Working Modularly with Ontologies

Bijan Parsia Uli Sattler =~ Thomas Schneider
School of Computer Science, University of Manchester, UK

30 November 2009

About the project

Title

Composing and decomposing ontologies: a logic-based approach

People involved/interested
e Uli Sattler, Bijan Parsia, Thomas Schneider (Manchester)
e Frank Wolter, Boris Konev, Dirk Walther (Liverpool)

@ lan Horrocks, Bernardo Cuenca Grau, Yevgeny Kazakov
(Oxford)

o Carsten Lutz (Bremen)

@ Michael Zakharyaschev, Roman Kontchakov (London)

Ontologies+DL

And now ...

@ Ontologies and Description Logic

Ontologies+DL

Ontology

= collection of statements about a domain (axioms)

e Language used: usually logic, often description logic (DL)

@ Inferences can be drawn from axioms

Domains:
biology, medicine, chemistry, business processes, natural language, ...

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

vx(Duck(x) — Ty (feedsOn(x, y) A GraSS(y)))

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

vx(Duck(x) — Ty (feedsOn(x, y) A GraSS(y)))

@ Bird = Duck LI Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

vx(Duck(x) — 3y (feedsOn(x, y) A GraSS(y)))

@ Bird = Duck LI Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

= Bird M —Chicken C 3 feedsOn.Grass
‘v’x((Bird(x) A —Chicken(x)) — Ty (feedsOn(x, y) A Grass(y)))

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

vx(Duck(x) — Ty (feedsOn(x, y) A GraSS(y)))

@ Bird = Duck LI Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept
Vx(Duck(x) — Jy(feedsOn(x, y) A Grass(y)))
@ Bird = Duck U Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

@ Tweety : Duck Duck(Tweety)
——

individual

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

Vx(Duck(x) — Jy(feedsOn(x, y) A Grass(y)))
@ Bird = Duck U Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

@ Tweety : Duck Duck(Tweety)
——
individual

= Tweety : IfeedsOn.Grass
Jy (feedsOn(Tweety, y) A Grass(y))

Ontologies+DL

Reasoning tasks

o Consistency:
Does ontology O have a model?

e Satisfiability:
Is there a model of O that interprets concept C as nonempty?

e Subsumption:
Does C C D hold in every model of O7

o Instance checking:
Is individual x an instance of C in every model of O7

Inter-reducible; optimised reasoners available

Ontologies+DL

The Web Ontology Language OWL

@ W3C-recommended standard since 2004
@ OWL 2 published on 27 Oct.

Ontologies+DL

The Web Ontology Language OWL

@ W3C-recommended standard since 2004
@ OWL 2 published on 27 Oct.

OWL Full
Consistency?, Reasening
OWL DL

Based on DL SROZQ
3, V, counting, role chains and hierarchies, transitivity, inverse
roles, nominals

OWL EL, QL, RL

Sub-profiles for efficient reasoning and application orientation

a

Why modularity?

And now ...

© Why modularity?

Why modularity?

A case for modularity

Common practice in software engineering

Modular software development allows for:
e Importing/reusing modules
@ Collaborative development

@ Understanding the code from the interaction between the
modules

Wouldn't it be nice ...

. to have this for ontology development as well?

Why modularity?

Three scenarios

0 o D
2@

Import/reuse

'Y® o}

Collaboration Understanding

a®

Why modularity?

Three scenarios

0 o D
2 @

Import/reuse

'Y® o}

Collaboration Understanding

a®

Why modularity?

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Why modularity?

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

3

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

Why modularity?

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

3

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.

a

Why modularity?

Scenario 2: Collaboration

Collaborative ontology development

to o

5=

Why modularity?

Scenario 2: Collaboration

Collaborative ontology development

to o

5=

e Developers work (edit, classify) locally

@ Extra care at re-combination

Why modularity?

Scenario 2: Collaboration

Collaborative ontology development

to o

5=

e Developers work (edit, classify) locally

@ Extra care at re-combination

This approach is understood, but not implemented yet.

a

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

1,000,000 %

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

We're still playing with this.

Why modularity?

Summing up

Import/reuse
e R
Collaboration Understanding

Why modularity?

Summing up

0 o D
2 @

Import/reuse
1@ oY
Collaboration Understanding

Reuse

And now ...

© A reuse scenario

Reuse

A reuse scenario

Import/reuse one external ontology

Reuse

A reuse scenario

Import/reuse one external ontology

knowledge about “Bird”

% Farm

Animals

Reuse

A reuse scenario

Import/reuse one external ontology

knowledge about “Bird”

% Farm

How much of Animals do we need?

Animals

Reuse

A reuse scenario

Import/reuse a part of an external ontology

Animals

% arm

How much of Animals do we need?

o Coverage: Import everything relevant for the chosen terms.

e Economy: Import only what's relevant for them.
Compute that part quickly.

a®

Reuse

A reuse scenario

Animals

Reuse

The Health-e-Child project

Arthropathy
Autoimmune | (Rheumatologic
Disease Disorder

AN
(Atrophic Arthritis) fPonarthritis) (Rheumatoid Arthritis)

CJuveniIe Chronic Polyarthritis) Juvenile Rheumatoid Arthritis

Reuse

The Health-e-Child project

Arthropathy
Autoimmune | (Rheumatologic
Disease Disorder

(Atrophic Arthritis) (Polyarthritis) (Rheumatoid Arthritis)

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Reuse

A working cycle

Edit your ontology OJ

'

Import a module

Reuse

A working cycle

Edit your ontology OJ

v

Load an external ontology EJ

y

Specify terms from £ to be reused)

y

Get module from SJ

v

Import this module into OJ

N J

Reuse

A working cycle

4 Y
Edit your ontology OJ Farm
Load an external ontology EJ Animals

y

Specify terms from £ to be reused) Animal, feedsOn

y

Get module from SJ Animals’
Import this module into OJ Farm U Animals’

N J

Reuse

A working cycle

4 v
Edit your ontology OJ Farm U Animals’
Load an external ontology EJ Buildings

y

Specify terms from £ to be reused) DuckHousing, Silo

y

Get module from SJ Buildings’
Import this module into OJ Farm U Animals’ U Buildings’

N J

Reuse

A working cycle

Edit your ontology O)

Load an external ontology 5)

Specify terms from £ to be reusedJ

Get module from 8) Module Coverage]

Import this module into (9)

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Example 1:
@ Topic: Fox, Bird, feedsOn
e On-topic: Off-topic:
Fox C V feedsOn.Bird Duck C Bird
Fox U Bird C 3 feedsOn. T
Bird £ —Fox

Bird C Bird LI Fox

@ Goal = preserve all on-topic knowledge

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird LI Fox
Bird = Duck U Chicken
Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox C 3 feedsOn.Bird

Farm U Animals

E

Animal E I feedsOn.T
Animals

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird L Fox

Farm U Animals;

I~
Animal E I feedsOn.T

% Farm

Animals;

Reuse

Module coverage

Import everything the external ontology knows

Goal:
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Farm U Animals,

I~
Animal E I feedsOn.T

Animals;
[<70)

Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox C 3 feedsOn.Bird

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird L Fox

Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox C 3 feedsOn.Bird

Farm U Animals;

~

Animal E I feedsOn.T
Animalss

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird LI Fox
Bird = Duck U Chicken
Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox C 3 feedsOn.Bird

Farm U Animals,

E

Animal E I feedsOn.T
Animalss

Reuse

Module coverage

@ Module £’ covers ontology & for the specified topic T
if for all concepts C, D built from terms in 7

if OUEf E CLCD,
then OUE E CLCD.

o Coverage = preserving entailments

Reuse

Module coverage

@ Module £’ covers ontology & for the specified topic T
if for all concepts C, D built from terms in 7
if Ooué E CLCD,
then OU& E CLCD.

o Coverage = preserving entailments

@ No coverage ~+» no encapsulation ~» no module

@ With coverage: trade-off minimality <+ computation time

Reuse

Module coverage

@ Module £’ covers ontology & for the specified topic T
if for all concepts C, D built from terms in 7

if OUEf E CLCD,
then OUE E CLCD.

o Coverage = preserving entailments

e Minmal covering modules via conservative extensions (CEs)
@ CEs hard to impossible to decide
@ Tractable approximation: syntactic locality

Reuse

A working cycle

Edit your ontology OJ Safety}

Load an external ontology 5)

Specify terms from £ to be reusedJ

Get module from 5)

Import this module into (9)

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck, —Flies
Duck C Bird

Animals
% Bird C Flies
Farm

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck, —Flies
Duck C Bird

Animals 14
% Bird C Flies
Farm

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Ty - ek, SiEles Farm U Animals |= Bird C Flies
Duck T Bird but Animals [£ Bird C Flies

Animals
% Bird C Flies
Farm

Reuse

@ Our ontology O uses the imported terms safely
if for all concepts C, D built from the imported terms:
if & ¥ CLCED,
then OU¢& [CLED,

@ Safety = preserving non-entailments

Reuse

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector b 4 any easy
Prompt b 4 ? easy

Reuse

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector b 4 any easy
Prompt b 4 ? easy
The whole ontology v XX any easy
conserv.-based mod. v v few hard
MEX (Liverpool) v v acyclic £C easy
locality-based mod. | v/ X ~OWL2DL easy
E-connections v b 4 OwL1DL easy

Reuse

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector b 4 any easy
Prompt b 4 ? easy
The whole ontology v XX any easy
conserv.-based mod. v v few hard
MEX (Liverpool) v v acyclic £C easy
locality-based mod. | v/ X ~OWL2DL easy
E-connections v b 4 OwL1DL easy
interpolants-based v v/ few hard

(no subsets!)

Reuse

Module extraction in Protégé 4

Nightly build:

http://owl.cs.manchester.ac.uk /2008 /iswc-modtut/equinox.zip

@ Realises import scenario
@ Provides coverage via locality-based modules
o We're working on safety ...

@ To be released as Protégé 4 plugin soon

(Thanks to Matthew Horridge.)

http://owl.cs.manchester.ac.uk/modularity

Reuse

Web service for module extraction

http://owl.cs.manchester.ac.uk/modularity

MANCHES i
o

Module: http://www.co-
OWL Module Extractor ode.org/ontologies/ pizza/pizza.owl_module.owl

Selected signature
Ontology source

Pizza (http://wnw.c

ode.org/ontologies/pizza/pizza.owl#Pizzz)
Paste your ontology, or enter a URL of a document, into the text box below. Module metrics
itp:/www.co-ode.org/ontologies, pizza) pizza.owl

Number of axioms: 112
Number oflogical axioms: 112
Number of lasses:

Module axioms

GresseTopoing SubCissOr PzaToopng

gnature

ChacacTopaing Do MeatZopoing
CheeseTopping DisintWih NutTopping
GheeseTopping DisintWih SauceTopping
bizza ChosseTopoing Disontiih VegelalTo
P and (asTo aaw some CreesoTopsng)
Eng o, Gormany , ay)

Enter a signature. Put each entity name on 2 new line. (Accepts full URITs or URI fragments)

m
FinToppng Dsfomwin wwm osping
Food SupClassOf Domain

Modularity type
Select the module type

© Top (lower) module

© Bottom (uDDcr) module

O Bottor per-of-lower) module
© Top-of-bettom (owerof-upper) module

HeroSoiceTopoing SubCiassOl PuzaTopping

@ Show axioms view (instead of outputting RDF/XML)

(Gact mote)

http://owl.cs.manchester.ac.uk/modularity

Understanding ontologies

And now ...

@ Understanding ontologies via modules

Understanding ontologies

We bet Robert Stevens . ..

@ Ontology about periodic table of the chemical elements
@ What is its modular structure?
@ What is “the meat” of it?

@ We can find it using locality-based modules.

Understanding ontologies

Impetus for the “Meat” idea

Partition of koala.owl via E-connections in Swoop

Gender
Animal Degree

Habitat

@ importing part

@ imported but non-importing part
© isolated part

—>

“imports vocabulary from”

Understanding ontologies

Partition for the periodic table ontology

@ importing part

@ imported but non-importing part
© isolated part

—>

“imports vocabulary from"

Understanding ontologies

“Meat” via locality-based modules

Hopes:

o Finer-grained analysis

e Guidance for users to choose the right topic(s)
(module signature # 7))

@ Draw conclusions on characteristics of an ontology:

topicality, connectedness, axiomatic richness, superfluous
parts, modelling

Understanding ontologies

“Meat” via locality-based modules

Problem:

@ Ontologies of size n can have up to 2”7 modules

@ But do real-life ontologies fall into the worst case?

Understanding ontologies

Results so far

@ Highly optimised algorithm to extract all modules

Ontology #Ax #Terms #mods Theor. Max. time

Koala 42 25 3660 33554432 9s
Mereology 44 25 1952 33554432 3min

Understanding ontologies

Results so far

@ Highly optimised algorithm to extract all modules

Ontology #Ax #Terms #mods Theor. Max. time

Koala 42 25 3660 33554432 9s
Mereology 44 25 1952 33554432 3min

@ Not scalable

@ Single module numbers don't say much

Understanding ontologies

Subset sampling

e For 8 ontologies, we modularised randomly generated
subontologies

o Mostly “negative” results

40000 40000
.
. g .
30000 E 30000
n o
E : : .
2 20000 £ 20000
E E 2 Y
S s & 5
: 4 - g
2 10000 ~ 10000
E i m i
=] 2
2 £
5
0 z 0
0 25 50 75 100 0 25 50 75 100
Subontology size People Subontology size People

Trendline equation: y = O(1.5%), confidence 0.96

Understanding ontologies

Outlook 1

@ Estimate the number of all modules more precisely
@ Proportion of “genuine” modules

@ Relation between module number and justificatory structure
of an ontology

Understanding ontologies

Outlook 2

Collaborative ontology development using modules

Modules that are no subsets

@ Connections between modularity and explanations of
entailments

Modularity of specifications

Understanding ontologies

Outlook 2

Collaborative ontology development using modules

Modules that are no subsets

@ Connections between modularity and explanations of
entailments

Modularity of specifications

Thank you.

