## Working Modularly with Ontologies

Chiara Del Vescovo Bijan Parsia Uli Sattler *Thomas Schneider* 

School of Computer Science, University of Manchester, UK

21 April 2010

#### And now ...

- 1 Ontologies and Description Logic
- 2 Why modularity?
- A reuse scenario
- 4 Understanding ontologies via modules



## Ontology

- = collection of statements about a domain (axioms)
  - Language used: usually logic, often description logic (DL)
  - Inferences can be drawn from axioms

#### Domains:

biology, medicine, chemistry, business processes, natural language,  $\dots$ 

$$\underbrace{\mathsf{Arm}}_{\mathsf{concept}} \sqsubseteq \exists \underbrace{\mathsf{hasPart}}_{\mathsf{role}} \cdot \underbrace{\mathsf{Hand}}_{\mathsf{concept}} \quad \forall x \Big( \mathsf{Arm}(x) \to \exists y \big( \mathsf{hasPart}(x,y) \land \mathsf{Hand}(y) \big) \Big)$$

$$\underbrace{\mathsf{Arm}}_{\mathsf{concept}} \sqsubseteq \underbrace{\exists \underbrace{\mathsf{hasPart}}_{\mathsf{role}} . \underbrace{\mathsf{Hand}}_{\mathsf{concept}}}_{\mathsf{concept}} \quad \forall x \Big( \mathsf{Arm}(x) \to \exists y \big( \mathsf{hasPart}(x,y) \land \mathsf{Hand}(y) \big) \Big)$$

$$\mathsf{Limb} \equiv \mathsf{Arm} \sqcup \mathsf{Leg}$$

$$\forall x \Big( \mathsf{Limb}(x) \leftrightarrow \big( \mathsf{Arm}(x) \lor \mathsf{Leg}(x) \big) \Big)$$

## Example axioms + inferences

$$\underbrace{\mathsf{Arm}}_{\mathsf{concept}} \sqsubseteq \underbrace{\exists \underbrace{\mathsf{hasPart}}_{\mathsf{role}}.\underbrace{\mathsf{Hand}}_{\mathsf{concept}}}_{\mathsf{concept}} \quad \forall x \Big( \mathsf{Arm}(x) \to \exists y \big( \mathsf{hasPart}(x,y) \land \mathsf{Hand}(y) \big) \Big)$$

$$\mathsf{Limb} \equiv \mathsf{Arm} \sqcup \mathsf{Leg}$$

$$\forall x \Big( \mathsf{Limb}(x) \leftrightarrow \big( \mathsf{Arm}(x) \lor \mathsf{Leg}(x) \big) \Big)$$

$$\models \mathsf{Limb} \sqcap \neg \mathsf{Leg} \sqsubseteq \exists \mathsf{hasPart}.\mathsf{Hand}$$
 
$$\forall x \Big( \big( \mathsf{Limb}(x) \land \neg \mathsf{Leg}(x) \big) \ \rightarrow \ \exists y \big( \mathsf{hasPart}(x,y) \land \mathsf{Hand}(y) \big) \Big)$$

$$\underbrace{\mathsf{Arm}}_{\mathsf{concept}} \sqsubseteq \underbrace{\exists \underbrace{\mathsf{hasPart}}_{\mathsf{role}} . \underbrace{\mathsf{Hand}}_{\mathsf{concept}}}_{\mathsf{concept}} \quad \forall x \Big( \mathsf{Arm}(x) \to \exists y \big( \mathsf{hasPart}(x,y) \land \mathsf{Hand}(y) \big) \Big)$$

$$\mathsf{Limb} \equiv \mathsf{Arm} \sqcup \mathsf{Leg}$$

$$\forall x \Big( \mathsf{Limb}(x) \leftrightarrow \big( \mathsf{Arm}(x) \lor \mathsf{Leg}(x) \big) \Big)$$

$$\underbrace{\mathsf{Arm}}_{\mathsf{concept}} \sqsubseteq \underbrace{\exists \underbrace{\mathsf{hasPart}}_{\mathsf{role}}.\underbrace{\mathsf{Hand}}_{\mathsf{concept}}}_{\mathsf{concept}} \forall x \Big( \mathsf{Arm}(x) \to \exists y \big( \mathsf{hasPart}(x,y) \land \mathsf{Hand}(y) \big) \Big)$$

$$\mathsf{Limb} \equiv \mathsf{Arm} \sqcup \mathsf{Leg}$$

$$\forall x \Big( \mathsf{Limb}(x) \leftrightarrow \big( \mathsf{Arm}(x) \lor \mathsf{Leg}(x) \big) \Big)$$

individual

Reuse

## Example axioms + inferences

$$\underbrace{\mathsf{Arm} \sqsubseteq \exists \underset{\mathsf{role}}{\mathsf{hasPart}} . \underbrace{\mathsf{Hand}}_{\mathsf{role}} \ \forall x \Big( \mathsf{Arm}(x) \to \exists y \big( \mathsf{hasPart}(x,y) \land \mathsf{Hand}(y) \big) \Big)}_{\mathsf{concept}}$$

$$\mathsf{Limb} \equiv \mathsf{Arm} \sqcup \mathsf{Leg} \qquad \forall x \Big( \mathsf{Limb}(x) \leftrightarrow \big( \mathsf{Arm}(x) \lor \mathsf{Leg}(x) \big) \Big)$$

$$\mathsf{LeftArm} : \mathsf{Arm} \qquad \mathsf{Arm}(\mathsf{LeftArm})$$

individual

 $\exists y (\mathsf{hasPart}(\mathit{LeftArm}, y) \land \mathsf{Hand}(y))$ LeftArm : ∃hasPart.Hand



## Reasoning tasks

- Consistency:
   Does ontology O have a model?
- Satisfiability: Is there a model of  $\mathcal O$  that interprets concept  $\mathcal C$  as nonempty?
- Subsumption:
   Does C □ D hold in every model of O?
- Instance checking:
   Is individual x an instance of C in every model of O?

Inter-reducible; optimised reasoners available

## The Web Ontology Language OWL

- W3C-recommended standard since 2004
- OWL 2 published on 27 Oct. 2009





## The Web Ontology Language OWL

- W3C-recommended standard since 2004
- OWL 2 published on 27 Oct. 2009



#### OWL 2

Based on DL  $\mathcal{SROIQ}$ 

 $\exists,\ \forall,\ counting,\ role\ chains\ and\ hierarchies,\ transitivity,\ inverse\ roles,\ nominals$ 

OWL 2 EL, QL, RL

Sub-profiles for efficient reasoning and application orientation



### And now ...

- Ontologies and Description Logic
- 2 Why modularity?
- A reuse scenario

#### Three scenarios









#### Three scenarios



Import/reuse





Reuse

### And now ...



- Ontologies and Description Logic
- 2 Why modularity?
- 3 A reuse scenario
- 4 Understanding ontologies via modules



Import/reuse one external ontology





Import/reuse one external ontology





Import/reuse one external ontology



How much of NCI do we need?



Import/reuse a part of an external ontology



How much of NCI do we need?

- **Coverage:** Import *everything* relevant for the chosen terms.
- **Economy:** Import *only* what's relevant for them. Compute that part quickly.





Import/reuse parts of several external ontologies







## A working cycle





## A working cycle





## A working cycle







**Goal:** Import everything the external ontology knows about the topic that consists of the specified terms.



Goal: Import everything the external ontology knows about the topic that consists of the specified terms.

#### Example 1:

Topic: Arm, Hand, hasPart

On-topic: Off-topic:

Arm □ ∀ hasPart.Hand HandWith4Fingers 

☐ Hand

 $Arm \sqcup Hand \sqsubseteq \exists hasPart. \top$ Hand □ ¬Arm

Hand ☐ Hand ☐ Arm

Goal = preserve all on-topic knowledge



**Goal:** Import everything the external ontology knows

about the topic that consists of the specified terms.



**Goal:** Import everything the external ontology knows

about the topic that consists of the specified terms.





**Goal:** Import everything the external ontology knows

about the topic that consists of the specified terms.





**Goal:** Import everything the external ontology knows

about the topic that consists of the specified terms.





**Goal:** Import everything the external ontology knows

about the topic that consists of the specified terms.





**Goal:** Import everything the external ontology knows

about the topic that consists of the specified terms.





 $\bullet \ \, \text{Module } \mathcal{E}' \ \, \text{covers ontology } \mathcal{E} \ \, \text{for the specified topic } \mathcal{T} \\ \text{if for all concepts C, D built from terms in } \mathcal{T} \text{:}$ 





• Module  $\mathcal{E}'$  covers ontology  $\mathcal{E}$  for the specified topic  $\mathcal{T}$  if for all concepts C, D built from terms in  $\mathcal{T}$ :

if 
$$\mathcal{O} \cup \mathcal{E} \models C \sqsubseteq D$$
, then  $\mathcal{O} \cup \mathcal{E}' \models C \sqsubseteq D$ .



- $\mathcal{O} \cup \mathcal{E}$  is called *conservative extension (CE)* of  $\mathcal{O} \cup \mathcal{E}'$



• Module  $\mathcal{E}'$  covers ontology  $\mathcal{E}$  for the specified topic  $\mathcal{T}$  if for all concepts C, D built from terms in  $\mathcal{T}$ :

if 
$$\mathcal{O} \cup \mathcal{E} \models C \sqsubseteq D$$
, then  $\mathcal{O} \cup \mathcal{E}' \models C \sqsubseteq D$ .



- $\mathcal{O} \cup \mathcal{E}$  is called *conservative extension (CE)* of  $\mathcal{O} \cup \mathcal{E}'$

- No coverage → no encapsulation → no module
- With coverage: trade-off minimality ↔ computation time

## Module coverage



• Module  $\mathcal{E}'$  covers ontology  $\mathcal{E}$  for the specified topic  $\mathcal{T}$ if for all concepts C, D built from terms in  $\mathcal{T}$ :

if 
$$\mathcal{O} \cup \mathcal{E} \models C \sqsubseteq D$$
, then  $\mathcal{O} \cup \mathcal{E}' \models C \sqsubseteq D$ .



- $\mathcal{O} \cup \mathcal{E}$  is called *conservative extension (CE)* of  $\mathcal{O} \cup \mathcal{E}'$

- Minmal covering modules via CEs
- CEs hard to impossible to decide
- Tractable approximation: syntactic locality



## A working cycle







**Goal:** Don't change the meaning of imported terms.

= Don't add new knowledge about the imported topic.

**Question:** Which axioms are we allowed to write?



**Goal:** Don't change the meaning of imported terms.

= Don't add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

#### Example:





**Goal:** Don't change the meaning of imported terms.

= Don't add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

#### Example:





**Goal:** Don't change the meaning of imported terms.

= Don't add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

#### Example:





Our ontology O uses the imported terms safely
if for all concepts C, D built from the imported terms:

if 
$$\mathcal{E}' \not\models C \sqsubseteq D$$
, then  $\mathcal{O} \cup \mathcal{E}' \not\models C \sqsubseteq D$ ,



ullet Safety  $\hat{=}$  preserving non-entailments

## Comparison of different approaches



| Kind of "module"                | Covrg. | Min. | Covered DLs | Complexity |
|---------------------------------|--------|------|-------------|------------|
| All ax's referencing ${\cal T}$ | ×      |      | any         | easy       |
| Seidenberg/Rector               | ×      |      | any         | easy       |
| Prompt                          | ×      |      | ?           | easy       |



| Kind of "module"                     | Covrg. | Min.   | Covered DLs                | Complexity   |
|--------------------------------------|--------|--------|----------------------------|--------------|
| All ax's referencing ${\cal T}$      | ×      |        | any                        | easy         |
| Seidenberg/Rector                    | ×      |        | any                        | easy         |
| Prompt                               | ×      |        | ?                          | easy         |
| The whole ontology                   | 1      | xx     | any                        | easy         |
| conservbased mod.<br>MEX (Liverpool) | 1      | ✓<br>✓ | few acyclic $\mathcal{EL}$ | hard<br>easy |
| locality-based mod.                  | 1      | ×      | $\approx$ OWL 2            | easy         |
| E-connections                        | 1      | ×      | OWL 1                      | easy         |
|                                      |        |        |                            |              |

## Comparison of different approaches



4日 > 4周 > 4 差 > 4 差 > 差 の 9 ○

| Kind of "module"                     | Covrg. | Min.      | Covered DLs                | Complexity   |  |
|--------------------------------------|--------|-----------|----------------------------|--------------|--|
| All ax's referencing ${\cal T}$      | ×      |           | any                        | easy         |  |
| Seidenberg/Rector                    | ×      |           | any                        | easy         |  |
| Prompt                               | ×      |           | ?                          | easy         |  |
| The whole ontology                   | 1      | xx        | any                        | easy         |  |
| conservbased mod.<br>MEX (Liverpool) | 1      | √<br>√    | few acyclic $\mathcal{EL}$ | hard<br>easy |  |
| locality-based mod.                  | 1      | ×         | $\approx$ OWL 2            | easy         |  |
| E-connections                        | 1      | ×         | OWL 1                      | easy         |  |
| interpolants-based<br>(no subsets!)  | 1      | <b>//</b> | few                        | hard         |  |

## Module extraction in Protégé 4



#### Nightly build:

http://owl.cs.manchester.ac.uk/2008/iswc-modtut/equinox.zip

- Realises import scenario
- Provides coverage via locality-based modules
- We're working on safety . . .
- To be released as Protégé 4 plugin soon

(Thanks to Matthew Horridge.)

#### Web service for module extraction



#### http://owl.cs.manchester.ac.uk/modularity

| OWL Module Extractor                                                                                            |
|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                 |
| Ontology source                                                                                                 |
| Paste your <b>ontology</b> , or enter a <b>URL</b> of a document, into the text box below.                      |
| http://www.co-ode.org/ontologies/pizza/pizza.on/                                                                |
| Signature                                                                                                       |
| Enter a signature. Put each entity name on a new line. (Accepts full URIs or URI fragmer                        |
| Pizza                                                                                                           |
|                                                                                                                 |
| Modularity type                                                                                                 |
| Select the module type                                                                                          |
|                                                                                                                 |
| Select the module type  () Top (lower) module () Bottom (upper) module () Bottom of top (upper-di-lower) module |

## Module: http://www.coode.org/ontologies/pizza/pizza.owl\_module.owl Selected signature Paza (http://www.oode.org/ontologies/pizza.owl#Pizza) Module metrics Rumber of solomes 132 Rumber of displaces 355 Rumber of displaces 355 Rumber of displaces 355 Rumber of displaces 355 Rumber of displaces 555 Rumber of displaces

# Obeset Toping Deplement Nutritions (Constitution) Deplement Deplem





HerbSpiceTopping SubClassOf PizzaTopping

Module axioms

CheeseTopping SubClassOf PizzaTopping
CheeseTopping DisjointWith FishTopping
CheeseTopping DisjointWith FirstTopping
CheeseTopping DisjointWith HerbSgiosTopping

#### And now ...



- Ontologies and Description Logic
- 2 Why modularity?
- A reuse scenario
- 4 Understanding ontologies via modules

Visualise the modular structure of an ontology



## Scenario: Understanding

Visualise the modular structure of an ontology



We're working on it.



- Ontology about periodic table of the chemical elements
- What is its modular structure?
- What is "the meat" of it?
- We can find it using locality-based modules.

## Impetus for the "Meat" idea



#### Partition of koala.owl via E-connections in Swoop



- importing part
- imported but non-importing part
- isolated part
- "imports vocabulary from"



## Partition for the periodic table ontology





- importing part
- imported but non-importing part
- isolated part
- "imports vocabulary from"



Reuse

## "Meat" via locality-based modules



#### Hopes:

- Fine-grained analysis
- Guidance for users to choose the right topic(s)
- Draw conclusions on characteristics of an ontology: topicality, connectedness, axiomatic richness, superfluous parts, modelling



#### Problem:

- Ontologies of size n can have up to  $2^n$  modules
- But do real-life ontologies fall into the worst case?

#### Results so far



• Optimised algorithm to extract all modules

| Ontology  | #Ax | #Terms | #mods | Theor. Max. | Time |
|-----------|-----|--------|-------|-------------|------|
| Koala     | 42  | 25     | 3660  | 33 554 432  | 9s   |
| Mereology | 44  | 25     | 1952  | 33 554 432  | 3min |

Reuse

#### Results so far



• Optimised algorithm to extract all modules

| Ontology  | #Ax | #Terms | #mods | Theor. Max. | Time |
|-----------|-----|--------|-------|-------------|------|
| Koala     | 42  | 25     | 3660  | 33 554 432  | 9s   |
| Mereology | 44  | 25     | 1952  | 33 554 432  | 3min |

- Single module numbers don't say much
- Not scalable

## Subset sampling



- Modularised randomly generated parts of 8 ontologies
- Example growth of module numbers:





Trendline equation:  $y = O(1.5^{\times})$ , confidence 0.96



## Weight analysis



• Ordered all 3660 modules of Koala by weight

$$\mathsf{Weight}(\mathcal{M}) = \mathsf{PullingPower}(\mathcal{M}) \boldsymbol{\cdot} \mathsf{Cohesion}(\mathcal{M})$$

How many terms are needed to "pull" all the terms into M?

How strongly are the terms in  $\mathcal{M}$  held together?

Inspected heaviest modules





#### Outlook

- Find heaviest modules without computing all modules
- How many modules can ontologies have?
- Relation module number ↔ justificatory structure

#### Outlook

- Find heaviest modules without computing all modules
- How many modules can ontologies have?
- Relation module number ↔ justificatory structure
- Collaborative ontology development using modules
- Complete the support for incremental reasoning
- Modules that are no subsets
- Modularity for belief revision
- Decidability of conservativity for FOL fragments

#### Outlook

- Find heaviest modules without computing all modules
- How many modules can ontologies have?
- Relation module number ↔ justificatory structure
- Collaborative ontology development using modules
- Complete the support for incremental reasoning
- Modules that are no subsets
- Modularity for belief revision
- Decidability of conservativity for FOL fragments

## Thank you.