The Complexity of Satisfiability for Fragments of Hybrid Logic

Michael Thomas¹

Arne Meier¹ Martin Mundhenk² Volker Weber⁴

Thomas Schneider³ Felix Weiss²

¹University of Hannover (DE)

²University of Jena (DE) ³University of Manchester (UK) ⁴Tech. University of Dortmund (DE)

MFCS, 25 August 2009

Motivation	Goals	Results	Conclusion
And now for			

Conclusion

What is hybrid logic?

Modal logic, \mathcal{ML} : propositional logic plus \diamond , \Box speaks about relational structures, e.g.:

Conclusion

What is hybrid logic?

Modal logic, \mathcal{ML} : propositional logic plus \diamond , \Box speaks about relational structures, e.g.:

A

Results

Conclusion

What is hybrid logic?

Modal logic, \mathcal{ML} : propositional logic plus \diamond , \Box speaks about relational structures, e.g.:

Conclusion

What is hybrid logic?

Modal logic, \mathcal{ML} : propositional logic plus \diamond , \Box speaks about relational structures, e.g.:

As in FOL, we have $\Box \varphi \equiv \neg \Diamond \neg \varphi$.

Conclusion

What is hybrid logic?

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow$

Conclusion

What is hybrid logic?

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow$ nominals *name* states:

Conclusion

What is hybrid logic?

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow$ nominals *name* states:

▲口> ▲圖> ▲目> ▲目> 三日 のへの

Conclusion

What is hybrid logic?

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow$ $@_i \text{ jumps to the state named } i$:

▲口> ▲圖> ▲目> ▲目> 三日 のへの

Conclusion

What is hybrid logic?

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow \downarrow$ *binds* names to states:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusion

What is hybrid logic?

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow \downarrow$ *binds* names to states:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusion

What is hybrid logic?

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow \downarrow$ *binds* names to states:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The satisfiability problem for \mathcal{HL}

Definition

¹W.I.o.g. φ has no free state variables.

The satisfiability problem for \mathcal{HL}

Definition

Let
$$O \subseteq \{\diamondsuit, \downarrow, @\}$$
.

2 $\mathcal{HL}(O)$ = set of all \mathcal{HL} -formulae with operators from O

SAT(O) = { $\varphi \in \mathcal{HL}(O) \mid \varphi$ is satisfiable}

¹W.I.o.g. φ has no free state variables.

Results

Conclusion

Complexity of satisfiability for \mathcal{HL}

Theorem

- SAT(\diamond) is PSPACE-complete.
- SAT(\diamond , @) is PSPACE-complete.
- SAT(\diamond , \downarrow) is CORE-complete.

(Areces et al. '99)

(Ladner '77)

(Areces et al. '99)

Results

イロト 不得 トイヨト イヨト 二日

Conclusion

Complexity of satisfiability for \mathcal{HL}

A

SAT(◊) is PSPACE-complete. (Ladner '77) SAT(◊, @) is PSPACE-complete. (Areces et al. '99) SAT(◊, ↓) is CORE-complete. (Areces et al. '99) \$ Tame ↓ ?

\mathcal{HL} over restricted frame classes

\mathfrak{F}

÷

trans accessibility relation is transitive equiv accessibility relation is an equivalence relation serial every state has a successor

Definition

 $\mathfrak{F}-\mathsf{SAT}(O) = \{\varphi \in \mathcal{HL}(O) \mid \varphi \text{ is sat. in a model based on a frame from } \mathfrak{F}\}\$

\mathcal{HL} satisfiability over restricted frame classes

Theorem (Mundhenk et al. '05)

- trans-SAT(\diamondsuit , \downarrow) is NEXPTIME-complete.
- equiv-SAT(\diamond , \downarrow) is NEXPTIME-complete.
- trans-SAT($\diamond, \downarrow, @$) is CORE-complete.

\mathcal{HL} satisfiability over restricted frame classes

Theorem (Mundhenk et al. '05)

- trans-SAT(\diamondsuit , \downarrow) is NEXPTIME-complete.
- equiv-SAT(\diamond , \downarrow) is NEXPTIME-complete.
- trans-SAT(\diamond , \downarrow , @) is CORE-complete.

 (\dot{z})

Motivation	Goals	Results	Conclusion
And now for			

Conclusion

Propositional fragments of \mathcal{HL}

Restrict the set of *propositional* operators!

• Why?

Propositional SAT becomes tractable, e.g., without negation. (Lewis '79)

SAT for \mathcal{ML} or LTL becomes tractable for certain restrictions. (Bauland et al. '06/07)

SAT for many sub-Boolean description logics is tractable. (Baader et al. '98/05/08, Calvanese et al. '05–07)

• 3 parameters:

 $\left.\begin{array}{l} \text{frame class } \mathfrak{F} \\ \text{set } O \text{ of modal/hybrid operators} \\ \text{set } B \text{ of Boolean operators} \end{array}\right\} \quad \rightsquigarrow \quad \mathfrak{F}\text{-}\mathsf{SAT}(O,B)$

Motivation	Goals	Results	Conclusion
Our goal			

Classify \mathfrak{F} -SAT(O, B) for decidability and complexity w.r.t.

- all B
- O with $\{\diamondsuit, \downarrow\} \subseteq O \subseteq \{\diamondsuit, \Box, \downarrow, @\}$
- $\mathfrak{F} \in \{$ all, trans, equiv, serial $\}$

- Find border between decidable and undecidable fragments
- Find tight complexity bounds

イロン 不通 と 不良 と 不良 と 一項

Results

đ.

Conclusion

Post's lattice

Established 1941 by Emil Post

Results

Conclusion

Satisfiability of propositional fragments in the literature

Theorem
(H. R. Lewis 1979)
$SAT(\emptyset, B)$ is:
ONP-complete
○ in P

$$S_1: \neg(x \rightarrow y)$$

<ロ> (日) (日) (日) (日) (日)

A

Results

Conclusion

Satisfiability of propositional fragments in the literature

Theorem
(H. R. Lewis 1979)
$SAT(\emptyset, B)$ is:
O NP-complete
○ in P

(本語)と 本語(と) 本語(と

$$S_1: \neg(x \rightarrow y)$$

A

Results

Conclusion

Satisfiability of propositional fragments in the literature

Theo	orem
(H. R	R. Lewis 1979)
SAT	(Ø, B) is:
\bigcirc	NP-complete
0	in P

 $S_1: \neg(x \rightarrow y)$

A

Motivation	Goals	Results	Conclusion
And now for			

・ロト・日本・ キョ・・ ヨー うへぐ

Results for all frames

Theorem 1 all-SAT(O, B) is: undecidable medium \bigcirc (NP- or PSPACE-hard) low (L-compl. or below) \bigcirc trivial \bigcirc 0?

를 《를》《를》《唱》《曰》 (Maria

Results

Conclusion

Results for all frames

Theorem 1 all-SAT(O, B) is: undecidable medium \bigcirc (NP- or PSPACE-hard) low (L-compl. or below) \bigcirc trivial 0?

≣ ∢≣≻ ∢≣≻ ∢⊡≻ ∂Mo

Results

Results for transitive frames

Theorem 2

trans-SAT(O, B) is:

- undecidable
- high (NEXPTIME-compl.)
- medium \bigcirc
 - (NP- or PSPACE-hard)
- low (L-compl. or below)

イロト 不得 トイヨト イヨト 二日 A

trivial

0?

Results

Results for frames with equivalence relations

Theorem 3

equiv-SAT(O, B) is:

high (NEXPTIME-compl.) \bigcirc

low (L-compl. or below) trivial

> A

0?

Conclusion

Results for serial frames

Theorem 4 serial-SAT(O, B) is: undecidable low (L-compl. or below) \bigcirc trivial \bigcirc 0?

Motivation	Goals	Results	Conclusion
And now for			

Motivation	Goals	Results	Conclusion
Conclusion			

Classified \mathfrak{F} -SAT(O, B) for decidability and complexity w.r.t.

- almost all B
- most O with $\{\diamondsuit, \downarrow\} \subseteq O \subseteq \{\diamondsuit, \Box, \downarrow, @\}$
- $\mathfrak{F} \in \{\mathsf{all}, \mathsf{trans}, \mathsf{equiv}, \mathsf{serial}\}$

Open cases:

- $\bullet~$ Clones L, L_0, L_3 based on \oplus
- Upper bounds for some clones below M with $O = \{\diamondsuit, \Box, \downarrow, 0\}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Motivation	Goals	Results	Conclusion
Perspectives			

- Close gaps!
- Consider other frame classes (e.g., trees, linear)
- Consider other operators
- Systematise operator sets and frame classes (Oh dear!)
- Consider multi-modal languages

Motivation	Goals	Results	Conclusion
Perspectives			

- Close gaps!
- Consider other frame classes (e.g., trees, linear)
- Consider other operators
- Systematise operator sets and frame classes (Oh dear!)
- Consider multi-modal languages

Thank you.