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Intro Results Summary

And now . . .

1 Introduction: hybrid logic and satisfiability

2 Results

3 Summary and outlook
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Intro Results Summary

Hybrid logic

. . . has already been introduced today

We’re looking at the extension of standard modal logic with

nominals i , j , . . .
name single states in models

the binder ↓
↓x .ϕ binds variable x dynamically to the current state;
x in ϕ is treated as a nominal

the satisfaction operator @x

jumps to the state named by (the nominal or variable) x
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Intro Results Summary

The satisfiability problem for HL

Definition
1 A formula ϕ is satisfiable if there is

a model M = (W ,R,V ) based on a frame F = (W ,R)
an assignment g : SVAR→ W
and a state s ∈ W

such that M, g , s |= ϕ

Let O ⊆ {32↓@}.

2 HL(O) = set of all HL-formulas with operators from O
3 SAT(O) = {ϕ ∈ HL(O) | ϕ is satisfiable}
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Intro Results Summary

Complexity of satisfiability for HL

Theorem
SAT(32) is PSPACE-complete. (Ladner ’77)

SAT(32@) is PSPACE-complete. (Areces et al. ’99)

SAT(32↓) is CORE-complete.

/

(Areces et al. ’99)

 

Tame ↓ ?
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Intro Results Summary

HL over restricted frame classes

F condition on frames (W ,R) ∈ F

trans R is transitive
equiv R is an equivalence relation

lin R is a linear order
(transitive, irreflexive, ∀xy(xRy or x = y or yRx)

N (W ,R) = (N, <)
...

Definition
F-SAT(O) =

{ϕ ∈ HL(O) | ϕ is sat. in a model based on a frame from F}
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Intro Results Summary

HL satisfiability over restricted frame classes

Theorem
trans-SAT(32↓) is NEXPTIME-complete. (Mundhenk et al.

equiv-SAT(32↓) is NEXPTIME-complete. “ ’05)

trans-SAT(32↓@) is CORE-complete.

/

“

lin-SAT(32↓) is NP-complete. (Areces et al. ’00)

N-SAT(32↓) is NP-complete. “

lin-SAT(32↓@) is nonelementary.

/

(Franceschet et al.

N-SAT(32↓@) is nonelementary.

/

“ ’03)

 

Tame ↓ further?
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Intro Results Summary

Propositional fragments of HL

; Restrict the set of propositional operators! Why?

Propositional SAT is tractable if 6→ is disallowed (Lewis ’79)

LTL-SAT is tractable if 6→ is disallowed (Bauland et al. ’07)

SAT for ML(32) is tractable if 6→ and ∧ are disallowed
(Bauland et al. ’06)

for HL: all-SAT(3↓@) is tractable
if 6→ and some self-dual operators are disallowed
(Meier et al. ’09)

SAT for certain sub-Boolean description logics is tractable
(Baader et al. ’98/05/08, Calvanese et al. ’05–07)
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Intro Results Summary

Goal

Consider SAT for HL

with modal/hybrid operators O ⊆ {32↓@}
with only monotone Boolean operators ∧∨⊥>
over linear frames and N

Notation: MHL(O), lin-MSAT(O), N-MSAT(O)

Why?

HL over linear frames and N is an extension of LTL
Negation-freeness leads to lower complexity in other logics

Observation

with monotone operators, we can forgo propositional variables
(replace them with >)
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Intro Results Summary

Overview

3 2 ↓ @

32 3↓ 3@ 2↓ 2@ ↓@

32↓ 32@ 3↓@ 2↓@

32↓@

lin: decidable, non-elementary
N: PSPACE-complete
NP-complete
quasi-polysize model property

lin: NC1-complete
N: LOGSPACE-complete
canonical model property
NC1-complete
canonical model property
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Intro Results Summary

The hard cases

3 2 ↓ @

32 3↓ 3@ 2↓ 2@ ↓@

32↓ 32@ 3↓@ 2↓@

32↓@

lin: decidable, non-elementary
N: PSPACE-complete
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Intro Results Summary

A nonelementary lower bound

Theorem
lin-MSAT(32↓@) is decidable and nonelementary.

Proof sketch.

Decidability from lin-SAT(32↓@) (Franceschet et al. ’03)

Reduce from FOL-SAT over N with predicates (Stockmeyer’74)
< (natural “less-than” on N)
P (one arbitrary unary predicate)

Encode

FOL(P, <)-interpretations over N, using no propos. variables
formulas from FOL(P, <) as monotone formulas
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Intro Results Summary

Details of the encoding

Encode FO interpretations as sequences of intervals:
P ¬P P P . . .

. . .︸ ︷︷ ︸
Marker 1

︸ ︷︷ ︸
Marker 2

︸ ︷︷ ︸
Separator

(discrete intvls length 1,2) (dense interval)

FO interpret.
↓

MHL model

Use MHL(32↓@) to enforce this structure in a hybrid model

Encoding of formulas (example):
∀x
(
Px → ∃y(x < y ∧ ¬Py)) becomes

2m↓x .
(
1(x)→ 3m↓y .2(y)

)
; without implication:

2m↓x .
(
2(x) ∨ 3m↓y .2(y)

)
3mψ = “in some future state that starts a marker, ψ holds”
2mψ = “all future states start no marker or satisfy ψ”
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Intro Results Summary

A PSPACE upper and lower bound

Over N, we can no longer use dense-discrete alternation
to encode unary predicates.

SAT for FOL(<) over N is PSPACE-complete
(Ferrante, Rackoff ’79)

Theorem
N-MSAT(32↓@) is PSPACE-complete.

Hardness via straightforward encoding of QBF-SAT

Membership via reduction to SAT for FOL(<) over N
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Intro Results Summary

The intermediate cases

3 2 ↓ @

32 3↓ 3@ 2↓ 2@ ↓@

32↓ 32@ 3↓@ 2↓@

32↓@NP-complete
quasi-polysize model property
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Intro Results Summary

NP-completeness

Theorem
3 ∈ O ( {32↓@} ⇒ lin- and N-MSAT(O) are NP-complete.

Lower bound: straightforward reduction from 3-SAT
uses nominals: one per variable; 2 for “true” and “false”

Upper bound:
lin- and N-MSAT(32@): in NP (Areces et al. ’00)
lin- and N-MSAT(32↓): obvious reduction to N-MSAT(32)

lin- and N-MSAT(3↓@):
without 2, ↓ binds state variables “existentially”

; replace with fresh nominals
; straightforward reduction to N-MSAT(3@)
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Intro Results Summary

A quasi-polysize model property (QPMP)

Theorem
Every ϕ ∈ lin-MSAT(32@) of modal depth m has a model which,

i1 i2 i3 in. . . . . .︸ ︷︷ ︸
6m

︸ ︷︷ ︸
(0,1)Q

︸ ︷︷ ︸
6m

between two successive nominal states, has 6m further states,
possibly preceded by one copy of the dense interval (0, 1)Q .

Proof idea: States with distance >m from nominal states
satisfy the same modal formulas of modal depth 6m

Gain:
Such structures can be represented polynomially
With little extra effort,
QPMP yields NP upper bounds for SAT over lin, N, Q
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Intro Results Summary

The easy cases

3 2 ↓ @

32 3↓ 3@ 2↓ 2@ ↓@

32↓ 32@ 3↓@ 2↓@

32↓@

lin: NC1-complete
N: LOGSPACE-complete
canonical model property
NC1-complete
canonical model property
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Intro Results Summary

A canonical model property

Theorem
(1) Every ϕ ∈ lin-MSAT(2↓@) is satisfiable

in a one-state structure
under an assignment g that maps all SVARs to the only state.

(2) Every ϕ ∈ N-MSAT(2↓@) is satisfiable

in (N, <)
under an assignment g that maps all SVARs to 0.

Main observation:
without 3, we cannot control the order of two states

Consequence:
With (1), we can reduce lin-MSAT(2↓@) to propositional MSAT
; NC1-completeness (Schnoor ’07)
Göller, Meier, Mundhenk, Schneider, Thomas, Weiß Monotone hybrid logics 20



Intro Results Summary

A LOGSPACE result over N

Theorem
N-MSAT(2↓@) is LOGSPACE-complete.

Proof sketch.

Lower bound: reduction from “Order between vertices”

Upper bound:
Despite 2, every subformula has a
unique assignment and state of evaluation (UASE)
0 x1 x2 xn xn +1. . . . . .

2ϕ ϕ

Use UASEs to replace all SVARs with 0 or 1;
relevant information can be computed on-the-fly in LOGSPACE

Evaluate remaining propositional formula (in NC1)
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Intro Results Summary

Result overview

3 2 ↓ @

32 3↓ 3@ 2↓ 2@ ↓@
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Intro Results Summary

Summary

We have established . . .

the computational complexity of SAT for all fragments of HL

with monotone Boolean operators ∧∨⊥>
with modal/hybrid operators O ⊆ {32↓@}
over linear frames and N

small-model properties for all intermediate and easy cases

made an interesting observation:

Fragment (32↓@) is harder over lin than over N
Fragment (2↓@) is easier over lin than over N
All other fragments have the same complexity over lin and N
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Intro Results Summary

Outlook

Does MHL(32↓@) have a small-model property over N?

Which of our results can be carried over
to strictly dense frame classes, e.g., (Q,<)?

Complexity of HL-fragments
with other combinations of Boolean operators
over acyclic frame classes?

Thank you.
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