The Complexity of Satisfiability for
Sub-Boolean Fragments of ALC

Arne Meier! and Thomas Schneider?

! Leibniz Universitit Hannover, Germany, meier@thi.uni-hannover.de
2 University of Manchester, UK, schneider@cs.man.ac.uk

Abstract. The standard reasoning problem, concept satisfiability, in the
basic description logic ALC is PSPACE-complete, and it is EXPTIME-
complete in the presence of unrestricted axioms. Several fragments of
ALC, notably logics in the FL, EL, and DL-Lite families, have an easier
satisfiability problem; sometimes it is even tractable. All these fragments
restrict the use of Boolean operators in one way or another. We look
at systematic and more general restrictions of the Boolean operators
and establish the complexity of the concept satisfiability problem in the
presence of axioms. We separate tractable from intractable cases.

1 Introduction

Standard reasoning problems of description logics, such as satisfiability or sub-
sumption, have been studied extensively. Depending on the expressivity of the
logic and the reasoning problem, the complexity of reasoning for DLs ranging
from logics below the basic description logic ALC to the OWL DL standard
SROIQ is between tractable and NEXPTIME.

For ALC, concept satisfiability is PSPACE-complete [26] and, in the presence
of unrestricted axioms, it is EXPTIME-complete due to the correspondence with
propositional dynamic logic [24], 28] [T4]. Since the standard reasoning tasks are
interreducible in the presence of all Boolean operators, subsumption has the same
complexity.

Several fragments of ALC, such as logics in the FL, EL or DL-Lite families,
are well-understood. They often restrict the use of Boolean operators, and it
is known that their reasoning problems are often easier than for ALC. For
instance, concept subsumption with respect to acyclic and cyclic TBoxes, and
even with GClIs is tractable in the logic £, which allows only conjunctions
and existential restrictions, [4} [9], and it remains tractable under a variety of
extensions such as nominals, concrete domains, role chain inclusions, and domain
and range restrictions [0l 6]. However, the presence of universal quantifiers breaks
tractability: Subsumption in F£Lg, which allows only conjunction and universal
restrictions, is coNP-complete [21I] and increases to PSPACE-complete with
respect to cyclic TBoxes [3 [I8] and to EXPTIME-complete with GCIs [5 [17]. In
[12, [13], concept satisfiability and subsumption for several logics below and above
ALC that extend FLy with disjunction, negation and existential restrictions and



other features, is shown to be tractable, NP-complete, coNP-complete or PSPACE-
complete. Subsumption in the presence of general axioms is EXPTIME-complete
in logics containing both existential and universal restrictions plus conjunction or
disjunction [15], as well as in AL, where only conjunction, universal restrictions
and unqualified existential restrictions are allowed [I1]. In DL-Lite, where atomic
negation, unqualified existential and universal restrictions, conjunctions and
inverse roles are allowed, satisfiability of ontologies is tractable [I0]. Several
extensions of DL-Lite are shown to have tractable and NP-complete satisfiability
problems in [11 [2].

This paper revisits restrictions to the Boolean operators in ALC. Instead of
looking at one particular subset of {A,V,—}, we are considering all possible sets
of Boolean operators, including less commonly used operators such as the binary
exclusive or @. Our aim is to find for every possible combination of Boolean
operators whether it makes satisfiability of the corresponding restriction of ALC
hard or easy. Since each Boolean operator corresponds to a Boolean function—
i.e., an n-ary function whose arguments and values are in {1, T }—there are
infinitely many sets of Boolean operators determining fragments of ALC. The
complexity of the corresponding concept satisfiability problems without theories,
which are equivalent to the satisfiability problems for the corresponding fragments
of multimodal logic, has already been classified in [I6]: it is PSPACE-complete if
at least the ternary operator z A (y V z) and the constant L are allowed, coNP-
complete if at least conjunctions and at most conjunctions plus the constant | are
allowed, and trivial otherwise, i.e., for all other sets of Boolean operators, every
modal formula (concept description) is satisfiable. We will put this classification
into the context of the above listed results for ALC fragments.

The tool used in [16] for classifying the infinitely many satisfiability problems
was Post’s lattice [23], which consists of all sets of Boolean functions closed under
superposition. These sets directly correspond to all sets of Boolean operators
closed under nesting. Similar classifications have been achieved for satisfiability
for classical propositional logic [19], Linear Temporal Logic [7], hybrid logic [20],
and for constraint satisfaction problems [25] 27].

In this paper, we classify the concept satisfiability problems with respect to
theories for ALC fragments obtained by arbitrary sets of Boolean operators. We
will separate tractable and intractable cases, showing that these problems are

EXPTIME-hard whenever we allow at least conjunction, disjunction or all
self-dual operators, where a Boolean function is called self-dual if negating
all its arguments negates its value,

PSPACE-hard whenever we allow at least negation or both constants 1, T,
coNP-hard whenever we allow at least the constant L,

trivial, which means that all instances are satisfiable, in all other cases.

We will also put these results into the context of the above listed results for ALC
fragments. This is work in progress which we plan to extend by corresponding
upper bounds, restricted use of 3,V, and terminological restrictions to TBoxes
such as acyclicity and atomic left-hand sides of axioms. Furthermore, not all
results carry over straightforwardly to other reasoning problems because some of



the standard reductions use Boolean operators that are not available in every
fragment.

2 Preliminaries

Description Logic. We use the standard syntax and semantics of ALC with
the Boolean operators M, LI, -, T, L replaced by arbitrary operators o that
correspond to Boolean functions f, of arbitrary arity. Let Nc, Ng and N; be sets
of atomic concepts, roles and individuals. Then the set of concept descriptions,
for short concepts, is defined by

C:=A|o(C,...,C) | IR.C |VR.C,

where A € N¢, R € N, and o is a Boolean operator. A general concept inclusion
(GCI) is an axiom of the form C' T D where C, D are concepts. We use “C' = D”
as the usual syntactic sugar for “C C D and D C C”. A TBoz is a finite set of
GCIs without restrictions. An ABoz is a finite set of axioms of the form C(x) or
R(x,y), where C is a concept, R € Ng and z,y € N|. An ontology is the union of
a TBox and an ABox. This simplified view suffices for our purposes.

An interpretation is a pair Z = (AZ,-7), where AZ is a nonempty set and -
is a mapping from N¢ to B(AT), from Ng to P(AZ x AT) and from N; to AT
that is extended to arbitrary concepts as follows:

o(Cr.r Co)E = {w € AT | fy(la € CFl,...., |z € CZ|) = T},
where ||z € C¥|| = T ifz € CF and ||z € CF|| = Lif = ¢ CF,
JR.CT = {z e AT | {y € CT | (z,y) € R} # 0},
VR.CT = {z e AT | {y € CF | (2,y) ¢ RT} = 0}.

An interpretation Z satisfies the axiom C' C D, written Z = C C D, if C* C DT,
Furthermore, Z satisfies C(z) or R(z,y) if 22 € C% or (2,y?) € RT. An
interpretation Z satisfies a TBox (ABox, ontology) if it satisfies every axiom
therein. It is then called a model of this set of axioms.

Let B be a finite set of Boolean operators and use Con(B) and Ax(B) to
denote the set of all concepts and axioms using only operators in B. The following
decision problems are of interest for this paper.

Concept satisfiability CSAT(B):
Given a concept C € Con(B), is there an interpretation Z s.t. CT # () ?

TBox satisfiability TSAT(B):
Given a TBox 7 C Ax(B), is there an interpretation Z s.t. Z =7 ?

TBox-concept satisfiability TCSAT(B):
Given 7 C Ax(B) and C € Con(B), is there an Z s.t. Z =7 and CT # ()?

Ontology satisfiability OSAT(B):
Given an ontology O C Ax(B), is there an interpretation Z s.t. Z = O?



Ontology-concept satisfiability OCSAT(B):
Given O C Ax(B) and C € Con(B), is there an Z s.t. Z |= O and CF # (7

These problems are interreducible independently of B in the following way:

CSAT(B) <& OSAT(B)
TSAT(B) <8 TCSAT(B) <96 OSAT(B) =l°¢ OCSAT(B)

The reasons are: a concept C' is satisfiable iff the ontology {a : C} is satisfiable,
for some individual a; a terminology 7 is satisfiable iff a fresh atomic concept A
is satisfiable w.r.t. 7; C is satisfiable w.r.t. 7 iff 7 U {a : C'} is satisfiable, for a
fresh individual a.

Complexity Theory. We assume familiarity with the standard notions of complex-
ity theory as, e.g., defined in [22]. In particular, we will make use of the classes
P, NP, coNP, PSPACE, and EXPTIME, as well as logspace reductions <02,

Boolean operators. This study aims at being complete with respect to Boolean
operators, which correspond to Boolean functions. A set of Boolean functions
is called a clone if it is closed under superpositions of functions, i.e., nesting of
operators. The lattice of all clones has been established in [23], see [§] for a more
succinct but complete presentation. Via the inclusion structure, lower and upper
complexity bounds carry over to higher and lower clones. We will therefore only
state our results for minimal and maximal clones.

Given a finite set B of functions, the smallest clone containing B is denoted
by [B]. The set B is called a base of [B], but [B] often has other bases as
well. On the operator side, [B] consists of all operators obtained by nesting
operators in B into each other. For example, nesting of binary conjunction yields
conjunctions of arbitrary arity. The table below lists all clones that we will refer
to, using the following definitions. A Boolean function f is called self-dual if
f(@1, ... @) = f(x1,...,zp), c-reproducing if f(c,...,c) = ¢, and c-separating
if there is an 1 < i < n s.t. for each (by,...,b,) € f~1(c) by =cfor c€ {T,L}.
The symbol & denotes the binary exclusive or.

Clone  Description Base

BF all Boolean functions {n, =}

M All monotone functions {n Vv, LT}
Si1 T-separating, monotone function {z A (yV=z),L1}
D self-dual functions {zAy)V(xAZ)V(TAZ)}
E conjunctions and constants {N, L, T}

Eo conjunctions and L {n, L}

Vo disjunctions and L {v,1}

R1 T-reproducing functions {V,zpyad T}
Ro L-reproducing functions {N, @}

Ng negation {-}

| identity functions and constants {id, L, T}

lo identity functions and L {id, L}




The following lemma will help restrict the length of concepts in some of our
reductions. It shows that for certain sets B, there are always short concepts
representing the functions A, V, or —, respectively. Points (2) and (3) follow
directly from the proofs in [19], Point (1) is Lemma 1.4.5 from [27].

Lemma 1. Let B be a finite set of Boolean functions.

1. If VC [B]C M (EC[B] C M, resp.), then there exists a B-formula f(z,y)
such that f represents x V' y (x Ay, resp.) and each of the variables x and y
occurs exactly once in f(x,y).

2. If [B] = BF, then there are B-formulae f(z,y) and g(x,y) such that f
represents x V y, g represents x Ay, and both variables occur in each of these
formulae exactly once.

3. If N C [B], then there is a B-formula f(x) such that f represents —x and the
variable x occurs in f only once.

Auziliary results. The following lemmata contain technical results that will be
useful to formulate our main results. We use *SAT(B) to speak about any of
the four satisfiability problems TSAT, TCSAT, OSAT and OCSAT introduced
above.

Lemma 2. Let B be a finite set of Boolean functions. If No C [B], then it holds
that *SAT(B) =8 xSAT(BU{T, L}).

Proof. It is easy to observe that the concepts T and L can be simulated by fresh
atomic concepts T' and B, using the axioms =T C T and B C —B. O

Lemma 3. Let B be a finite set of Boolean functions. Then it holds that
TCSAT(B) <lo¢ TSAT(BU{T}).

Proof. Tt can be easily shown that (C,7) € TCSAT(B) iff (7 U{T C3R.C}) €
TSAT(B U {T}), where R is a fresh relational symbol. For ”=" observe that
for the satisfying interpretation Z = (AZ,-Z) there must be a world w’ where C
holds and then from every world w € AZ there can be an R-edge from w to w’
to satisfy 7 U {T C JR.C}. For ”<” note that for a satisfying interpretation
7 = (AZ,.) all axioms in 7 U{T C 3R.C} are satisfied. In particular the axiom
T C 3R.C. Hence there must be at least one world w’ s.t. w’ = C. Thus 7T =T
and CT D {w'} # 0. O

Furthermore, we observe that, for each set B of Boolean functions with T, L € [B],
we can simulate the negation of an atomic concept using a fresh atomic concept
A and role Ry: if we add the axioms A = 3R4.T and A’ =VR4.L to the given
terminology 7, then each model of 7 has to interpret A’ as the complement of

A.



3 Complexity results for CSAT

The following classification of concept satisfiability has been obtained in [16].
Theorem 4 ([16]). Let B be a finite set of Boolean functions.

1. If S1; C [B], then CSAT(B) is PSPACE-complete.
2. If [B] € {E,Eo}, then CSAT(B) is coNP-complete.
3. If [B] C Ry, then CSAT(B) is trivial.

4. Otherwise CSAT(B) € P.

Part (1) is in contrast with the coNP-completeness of ALY satisfiability
[26] because the operators in ALU can express the canonical base of S;;. The
difference is caused by the fact that ALU allows only unqualified existential
restrictions. Part (2) generalises the coNP-completeness of ALE satisfiability,
where hardness is proven in [I2] without using atomic negation. It is in contrast
with the tractability of AL satisfiability [13], again because of the unqualified
restrictions. Part (3) generalises the known fact that every EL, FLg, and FL™
concept is satisfiable. The results for logics in the DL-Lite family cannot be put
into this context because DL-Lite quantifiers are unqualified.

4 Complexity Results for TSAT, TCSAT, OSAT, OCSAT

In this section we will completely classify the above mentioned satisfiability
problems for their tractability with respect to sub-Boolean fragments and put
them into context with existing results for fragments of ALC.

Main results. Due to the interreducibilities stated in Section [2] it suffices to show
lower bounds for TSAT and upper bounds for OCSAT.

Theorem 5. Let B be a finite set of Boolean functions.

1. If A€ B orV € B, then TCSAT(B) is EXPTIME-hard.

If also T € B, then even TSAT(B) is EXPTIME-hard.

If all functions in B are self-dual, then TSAT(B) is EXPTIME-hard.
If =€ B or{T, L1} C B, then TSAT(B) is PSPACE-hard.

If all functions in B are L-reproducing, then TSAT(B) is trivial.

If L € B, then TCSAT(B) is coNP-hard.
If all functions in B are T-reproducing, then OCSAT(B) is trivial.

R

Proof. Parts 1.-6. are formulated as Lemmas Ol and are proven
below. The second part of (1.) follows from Lemma [11] in combination with

Lemma [3l O

In order to generalize these results, we need to prove the following lemma.
It states the base independence that will lead to the more general results in
Theorem [f] and Theorem Bl

Lemma 6. Let By, By be two sets of Boolean functions s.t. [Bi] = [Ba]. Then
*SAT(B;) <8 xSAT(B,).



Proof. According to [16, Theorem 3.6], we translate for any given instance each
Boolean formula (hence each side of an axiom) into a Boolean circuit over the
basis B;. This circuit can be easily transformed into a circuit over the basis Bs.
This new circuit will be expressed by several new axioms that are constructed in
the style of the formulae in [10]:

— For input gates g, we add the axiom g = x;.

— If g is a gate computing the Boolean function ¢ and hq, ..., h, are the respec-
tive predecessor gates in this circuit, we add the axiom g = ¢(hq,..., hy,).
For 3R-gates g, we add the axiom g = 3R.h.

— Analogously for VR-gates.

For each axiom A C B, let g/, and g2, be the output gates of the appropriate
circuits. Then we need to add one new axiom g4 , C g2, to ensure the axiomatic
property of A C B. If the translated formula v is a given concept expression
(relevant for the problems TCSAT, OCSAT), the translated concept is mapped
to the respective out-gate g;‘f’ut.

This reduction is computable in logarithmic space and its correctness can be
shown in the same way as in the proof of Theorem 3.6 in [16]. |

As a consequence of Theorem [5]in combination with Lemma [6] , we obtain
the following two corollaries that generalise the results to arbitrary bases for all
four satisfiability problems.

Corollary 7. Let B be a finite set of Boolean functions and *SAT’ one of the
problems TCSAT, OSAT and OCSAT.

If Eq C [B] or Vo C [B], and [B] C M, then *SAT'(B) is EXPTIME-hard.
If [B] = D or [B] = BF, then *SAT'(B) is EXPTIME-hard.

If Ng C [B] or | C [B], then xSAT'(B) is PSPACE-hard.

If [B] = lg, then xSAT'(B) is coNP-hard.

If [B] C Ry, then xSAT'(B) is trivial.

Grds Lo do

Corollary 8. Let B be a finite set of Boolean functions.

IfEC [B] orV C [B], and [B] C M, then TSAT(B) is EXPTIME-hard.
If [B] = D or [B] = BF, then TSAT(B) is EXPTIME-hard.

If Ny C [B] or | C [B], then TSAT(B) is PSPACE-hard.

If [B] € Ry, then TSAT(B) is trivial.

If [B] € Ry, then TSAT(B) is trivial.

G Lo o =

Part (1) generalises the EXPTIME-hardness of subsumption for FLq and
AL with respect to GCIs [I5, [Tl [I7]. It is in contrast to the tractability of
subsumption with respect to GCIs in £L because our result does not separate
the two types of restriction, because £L has only existential restriction, and our
results do not (yet) consider existential, resp., universal restrictions separately.
This undermines the observation that, for negation-free fragments, the choice
of the quantifier affects tractability and not the choice between conjunction
and disjunction. Again, DL-Lite cannot be put into this context because of the
unqualified restrictions.



Parts (2)—(4) (resp. (2) and (3) for Theorem [8) show that satisfiability with
respect to theories is already intractable for even smaller sets of Boolean operators.
One reason is that sets of axioms already contain limited forms of implication
and conjunction. This also causes the results of this analysis to differ from similar
analyses for related logics in that hardness already holds for bases of clones that
are comparatively low in Post’s lattice.

Due to Post’s lattice, our analysis is complete for dividing the fragments into
tractable and intractable cases.

Proofs of the main results.

Lemma 9. Let B be a finite set of Boolean functions s.t. B contains only T -
reproducing functions. Then OCSAT(B) is trivial.

Proof. According to Post’s lattice, every B that does not fall under Theorem(l)f
(4)+(6) contains only T-reproducing functions. Hence the following interpretation
satisfies any instance (0, C): T = ({w},-T) s.t. AT = {w} for each atomic concept
A, v = {(w,w)} for each role r, and a? = w for each individual a. It then holds
trivially that Z = O and C% = {w} # 0. O

Lemma 10. Let B be a finite set of Boolean functions s.t. B contains only
L-reproducing functions. Then TSAT(B) is trivial.

Proof. The intepretation Z = ({w}, %) with AZ = {) for each atomic concept A,
and r? = {(w,w)} for each role r satisfies any instance 7 for TSAT(B), where B
contains only _-reproducing functions. This follows from the observation that for
each axiom A C B in 7 both sides are always falsified by Z (because every atomic
concept is falsified, and we only have |-reproducing operators as connectives).
This can be shown by an easy induction on the concept structure. Please note that
we need to construct a looping node concerning the transition relations due to
the fact that we need to falsify axioms with Vr._L on the left side for some relation
r. If we set 77 = () then this expression would be satisfied and would contradict
our argumentation for the axiom Vr.l T 1. Moreover this construction cannot
fulfill wrongly the left side of an axiom because of the absence of T and as no
atomic concept has instances with w. O

Lemma 11. Let B be a finite set of Boolean functions with A € B, or V € B.
Then TCSAT(B) is EXPTIME-hard. If all self-dual functions can be expressed
in B, then TSAT(B) is EXPTIME-hard.

Proof. The cases A € B and V € B follow from [I5]. The remaining case for the
self-dual functions follows from Lemmas [I] and [2] as all self-dual functions in
combination with the constants T, L (to which we have access as — is self-dual)
can express any arbitrary Boolean function. O

Lemma 12. Let B be a finite set of Boolean functions s.t. {L, T} C B. Then
TSAT(B) is PSPACE-hard.



Proof. To prove PSPACE-hardness, we state a <.q-reduction from QBF-3-SAT
to TSAT(B) and only allow L and T as available functions in B. Let ¢ =
012102Z2 * + - OnZn(C1 A+ - - ACy,) be a quantified Boolean formula and 0; € {3, V}.
In the following we construct a TBox 7 C Ax(B) s.t. ¢ = T if and only if
7T € TSAT(B), where B consists only of T and L.

We are first adding the following axioms to the TBox 7 using atomic con-
cepts do, ..., dp, &1, ..., Tpn, 2}, ..., 2, and roles R, Ry,..., Ry, S, Ryy,..., Ry,
Rdl, NN 7Rdn7 Rcl, NN 7RCmaP117P217P31a ‘e ,le,PQm,Pgm. The atomic con-
cepts d; stand for levels, x; and z for assigning truth values to the variables.

Initial starting point:

(T C 35.do} (1)
x; is the negation of z:

{z;=3R,,. T |1<i<n}U{z;=VR,,.L |1<i<n} (2)
in each level d; we have R, -successors where x;,; and ac; 41 hold:

{di C3R41.Ti41 | 0<i1< n} U {dZ C 3Ri+1.x;+1 | 0<i1< n} (3)

the levels d; are disjoint and we have succeeding levels:
{dz C VR1'+1-di+1 | 0<1< ’ﬂ} U

{d; T3Ry4,.T,d; CVRy,.L |0<i<j<n} (4)
x; and z} carry over:
{#; CVR;x; |1<i<j<n}U{x;CVR;a)|1<i<j<n} (5)

Now 7 is consistent, and each of its models contains a tree-like substructure
similar to the one depicted in Figure[2] The root of this substructure is an instance
of dy. The individuals at depth n counting from the root are called leaves.

Please note that each individual in A7 is an instance
of either z; or x} because of axiom . In particular, this
holds for the leaves. Furthermore, this enforcement does
not contradict the level-based labeling of the x;—e.g., the
atomic concepts z; and x; “labeled in dy” are not carried
forward to the next levels because axiom states this
carry only if 7 > 1.

In the remaining part, we need to ensure the following,
where C; is an arbitrary clause in ¢. Each leaf w is an Fig. 1. clause Cg =
instance of the atomic concept Cj if and only if the com- 7, v 25 v 25
bination of the z;-values in w satisfies the clause Cj. In
order to achieve this, we again use two complementary atomic propositions C}
and Cj}. The C; must be enforced in all leaves where all literals of C; are set to

false. For a literal £ € {x1,%1,...,%pn, Tpn}, use { to denote the atomic concept x;
if £ = 7; and z; if £ = z;. The correct labeling of the leaves by the C; and C'
is ensured by adding the following axioms to 7", which enforce substructures as



depicted for the example in Figure

{Ej C 3P, T, lo; VP Doy, 3Pijo; C 3P T,

{Ciocfl1i<j<m}u
{fC3IFT, ffCVYF.1}U

{Cj =3Rc,.T, Cj'- =VReg,. L [1<j<m}

Finally we need to ensure that all con-
cepts C; are true in the leaves depending on
the quantifications Oiz10229 - - Oy, 2y,. For
this purpose, we add the following axioms
to the TBox 7 which ensure that, starting
at the root, we run through each variable
level of the tree as required by the quantifi-
cation in ¢, and reach only leaves that are
no instances of f, i.e., that are instances of

2
{do CO1R1.02Ry.---On Ry '} (10)
Claim. ¢ =T iff T € TSAT({T,L}).

Proof. “<": Let T = (A%, ) be an interpre-
tation s.t. Z |= 7. Due to axiom (T]), there
exists an individual wg that is an instance
of dy. Because of axioms and , there
are at least two different R;-successors of dg,
one being an instance of x; and the other
of z} (axiom (5)) in combination with axiom
(4) ensure that these successors are fresh in-
dividuals). Every other Rj-successor is an
instance of either z; or x}, due to axiom .
Other possible R;-edges for 2 < j < n will
not affect our argumentation as we will see
in the following.

Repeated application of axioms and
(4) shows that this structure becomes a com-
plete binary tree of depth n with (at least)
2™ leaves. Each leaf represents one of all pos-
sible Boolean combinations of z; and z} for

l3j C vaj.Z:?)j’ HPQJ‘.ZQ,J‘ [ CJI, ‘ Cj = llj \/lgj V lgj in (p} U

d3,r1,T2,73
!
027f T2

d3, x1, 22, xh T2

d3, 1, Th, T3

;o
d373317x2:x3

!
d3, zy, 22,23 g,

ds, z, x2, 5 T2
!
Claf

o
d37x17x2:x3

!

zh,x
122 / / /!
dg,ml,xQ,xS

Fig. 2. Essential part of the in-
terpretation for the gqBf ¢ =
Voo Jrs(z1 Ve Vas) A(—x V
-T2 V _|$3).

1 < i < n. Due to axioms (3] and , every possible combination does occur.
In addition, axiom @D and ([7)) ensure the following: each leaf is an instance of
either C; or C;», for each 1 < j < m; if a leaf is an instance of at least one such

Cj, it is also an instance of f.
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Axiom allows us to conclude that all relevant leaves that represent the
assignments 0;: {z1,...,z,} — {0,1} for which 6; = C1 A --- A Cy, must hold,
are instances of the proposition f’. Additional R;-edges, as mentioned above, do
not contradict the argumentation. Hence every relevant leaf must be an instance
of every C; because otherwise it were an instance of C; and thus of f’. Therefore,
at least one literal in each clause is labeled and thereby satisfied. Hence ¢ = T.

Note that only those leaves that correspond to an assignment satisfying C;
can be instances of C;. To clarify this fact, consider a clause C; = l1; V la; V I35
that is not satisfied by some assignment 0: {z1,...,z,} — {T,L}, and some
leaf w is (erroneously) an instance of C;. As 6 = Cj, it holds that 6 p= [;; for
1 <1¢<3. Thus lgj must be labeled in w in order for axiom 1' to be satisfied.

Now axiom enforces R;- and Ry;-edges to successors satisfying lo; and I3;.
Finally, these propositions and transitions lead to w being an instance of CJ’-.
This is not possible because C; and C’]‘ are disjoint due to axiom @

“=": Let n be the number of variables in ¢. In the following we show by induc-
tion on n: if ¢ = Jz1Veg -0z, (C1 A--- ACy) = T, then 7 € TSAT({T, L}).

Induction basis. n = 1. W.l.o.g., we assume that ¢ starts with 3, i.e., ¢ =
Fz1(Cy A+~ ACy) = T, and we assume that each C; contains the positive literal
xI1.

We construct a model Z = (AZ,-7) where we set AT = {wg,wy,ws, w3},
(9% = {(wo,w1), (wi,wy), (wa,wy), (ws,w1)}, (R1)* = {(w1,ws), (wi,ws)},
(Re)” = {(wo, wo), (w1, wr), (w2, wa)}, (do)* = {wn}, (d1)* = {wa, ws}, (z1)" =
{wo, w1, wa}, (z1)* = {ws}. Then (Cj)* = {wo, w1, w2}, (Cj)* = {ws} and
(Re,)t = {(wz,w)} for all 1 < j < m. Finally (f')* = {w2} (the remaining
labels are irrelevant). From this it can be easily verified that 7 = 7.

Induction step. Assume it holds for n > 1. In the following we will show
that the proposition holds for ¢ = Jz Vg - -Oxp 1 F = T with F = (Cy A
-+ A Cy,). If ¢ starts with V, the argumentation is analogous. Let F[z1/T] (or
F[z1/1]) denote the matrix F' of ¢ with every occurrence of x; replaced by
T (or L). Since ¢ = T, we have that x; = VzeIdzs - Oxpy1Flz1/T] = T or
X2 =Vaodxs Oz Flz /L] = T.

Assume x; = Vaodrs---Oxpi1Flz1/T] = T. Let 7y, be the consistent
terminology that is constructed out of x; (this follows from our induction hy-
pothesis). For each variable z; let C; = {C; | z; € C;,1 <j <m} and C] =
{C; |7; € C;,1 < j <m} be the set of clauses that include the literal z; resp.
T;. Let 01, 0o, . ..,0, with 0;: {22, 23,...,2,11} — {0, 1} be the satisfying assign-
ments generated by JxoVxs - - - Oxpqq. As Ty, is consistent, let Z,,, = (A%xa D)
be an interpretation s.t. Z,, |= 7,. Hence it satisfies every axiom in 7,, (that
has the form of above) and in particular axiom . Thus there is an individual
wo € ATx1 s.t. wy € (do)*x1 and therefore a binary tree is generated starting in wg
(with the same argumentation as before). As that tree is defined over the variables
Zo,T3,...,Tnt1, all leaves addressed by axiom include C1,Cy,...,Cphp, [/,
and for the transition relation Rs it holds (Ra)*x1 D {(wp,w2), (wo, ws)} with

(m2)Tx1 3 we, (wh)Tx1 > wh.
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In the next steps we will construct an interpretation Z,, s.t. Z, |= 7,,. Therefore
we start with the previous interpretation Z,,, and modify it into Z, in the following
steps as visualized in Figure

Set AZ¢ := ATxi. Now Define (R;)%» =
{(wg, w1)} with w; a new individual added to

AZe. This inserts the first branch at the top x2,dy

for variable 2, and hence we add w; to (x;)Z. do z ::
Now replace (wq,ws), (wo,wh) from (Rg)%e @@ 2, dy
with (wq,ws), (w1, wh) to mount the binary 3
tree in Z,, below the node w; € AZ¢ that T~
represents choosing x;. Also add w; to the set i

(d1)*. Now let 7 C A%x1 be the set of individ- x2,ds

uals that form the binary tree in Z,, starting
in dy. For each individual in 7"\ {wp} we need
to increment the value of the d;s by one. Set
T :={w | w € T\{wp, ws} plus the changes on
the d;s as before}. Add each w € T to AZ¢ and
for each relation R € Ng \ {S} and each wRw’
with w,w’ € T add (w,w’) to RT¢. For each
w € T and each proposition p with w € (p)%a
also add w. Now we have a complete copy (all
nodes and edges) of the binary assignment tree Fig. 3. Construction from 7, to
constructed and added to our interpretation 77, » in the proof of Lemma @
Z,. In the next step we mount the previously

added tree below wg. Here we add a new individual w] to AT, w} € (2})7,
w) € (d1)* and (wp,w)) € (R1)%. Now we add with (w}, wz), (w}, W) € (R2)*
the remaining Rs-edges. In the second last step we need to add all clauses (resp.,
clause propositions) to the tree that are satisfied by either x; or ;. Therefore let
R* be the transitive closure of all R; for 1 < i < n. For all w € AZ¢ s.t. wi R*w
add w to (z1)%¢ and the same for all w|R*w add w to (x})%¢. Analogously
add the propositions in C; = {C; | 21 € C;} resp. Cf = {C; | 71 € C;} in the
same way to the individuals w € (z1)%¢ resp. w € (z})%¢ and construct the
respecting clause-structures around the individuals induced by axioms @ For
each w € AT add a transition (w,wg) to (S)%¢. Finally, for each individual
w € {wp,wy,w}, ws} and each variable z; we need to add w either to (z;)% or
(2£)%. This can be done arbitrarily and is just for satisfying the axioms . Also
we need to built arround those states the needed nodes and edges induced by
the clause axioms @f@

As x1 = Vag -0z, Flx1/T] = T, the “upper” subtree starting below w;
is consistent with 21 C VR2.3R3. - - Opy1Rpt1.f' and now it follows from the
hypothesis and construction that Z, = 7,. This proof generalizes to arbitrary
quantification blocks D121 - - - Opx, with 0; € {3,V}. &

As the number of axioms in 7 is polynomially bounded and the terminology
is consistent if and only if the quantified Boolean formula ¢ is satisfiable, the
lemma applies. O
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Lemma 13. TSAT({-}) is PSPACE-hard.

Proof. From Lemma [2] we can simulate T and L with fresh atomic concepts.
Then the argumentation follows similarly to Lemma O

Lemma 14. TCSAT({L}) is coNP-hard.

Proof. In contrast to Lemma [12] the instances of TCSAT(lp) consist of a concept
C and a TBox 7 C Ax({L}). Both do not contain the concept T. Now we adapt
the proof of Lemma [12| to this new setting as follows: in all axioms containing
T, we replace T with a fresh atomic concept ¢. This is unproblematic except for
axiom , where we need to enforce dy to have an instance. For this purpose,
we remove the axiom T C 3S.dy from 7 and set C' = dy. Additionally, we need
to adopt axiom to dg C VR1.VRy.---VR,,.f" to match the desired reduction
from TAUT. Please note, that with this construction it is not possible to state a
reduction from QBF-3-SAT, because an interpretation where whenever we want
to branch existentially, a respective individual with neither x; nor z} labeled can
be added without interfering the axioms, in particular axiom . |

5 Conclusion

With Theorem [7], we have separated the problems TSAT, TCSAT, OSAT and
OCSAT for ALC fragments obtained by arbitrary sets of Boolean operators into
tractable and intractable cases. We have shown that these problems are on the
one hand for TSAT

— EXPTIME-hard whenever we allow the constant T in combination with at
least conjunction or disjunction,

EXPTIME-hard whenever all Boolean self-dual functions can be expressed,
— PSPACE-hard whenever we allow at least negation or both constants L, T,
— trivial in all other cases.

On the other hand for the remaining three satisfiability problems we reached
EXPTIME-hardness even for only disjunction or conjunction (without the con-
stant T), and got coNP-hard cases whenever we allow at least the constant L
(hence the L-reproducing cases that are trivial for TSAT drop to intractable for
these problems).

According to the Figures [d] and [5] which arrange our results in Post’s lattice,
this classification covers all sets of Boolean operators closed under nesting.

We have also shown how our results, and the direct transfer of the results in
[16] to concept satisfiability, generalise known results for the F£ and £L family
and other fragments of ALC. Furthermore, due to the presence of arbitrary
axioms, the overall picture differs from similar analyses for related logics in that
hardness already holds for small sets of inexpressive Boolean operators.

It remains for future work to find matching upper bounds for the hardness
results, to look at fragments with only existential or universal restrictions, and
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to restrict the background theories to terminologies with atomic left-hand sides
of concept inclusion axioms with and without cycles. Furthermore, since the
standard reasoning tasks are not always interreducible if the set of Boolean
operators is restricted, a similar classification for other decision problems such as
concept subsumption is pending.
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