Lightweight Description Logics & Branching Time: A Troublesome Marriage

Víctor Gutiérrez-Basulto Jean Christoph Jung Thomas Schneider

Dept of Mathematics and Computer Science, University of Bremen, Germany

KR 22 July 2014

Description logics are inherently atemporal

```
DIs are...
```

... good at expressing static domain knowledge:

Diabetes \equiv MetabolicDisorder $\sqcap \exists$ hasFinding.Pancreas

... bad at expressing temporal knowledge:

"A patient who has diabetes **now** may develop certain disorders **in the future**"

 \exists has Disease. Diabetes \sqsubseteq \exists may Develop. Glaucoma

Temporal extensions of DLs

Applications: KR and reasoning . . .

... over temporal conceptual data models (EER, UML + temporal constraints)

... in the medical domain

Approach

Extend DLs with point-based temporal operators [Schild 1993]

→ Temporal description logics (TDLs)

Complexity results for satisfiability/subsumption (selection)

• ALC + LTL operators: EXPTIME . . . undecidable

• DL-Lite + LTL: NP ... undecidable

• \mathcal{ALC} or $\mathcal{EL} + \mathsf{CTL}^{(*)}$: PTIME ... 3EXPTIME

W

 $[\text{Artale et al. } 2002/03/12, \ \text{Baader et al. } 2008, \ \text{Guti\'errez-Basulto et al. } 2012]$

TDLs: syntax

TDLs are ... modal description logics

Components: DL of your choice + temporal operators, e.g.:

 $\mathsf{E} \diamond \varphi$ "in some future, eventually φ "

 $\mathsf{A}\Box\varphi$ "in all futures, always φ "

 $\mathsf{A} \bigcirc \varphi$ "in all futures, next time φ "

Example: \exists has Disease. Diabetes \sqsubseteq E \Diamond \exists has Disease. Glaucoma \Diamond

"A patient who has diabetes now may develop certain disorders in the future"

TDLs: syntax

TDLs are ... modal description logics

Components: DL of your choice + temporal operators, e.g.:

 $\mathsf{E} \diamondsuit \varphi$ "in some future, eventually φ "

 $\mathsf{A}\Box\varphi$ "in all futures, always φ "

 $\mathsf{A} \bigcirc \varphi$ "in all futures, next time φ "

Example: \exists has Disease. Diabetes \sqsubseteq E \Diamond \exists has Disease. Glaucoma

Design choice #1: Temporal operators from . . .

✓ CTL

→ B-TDLs

LTL → L-TDLs (quite well-understood)

. . .

TDLs: syntax

TDLs are ... modal description logics

Components: DL of your choice + temporal operators, e.g.:

 $\mathsf{E} \diamondsuit \varphi \qquad \text{``in some future, eventually } \varphi \text{''}$

 $\mathsf{A}\Box\varphi$ "in all futures, always φ "

 $\mathsf{A} \bigcirc \varphi$ "in all futures, next time φ "

Example: \exists has Disease. Diabetes \sqsubseteq E \Diamond \exists has Disease. Glaucoma

Design choice #2: Scope of temporal operators

✓ Temporal concepts

Temporal roles

combination tends to be hard

Temporal axioms

B-TDLs: semantics

Temporal dimension: worlds + tree-shaped "future" relation DL dimension: one full DL interpretation per world

Semantic design choices

Design choice #3: Relation between DL domains

Constant domains ✓

Alternative choices: expanding or decreasing domains

Semantic design choices

Design choice #4: Rigid vs. flexible roles

Rigid role r, flexible role s

We allow both. 🗸

Semantic design choices

Design choice #4: Rigid vs. flexible roles

Rigid role r, flexible role s

We allow both. 🗸

Semantic design choices

Design choice #4: Rigid vs. flexible roles

Rigid role r, flexible role s

We allow both. 🗸

TDLs with rigid roles are usually harder

Semantic design choices

Design choice #4: Rigid vs. flexible roles

Rigid role r, flexible role s

We allow both. 🗸

B-TDLs haven't been studied with rigid roles!

Branching-time TDLs: a marriage proposal

We study: CTL (fragments) \times \mathcal{ALC} , \mathcal{EL} , DL-Lite_{bool} with

- Global TBoxes
- Temporal operators on concepts only
- Rigid roles
- Constant domains

(Un-)decidability and complexity of satisfiability and subsumption

Main motivation:

- B-TDLs with rigid roles: new
- Hope for happy marriages in contrast to L-TDLs:

LTL $\times \mathcal{EL}$ is undecidable (non-convex)

[Artale et al. 2007]

Up and down between despair and hope

- $\textbf{ 1} \textbf{ Undecidability of CTL} \times \mathcal{ALC}$
- 2 Lightweight DLs to the rescue
- 3 Undecidability of non-convex CTL \times \mathcal{EL} fragments
- 4 Convex fragments of CTL \times \mathcal{EL}
- 5 Lower bounds for convex fragments
- \bigcirc Decidability for fragments of CTL \times DL-Lite_{bool}
- Outlook

Despair . . .

- ① Undecidability of CTL \times \mathcal{ALC}
- 2 Lightweight DLs to the rescue
- 3 Undecidability of non-convex CTL \times \$\mathcal{E}{L}\$ fragments
- 4 Convex fragments of CTL imes \mathcal{EL}
- 5 Lower bounds for convex fragments
- 6 Decidability for fragments of CTL \times DL-Lite_{bool}
- Outlook

A prototype of a failed marriage

Theorem (bad news, but expected)

Satisfiab. for CTL(E \diamondsuit , A \square) \times \mathcal{ALC} with 1 rigid role is undecidable.

Proof sketch.

- Use results for transitive product modal logics [Gabelaia et al.'05]
- Encode transitivity in TBox

Technique by [Tobies 2001]

Implications on a range of product MLs (global consequence, one transitive component)

Hope ...

- 2 Lightweight DLs to the rescue
- 3 Undecidability of non-convex CTL \times \$\mathcal{E}{L}\$ fragments
- 4 Convex fragments of CTL \times \mathcal{EL}
- 5 Lower bounds for convex fragments
- \bigcirc Decidability for fragments of CTL \times DL-Lite_{boo}
- Outlook

Saving the marriage by having children

Resort: study "lightweight" fragments

- $CTL(\cdot) \times \mathcal{EL}$
- CTL(⋅) × DL-Lite_{bool}

Observation: CTL(\cdot) \times \mathcal{EL} syntax has no disjunction

$$C ::= A \mid C \sqcap C \mid \exists r.C \mid E \Diamond C \mid A \Diamond C \mid E \sqcap C \mid \dots$$

Still, some temporal operators can express disjunction, e.g.:

$$E \diamondsuit A \quad \Box \quad A \sqcup E \bigcirc E \diamondsuit A$$

 \rightarrow CTL(E \bigcirc , E \diamondsuit) \times \mathcal{EL} and others are **non-convex**

Despair . . .

- ① Undecidability of CTL \times ALC
- 2 Lightweight DLs to the rescue
- 3 Undecidability of non-convex CTL \times \mathcal{EL} fragments
- 4 Convex fragments of CTL \times \mathcal{EL}
- 5 Lower bounds for convex fragments
- 6 Decidability for fragments of CTL \times DL-Lite_{bool}
- Outlook

ntroduction Despair Hope Despair Hope Despair Hope Outlook

More failed marriage proposals

Theorem (bad news, again expected)

Subsumption is undecidable for

- CTL(E \bigcirc , E \diamondsuit) \times \mathcal{EL}
- CTL(E \diamondsuit , A \diamondsuit) \times \mathcal{EL}
- CTL(E \diamondsuit , E \square) \times \mathcal{EL}
- $CTL(EU) \times EL$

Proof sketch.

Use non-convexity witnesses to embed CTL(E \diamondsuit , A \square) × \mathcal{ALC} into CTL(\cdot) × \mathcal{EL}

(Technique by Artale et al. for LTL $\times \mathcal{EL}$)

[Artale et al. 2007]

Hope ...

- ① Undecidability of CTL \times \mathcal{ALC}
- 2 Lightweight DLs to the rescue
- 3 Undecidability of non-convex CTL \times \mathcal{EL} fragments
- 4 Convex fragments of CTL \times \mathcal{EL}
- 5 Lower bounds for convex fragments
- \bigcirc Decidability for fragments of CTL \times DL-Lite_{bool}
- Outlook

Candidates for a successful marriage

Consider operators $E \bigcirc E \diamondsuit E \diamondsuit, A \square$

Theorem (good news)

The following B-TDLs are convex.

$$CTL(EO) \times \mathcal{EL}$$

$$CTL(E\diamondsuit) \times \mathcal{EL}$$

$$CTL(E\diamondsuit, A\Box) \times \mathcal{EL}$$

Proof sketch.

The following are preserved under direct products of models

- FO-translation of CTL(\cdot) × \mathcal{EL} -TBoxes
- FO-axiomatization of rigid roles

Despair . . .

- 1 Undecidability of CTL \times ALC
- 2 Lightweight DLs to the rescue
- 3 Undecidability of non-convex CTL \times \$\mathcal{E}{L}\$ fragments
- 4 Convex fragments of CTL \times \mathcal{EL}
- 5 Lower bounds for convex fragments
- 6 Decidability for fragments of CTL \times DL-Lite_{bool}
- Outlook

Big, sad theorem

Theorem

Subsumption for ...

- **1** CTL(E \bigcirc) \times \mathcal{EL} is undecidable.
- \bigcirc CTL(E \diamondsuit) \times \mathcal{EL} is inherently nonelementary. (Upper bound?)
- → Failed marriage despite all efforts (positive exist. fragment, convexity)

Proof sketch.

- For undecidability of CTL(E○) × EL: reduce from halting problem of 2-counter automata [Minsky '67] (Refers to direct temporal successors)
- **②** For nonelementary lower bound of $CTL(E\diamondsuit) \times \mathcal{EL}$: encode k-exponential counters, [Stockmeyer, '74] reduce from word problem for k-ExpSpace Turing machines

Encoding 2-counter automata

- States q_0, \ldots, q_n
- Counters c_1, c_2 (values $\in \mathbb{N}$)
- Instructions (deterministic)

$$q_i o \operatorname{inc}(c_j); q_k$$
 or $q_i o \operatorname{if} c_j = 0$ then q_k else $\operatorname{dec}(c_j); q_\ell$

- Configurations $\langle q_i, c_1, c_2 \rangle$
- Halting problem: can M reach q_n from $\langle q_0, 0, 0 \rangle$?

Encoding 2-counter automata

lacktriangle Generate all sequences of states in \mathcal{EL}

Computations start at S and run backwards

② Check if one sequence is halting in the root Encode counter values along temporal dimension (in unary) Use E○ to increment and decrement

Hope ...

- 1 Undecidability of CTL \times ALC
- 2 Lightweight DLs to the rescue
- 3 Undecidability of non-convex CTL \times \mathcal{EL} fragments
- 4 Convex fragments of CTL imes \mathcal{EL}
- 5 Lower bounds for convex fragments
- \odot Decidability for fragments of CTL \times DL-Lite_{bool}
- Outlook

A prototype of a successful marriage

Theorem

Satisfiability for ...

- CTL \times DL-Lite_{bool} with *only* rigid roles and CTL(E \mathcal{U} , E \square) \times DL-Lite_{bool} is ExpTIME-complete.
- ② CTL(E♦) \times DL-Lite_{bool} is PSPACE-complete.

(same complexity as the participating CTL fragments) [Meier et al. 2009]

Technique used

[Artale et al. 2012] for LTL \times DL-Lite_{bool}

- Encode TBox and rigidity in 1-var. first-order TL
- ② Eliminate ∃ quantifiers (using temporal unraveling new!)
- Instantiate ∀ quantifiers with all constants
- → Poly-time reduction to the participating CTL fragment

Some more hope . . .

- 1 Undecidability of CTL \times ALC
- 2 Lightweight DLs to the rescue
- 3 Undecidability of non-convex CTL \times \$\mathcal{E}{L}\$ fragments
- 4 Convex fragments of CTL \times \mathcal{EL}
- 5 Lower bounds for convex fragments
- \bigcirc Decidability for fragments of CTL imes DL-Lite_{bool}
- Outlook

Some more hope . . .

For \mathcal{EL}

Further taming seems fit

We're working on acyclic/cyclic terminologies

For DL-Lite_{bool}

- Further restrictions: e.g., DL-Lite_{core} etc.
- More general result using automata-theoretic techniques

Ambitious ...

- Expanding domains?
- Are there successful marriages with temporal roles?

Thank you.

