in all ontologies considered apart from People and OWL-S: this indicates a
greater cohesion and richness, which remains to be confirmed. The material
on http://bit.ly/i4olY0 includes graphs for all ontologies considered.

9 Conclusion and outlook

We have presented the atomic decomposition of an ontology, and shown
how it is a succinct, tractable representation of the modular structure of
an ontology: it is of polynomial size and can be computed in polynomial
time in the size of the ontology (provided module extraction is polynomial),
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Name #Axioms DL #Gen. #Con. #max. #max.

mods comp. mod. atom

Koala 42 ALCON (D) 23 5 18 7

Mereology 44 SHIN 17 2 11 4

University 52 SOIN (D) 31 11 20 11

People 108 ALCHOIN 26 1 77 77

miniTambis 173 ALCN (D) 129 85 16 8

OWL-S 277 SHOIN (D) 114 1 57 38

Tambis 595 ALCN (D) 369 119 236 61

Galen 4, 528 ALEHF+ 3, 340 807 458 29

Table 3: Experiments summary; only logical axioms are counted

whereas the number of modules of an ontology is exponential in the worst
case and prohibitely large in cases so far investigated. Moreover, it can be
used to assemble all other modules without touching the whole ontology and
without invoking a direct module extractor.

Future work is three-fold: first, we will try to compute, from the atomic
decomposition, good upper and lower bounds for the number of all modules
to answer an open question from [PS10]. Second, we will investigate suitable
labels for atoms, e.g., suitable representation of seed and module signatures,
and how to employ the atomic decomposition for ontology engineering, e.g.,
to compare the modular structure with their intuitive understanding of the
domain and thus detect modelling errors, and to identify suitable modules
for reuse. Third, we will investigate when module extraction from the atomic
decomposition is faster than extracting it using a module extractor.
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Algorithm 1 Atomic decomposition algorithm
1: Input: Ontology O and suitable x-mod(·, ·)
2: Output: The set G of genuine modules; the poset of atoms

(A(Fx(O)),�); the set of generating axioms GeneratingAxioms; for
α ∈ GeneratingAxioms, the cardinality CardOfAtom(α) of its atom.

3: ToDoAxioms ← x-mod(Õ,O) \ x-mod(∅,O)
4: GeneratingAxioms ← ∅
5: for each α ∈ ToDoAxioms do
6: Module(α) ← x-mod(α̃,O) % 6= ∅ due to line 3
7: new ← true
8: for each β ∈ GeneratingAxioms do
9: if Module(α) = Module(β) then

10: Atom(β) ← Atom(β) ∪ {α}
11: CardOfAtom(β) ← CardOfAtom(β) + 1
12: new ← false
13: end if
14: end for
15: if new = true then
16: Atom(α) ← {α}
17: CardOfAtom(α) ← 1
18: GeneratingAxioms ← GeneratingAxioms ∪ {α}
19: end if
20: end for
21: for each α ∈ GeneratingAxioms do
22: for each β ∈ GeneratingAxioms do
23: if β ∈ Module(α) then
24: Atom(β) � Atom(α)
25: end if
26: end for
27: end for
28: A(Fx(O)) ← {Atom(α) | α ∈ GeneratingAxioms}
29: G ← {Module(α) | α ∈ GeneratingAxioms}
30: return [(A(Fx(O)),�), G, GeneratingAxioms, CardOfAtom(·)]
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