Working Modularly with Ontologies

Chiara Del Vescovo Bijan Parsia Uli Sattler
Thomas Schneider

School of Computer Science, University of Manchester, UK

25 March 2010

About the project

Title

Composing and decomposing ontologies: a logic-based approach

People involved/interested

@ Chiara Del Vescovo, Rafael Goncalves, Uli Sattler,
Bijan Parsia, Thomas Schneider (Manchester)

e Frank Wolter, Boris Konev, Dirk Walther (Liverpool)

@ lan Horrocks, Bernardo Cuenca Grau, Yevgeny Kazakov
(Oxford)

o Carsten Lutz (Bremen)

@ Michael Zakharyaschev, Roman Kontchakov (London)

Ontologies+DL

And now ...

@ Ontologies and Description Logic

Ontologies+DL

Ontology

= collection of statements about a domain (axioms)

e Language used: usually logic, often description logic (DL)

@ Inferences can be drawn from axioms

Domains:
biology, medicine, chemistry, business processes, natural language, ...

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

vx(Duck(x) — Ty (feedsOn(x, y) A GraSS(y)))

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

vx(Duck(x) — Ty (feedsOn(x, y) A GraSS(y)))

@ Bird = Duck LI Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

vx(Duck(x) — 3y (feedsOn(x, y) A GraSS(y)))

@ Bird = Duck LI Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

= Bird M —Chicken C 3 feedsOn.Grass
‘v’x((Bird(x) A —Chicken(x)) — Ty (feedsOn(x, y) A Grass(y)))

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

vx(Duck(x) — Ty (feedsOn(x, y) A GraSS(y)))

@ Bird = Duck LI Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept
Vx(Duck(x) — Jy(feedsOn(x, y) A Grass(y)))
@ Bird = Duck U Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

@ Tweety : Duck Duck(Tweety)
——

individual

Ontologies+DL

Example axioms + inferences

@ Duck = 3 feedsOn. Grass
~— — —_—— ——

concept role concept

concept

Vx(Duck(x) — Jy(feedsOn(x, y) A Grass(y)))
@ Bird = Duck U Chicken
¥ (Bird(x) ¢ (Duck(x) V Chicken(x)))

@ Tweety : Duck Duck(Tweety)
——
individual

= Tweety : IfeedsOn.Grass
Jy (feedsOn(Tweety, y) A Grass(y))

Ontologies+DL

Reasoning tasks

o Consistency:
Does ontology O have a model?

e Satisfiability:
Is there a model of O that interprets concept C as nonempty?

e Subsumption:
Does C C D hold in every model of O7

o Instance checking:
Is individual x an instance of C in every model of O7

Inter-reducible; optimised reasoners available

Ontologies+DL

The Web Ontology Language OWL

@ W3C-recommended standard since 2004
e OWL 2 published on 27 Oct. 2009

Ontologies+DL

The Web Ontology Language OWL

@ W3C-recommended standard since 2004
e OWL 2 published on 27 Oct. 2009

OWL Full
Consistency?, Reasening
OWL DL

Based on DL SROZQ
3, V, counting, role chains and hierarchies, transitivity, inverse
roles, nominals

OWL EL, QL, RL

Sub-profiles for efficient reasoning and application orientation

a®

Why modularity?

And now ...

© Why modularity?

Why modularity?

A case for modularity

Common practice in software engineering

Modular software development allows for:
e Importing/reusing modules
@ Collaborative development

@ Understanding the code from the interaction between the
modules

Wouldn't it be nice ...

. to have this for ontology development as well?

Why modularity?

Three scenarios

0 o D
2@

Import/reuse

'Y® o}

Collaboration Understanding

<70}

Why modularity?

Three scenarios

0 o D
2 @

Import/reuse

'Y® o}

Collaboration Understanding

<70}

Why modularity?

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Why modularity?

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

3

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

Why modularity?

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

3

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.

[<70)

Why modularity?

Scenario 2: Collaboration

Collaborative ontology development

to o

5=

Why modularity?

Scenario 2: Collaboration

Collaborative ontology development

to o

5=

e Developers work (edit, classify) locally

@ Extra care at re-combination

Why modularity?

Scenario 2: Collaboration

Collaborative ontology development

to o

5=

e Developers work (edit, classify) locally

@ Extra care at re-combination

This approach is understood, but not implemented yet.

&

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

1,000,000 %

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

We're still playing with this.

Why modularity?

Summing up

Import/reuse
e R
Collaboration Understanding

Why modularity?

Summing up

0 o D
2 @

Import/reuse
1@ oY
Collaboration Understanding

Reuse

And now ...

© A reuse scenario

Reuse

A reuse scenario

Import/reuse one external ontology

Reuse

A reuse scenario

Import/reuse one external ontology

knowledge about “Bird”

% Farm

Animals

Reuse

A reuse scenario

Import/reuse one external ontology

knowledge about “Bird”

% Farm

How much of Animals do we need?

Animals

Reuse

A reuse scenario

Import/reuse a part of an external ontology

Animals

% arm

How much of Animals do we need?

o Coverage: Import everything relevant for the chosen terms.

e Economy: Import only what's relevant for them.
Compute that part quickly.

[<70)

Reuse

A reuse scenario

Animals

Reuse

The Health-e-Child project

Arthropathy
Autoimmune | (Rheumatologic
Disease Disorder

AN
(Atrophic Arthritis) fPonarthritis) (Rheumatoid Arthritis)

CJuveniIe Chronic Polyarthritis) Juvenile Rheumatoid Arthritis

Reuse

The Health-e-Child project

Arthropathy
Autoimmune | (Rheumatologic
Disease Disorder

(Atrophic Arthritis) (Polyarthritis) (Rheumatoid Arthritis)

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Reuse

A working cycle

Edit your ontology OJ

'

Import a module

Reuse

A working cycle

Edit your ontology OJ

v

Load an external ontology SJ

y

T <« Specify terms from SJ

v

M <+ mod(T, 5)J

v

O+~ OuM

Reuse

A working cycle

Edit your ontology (’)J

Load an external ontology 5J

T < Specify terms from 5)

M <+ mod(T, 5)J Module CoverageJ

O+ O0OuUM

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Example 1:
@ Topic: Fox, Bird, feedsOn
e On-topic: Off-topic:
Fox C V feedsOn.Bird Duck C Bird
Fox U Bird C 3 feedsOn. T
Bird £ —Fox

Bird C Bird LI Fox

@ Goal = preserve all on-topic knowledge

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird LI Fox
Bird = Duck U Chicken
Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox C 3 feedsOn.Bird

Farm U Animals

E

Animal E I feedsOn.T
Animals

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird L Fox

Farm U Animals;

I~
Animal E I feedsOn.T

% Farm

Animals;

Reuse

Module coverage

Import everything the external ontology knows

Goal:
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Farm U Animals,

I~
Animal E I feedsOn.T

Animals;
a

Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox C 3 feedsOn.Bird

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird L Fox

Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox C 3 feedsOn.Bird

Farm U Animals;

~

Animal E I feedsOn.T
Animalss

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird LI Fox
Bird = Duck U Chicken
Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox C 3 feedsOn.Bird

Farm U Animals,

E

Animal E I feedsOn.T
Animals,

Reuse

Module coverage

@ Module £’ covers ontology & for the specified topic T
if for all concepts C, D built from terms in 7

if OUEf E CLCD,
then OUE E CLCD.

Reuse

Module coverage

@ Module £’ covers ontology & for the specified topic T
if for all concepts C, D built from terms in 7

if OUf E CLCD, @
then OU& E CLCD. &
o Coverage = preserving entailments % (9

e O U ¢ is called conservative extension (CE) of O U &’

Reuse

Module coverage

@ Module £’ covers ontology & for the specified topic T
if for all concepts C, D built from terms in 7

if OUf E CLCD, @
then OU& E CLCD. &
o Coverage = preserving entailments % (9

e O U ¢ is called conservative extension (CE) of O U &’

@ No coverage ~» no encapsulation ~» no module

@ With coverage: trade-off minimality <+ computation time

Reuse

Module coverage

@ Module £’ covers ontology & for the specified topic T
if for all concepts C, D built from terms in 7

if OUf E CLCD, @
then OU& E CLCD. &
o Coverage = preserving entailments % (9

e O U ¢ is called conservative extension (CE) of O U &’

@ Minmal covering modules via CEs
@ CEs hard to impossible to decide

@ Tractable approximation: syntactic locality

Reuse

A working cycle

Edit your ontology OJ Safety}

Load an external ontology 5J

T < Specify terms from 5)

M <+ mod(T, E)J

O+ O0OuUM

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck, —Flies
Duck C Bird

Animals
% Bird C Flies
Farm

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck, —Flies
Duck C Bird

Animals 14
% Bird C Flies
Farm

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Ty - ek, SiEles Farm U Animals |= Bird C Flies
Duck T Bird but Animals [£ Bird C Flies

Animals
% Bird C Flies
Farm

Reuse

@ Our ontology O uses the imported terms safely
if for all concepts C, D built from the imported terms:
if & ¥ CLCED,
then OU¢& [CLED,

@ Safety = preserving non-entailments

Reuse

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector b 4 any easy
Prompt b 4 ? easy

Reuse

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector b 4 any easy
Prompt b 4 ? easy
The whole ontology v XX any easy
conserv.-based mod. v v few hard
MEX (Liverpool) v v acyclic £LC easy
locality-based mod. | v/ X ~0OWL?2 easy
E-connections v b 4 owL1 easy

Reuse

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector b 4 any easy
Prompt b 4 ? easy
The whole ontology v XX any easy
conserv.-based mod. v v few hard
MEX (Liverpool) v v acyclic £LC easy
locality-based mod. | v/ X ~0OWL?2 easy
E-connections v b 4 owL1 easy
interpolants-based v v/ few hard

(no subsets!)

Reuse

Module extraction in Protégé 4

Nightly build:

http://owl.cs.manchester.ac.uk /2008 /iswc-modtut/equinox.zip

@ Realises import scenario
@ Provides coverage via locality-based modules
o We're working on safety ...

@ To be released as Protégé 4 plugin soon

(Thanks to Matthew Horridge.)

http://owl.cs.manchester.ac.uk/modularity

Reuse

Web service for module extraction

http://owl.cs.manchester.ac.uk/modularity

MANCHES i
o

Module: http://www.co-
OWL Module Extractor ode.org/ontologies/ pizza/pizza.owl_module.owl

Selected signature
Ontology source

Pizza (http://wnw.c

ode.org/ontologies/pizza/pizza.owl#Pizzz)
Paste your ontology, or enter a URL of a document, into the text box below. Module metrics
itp:/www.co-ode.org/ontologies, pizza) pizza.owl

Number of axioms: 112
Number oflogical axioms: 112
Number of lasses:

Module axioms

GresseTopoing SubCissOr PzaToopng

gnature

ChacacTopaing Do MeatZopoing
CheeseTopping DisintWih NutTopping
GheeseTopping DisintWih SauceTopping
bizza ChosseTopoing Disontiih VegelalTo
P and (asTo aaw some CreesoTopsng)
Eng o, Gormany , ay)

Enter a signature. Put each entity name on 2 new line. (Accepts full URITs or URI fragments)

m
FinToppng Dsfomwin wwm osping
Food SupClassOf Domain

Modularity type
Select the module type

© Top (lower) module

© Bottom (uDDcr) module

O Bottor per-of-lower) module
© Top-of-bettom (owerof-upper) module

HeroSoiceTopoing SubCiassOl PuzaTopping

@ Show axioms view (instead of outputting RDF/XML)

(Gact mote)

http://owl.cs.manchester.ac.uk/modularity

Understanding ontologies

And now ...

@ Understanding ontologies via modules

Understanding ontologies

We bet Robert Stevens . ..

@ Ontology about periodic table of the chemical elements
@ What is its modular structure?
@ What is “the meat” of it?

@ We can find it using locality-based modules.

Understanding ontologies

Impetus for the “Meat” idea

Partition of koala.owl via E-connections in Swoop

Gender
Animal Degree

Habitat

@ importing part

@ imported but non-importing part
© isolated part

—>

“imports vocabulary from”

Understanding ontologies

Partition for the periodic table ontology

@ importing part

@ imported but non-importing part
© isolated part

—>

“imports vocabulary from"

Understanding ontologies

“Meat” via locality-based modules

Hopes:

o Finer-grained analysis

e Guidance for users to choose the right topic(s)
(module signature # 7))

@ Draw conclusions on characteristics of an ontology:

topicality, connectedness, axiomatic richness, superfluous
parts, modelling

Understanding ontologies

“Meat” via locality-based modules

Problem:

@ Ontologies of size n can have up to 2”7 modules

@ But do real-life ontologies fall into the worst case?

Understanding ontologies

Results so far

@ Highly optimised algorithm to extract all modules

Ontology #Ax #Terms #mods Theor. Max. time

Koala 42 25 3660 33554432 9s
Mereology 44 25 1952 33554432 3min

Understanding ontologies

Results so far

@ Highly optimised algorithm to extract all modules

Ontology #Ax #Terms #mods Theor. Max. time

Koala 42 25 3660 33554432 9s
Mereology 44 25 1952 33554432 3min

@ Not scalable

@ Single module numbers don't say much

Understanding ontologies

Subset sampling

e For 8 ontologies, we modularised randomly generated
subontologies

o Mostly “negative” results

40000 40000
.
. g .
30000 E 30000
n o
E : : .
2 20000 £ 20000
E E 2 Y
S s & 5
: 4 - g
2 10000 ~ 10000
E i m i
=] 2
2 £
5
0 z 0
0 25 50 75 100 0 25 50 75 100
Subontology size People Subontology size People

Trendline equation: y = O(1.5%), confidence 0.96

Understanding ontologies

Weight analysis

@ Ordered all 3660 modules of Koala by weight
Weight(M) = PullingPower(M) - Cohesion(M)

#terms in M
[smallest seed signature for M|

PullingPower(M)

How many terms are needed
to “pull” all the terms into M?

. #minimal seed signatures of M
COheS|on(M) T |smallest seed signature for M|

How strongly are terms in M
held together?

@ Inspected heaviest modules

Understanding ontologies

Weight analysis ®%

1,10
QUOKKA

TAZMANIAN DEVIL

39, 9, 17,
21,3
DEGREE

7,15, 20,
25, 34, 35, 37
KOALA,
MARSUPIALS

24, 14,22, 26,32, 33
STUDENT, PARENT

4,12, 16, 19
HARD_WORKER

8,13, 23, 30, 38,
40, 1
ANIMAL

Understanding ontologies

Outlook

@ Find heaviest modules without computing all modules

@ Relation between module number and justificatory structure
of an ontology

Understanding ontologies

Outlook

@ Find heaviest modules without computing all modules

@ Relation between module number and justificatory structure
of an ontology

@ Collaborative ontology development using modules

Modules that are no subsets

Modularity for belief revision

Understanding ontologies

Outlook

@ Find heaviest modules without computing all modules

@ Relation between module number and justificatory structure
of an ontology

@ Collaborative ontology development using modules

Modules that are no subsets

Modularity for belief revision

Thank you.

