Lightweight Description Logics & Branching Time: A Troublesome Marriage Víctor Gutiérrez-Basulto Jean Christoph Jung Thomas Schneider Dept of Mathematics and Computer Science, University of Bremen, Germany KR 22 July 2014 ## Description logics are inherently atemporal ``` DIs are... ``` ... good at expressing static domain knowledge: Diabetes \equiv MetabolicDisorder $\sqcap \exists$ hasFinding.Pancreas ... bad at expressing temporal knowledge: "A patient who has diabetes **now** may develop certain disorders **in the future**" \exists has Disease. Diabetes \sqsubseteq \exists may Develop. Glaucoma ## Temporal extensions of DLs **Applications:** KR and reasoning over temporal conceptual data models (EER, UML + temporal constraints) ... in the medical domain #### Approach Extend DLs with point-based temporal operators [Schild 1993] → Temporal description logics (TDLs) Complexity results for satisfiability/subsumption (selection) • ALC + LTL operators: EXPTIME . . . undecidable • DL-Lite + LTL: NP ... undecidable • \mathcal{ALC} or $\mathcal{EL} + \mathsf{CTL}^{(*)}$: PTIME ... 3EXPTIME W $[\text{Artale et al. } 2002/03/12, \ \text{Baader et al. } 2008, \ \text{Guti\'errez-Basulto et al. } 2012]$ ## TDLs: syntax TDLs are ... modal description logics **Components**: DL of your choice + temporal operators, e.g.: $\mathsf{E} \diamond \varphi$ "in some future, eventually φ " $\mathsf{A}\Box\varphi$ "in all futures, always φ " $\mathsf{A} \bigcirc \varphi$ "in all futures, next time φ " Example: \exists has Disease. Diabetes \sqsubseteq E \Diamond \exists has Disease. Glaucoma \Diamond "A patient who has diabetes now may develop certain disorders in the future" ## TDLs: syntax TDLs are ... modal description logics **Components**: DL of your choice + temporal operators, e.g.: $\mathsf{E} \diamondsuit \varphi$ "in some future, eventually φ " $\mathsf{A}\Box\varphi$ "in all futures, always φ " $\mathsf{A} \bigcirc \varphi$ "in all futures, next time φ " **Example:** \exists has Disease. Diabetes \sqsubseteq E \Diamond \exists has Disease. Glaucoma Design choice #1: Temporal operators from . . . ✓ CTL → B-TDLs LTL → L-TDLs (quite well-understood) . . . ## TDLs: syntax TDLs are ... modal description logics Components: DL of your choice + temporal operators, e.g.: $\mathsf{E} \diamondsuit \varphi \qquad \text{``in some future, eventually } \varphi \text{''}$ $\mathsf{A}\Box\varphi$ "in all futures, always φ " $\mathsf{A} \bigcirc \varphi$ "in all futures, next time φ " **Example:** \exists has Disease. Diabetes \sqsubseteq E \Diamond \exists has Disease. Glaucoma Design choice #2: Scope of temporal operators ✓ Temporal concepts Temporal roles combination tends to be hard Temporal axioms #### B-TDLs: semantics Temporal dimension: worlds + tree-shaped "future" relation DL dimension: one full DL interpretation per world #### Semantic design choices #### Design choice #3: Relation between DL domains #### Constant domains ✓ Alternative choices: expanding or decreasing domains ## Semantic design choices #### Design choice #4: Rigid vs. flexible roles Rigid role r, flexible role s We allow both. 🗸 ## Semantic design choices #### Design choice #4: Rigid vs. flexible roles Rigid role r, flexible role s We allow both. 🗸 #### Semantic design choices #### Design choice #4: Rigid vs. flexible roles Rigid role r, flexible role s We allow both. 🗸 TDLs with rigid roles are usually harder #### Semantic design choices #### Design choice #4: Rigid vs. flexible roles Rigid role r, flexible role s We allow both. 🗸 #### B-TDLs haven't been studied with rigid roles! ## Branching-time TDLs: a marriage proposal We study: CTL (fragments) \times \mathcal{ALC} , \mathcal{EL} , DL-Lite_{bool} with - Global TBoxes - Temporal operators on concepts only - Rigid roles - Constant domains (Un-)decidability and complexity of satisfiability and subsumption #### Main motivation: - B-TDLs with rigid roles: new - Hope for happy marriages in contrast to L-TDLs: LTL $\times \mathcal{EL}$ is undecidable (non-convex) [Artale et al. 2007] ## Up and down between despair and hope - $\textbf{ 1} \textbf{ Undecidability of CTL} \times \mathcal{ALC}$ - 2 Lightweight DLs to the rescue - 3 Undecidability of non-convex CTL \times \mathcal{EL} fragments - 4 Convex fragments of CTL \times \mathcal{EL} - 5 Lower bounds for convex fragments - \bigcirc Decidability for fragments of CTL \times DL-Lite_{bool} - Outlook ## Despair . . . - ① Undecidability of CTL \times \mathcal{ALC} - 2 Lightweight DLs to the rescue - 3 Undecidability of non-convex CTL \times \$\mathcal{E}{L}\$ fragments - 4 Convex fragments of CTL imes \mathcal{EL} - 5 Lower bounds for convex fragments - 6 Decidability for fragments of CTL \times DL-Lite_{bool} - Outlook ## A prototype of a failed marriage #### Theorem (bad news, but expected) Satisfiab. for CTL(E \diamondsuit , A \square) \times \mathcal{ALC} with 1 rigid role is undecidable. #### Proof sketch. - Use results for transitive product modal logics [Gabelaia et al.'05] - Encode transitivity in TBox Technique by [Tobies 2001] Implications on a range of product MLs (global consequence, one transitive component) ## Hope ... - 2 Lightweight DLs to the rescue - 3 Undecidability of non-convex CTL \times \$\mathcal{E}{L}\$ fragments - 4 Convex fragments of CTL \times \mathcal{EL} - 5 Lower bounds for convex fragments - \bigcirc Decidability for fragments of CTL \times DL-Lite_{boo} - Outlook ## Saving the marriage by having children Resort: study "lightweight" fragments - $CTL(\cdot) \times \mathcal{EL}$ - CTL(⋅) × DL-Lite_{bool} Observation: CTL(\cdot) \times \mathcal{EL} syntax has no disjunction $$C ::= A \mid C \sqcap C \mid \exists r.C \mid E \Diamond C \mid A \Diamond C \mid E \sqcap C \mid \dots$$ Still, some temporal operators can express disjunction, e.g.: $$E \diamondsuit A \quad \Box \quad A \sqcup E \bigcirc E \diamondsuit A$$ \rightarrow CTL(E \bigcirc , E \diamondsuit) \times \mathcal{EL} and others are **non-convex** ## Despair . . . - ① Undecidability of CTL \times ALC - 2 Lightweight DLs to the rescue - 3 Undecidability of non-convex CTL \times \mathcal{EL} fragments - 4 Convex fragments of CTL \times \mathcal{EL} - 5 Lower bounds for convex fragments - 6 Decidability for fragments of CTL \times DL-Lite_{bool} - Outlook ntroduction Despair Hope Despair Hope Despair Hope Outlook ## More failed marriage proposals ## Theorem (bad news, again expected) Subsumption is undecidable for - CTL(E \bigcirc , E \diamondsuit) \times \mathcal{EL} - CTL(E \diamondsuit , A \diamondsuit) \times \mathcal{EL} - CTL(E \diamondsuit , E \square) \times \mathcal{EL} - $CTL(EU) \times EL$ #### Proof sketch. Use non-convexity witnesses to embed CTL(E \diamondsuit , A \square) × \mathcal{ALC} into CTL(\cdot) × \mathcal{EL} (Technique by Artale et al. for LTL $\times \mathcal{EL}$) [Artale et al. 2007] ## Hope ... - ① Undecidability of CTL \times \mathcal{ALC} - 2 Lightweight DLs to the rescue - 3 Undecidability of non-convex CTL \times \mathcal{EL} fragments - 4 Convex fragments of CTL \times \mathcal{EL} - 5 Lower bounds for convex fragments - \bigcirc Decidability for fragments of CTL \times DL-Lite_{bool} - Outlook ## Candidates for a successful marriage Consider operators $E \bigcirc E \diamondsuit E \diamondsuit, A \square$ #### Theorem (good news) The following B-TDLs are convex. $$CTL(EO) \times \mathcal{EL}$$ $$CTL(E\diamondsuit) \times \mathcal{EL}$$ $$CTL(E\diamondsuit, A\Box) \times \mathcal{EL}$$ #### Proof sketch. The following are preserved under direct products of models - FO-translation of CTL(\cdot) × \mathcal{EL} -TBoxes - FO-axiomatization of rigid roles #### Despair . . . - 1 Undecidability of CTL \times ALC - 2 Lightweight DLs to the rescue - 3 Undecidability of non-convex CTL \times \$\mathcal{E}{L}\$ fragments - 4 Convex fragments of CTL \times \mathcal{EL} - 5 Lower bounds for convex fragments - 6 Decidability for fragments of CTL \times DL-Lite_{bool} - Outlook ## Big, sad theorem #### **Theorem** Subsumption for ... - **1** CTL(E \bigcirc) \times \mathcal{EL} is undecidable. - \bigcirc CTL(E \diamondsuit) \times \mathcal{EL} is inherently nonelementary. (Upper bound?) - → Failed marriage despite all efforts (positive exist. fragment, convexity) #### Proof sketch. - For undecidability of CTL(E○) × EL: reduce from halting problem of 2-counter automata [Minsky '67] (Refers to direct temporal successors) - **②** For nonelementary lower bound of $CTL(E\diamondsuit) \times \mathcal{EL}$: encode k-exponential counters, [Stockmeyer, '74] reduce from word problem for k-ExpSpace Turing machines ## **Encoding 2-counter automata** - States q_0, \ldots, q_n - Counters c_1, c_2 (values $\in \mathbb{N}$) - Instructions (deterministic) $$q_i o \operatorname{inc}(c_j); q_k$$ or $q_i o \operatorname{if} c_j = 0$ then q_k else $\operatorname{dec}(c_j); q_\ell$ - Configurations $\langle q_i, c_1, c_2 \rangle$ - Halting problem: can M reach q_n from $\langle q_0, 0, 0 \rangle$? #### **Encoding 2-counter automata** lacktriangle Generate all sequences of states in \mathcal{EL} Computations start at S and run backwards ② Check if one sequence is halting in the root Encode counter values along temporal dimension (in unary) Use E○ to increment and decrement ## Hope ... - 1 Undecidability of CTL \times ALC - 2 Lightweight DLs to the rescue - 3 Undecidability of non-convex CTL \times \mathcal{EL} fragments - 4 Convex fragments of CTL imes \mathcal{EL} - 5 Lower bounds for convex fragments - \odot Decidability for fragments of CTL \times DL-Lite_{bool} - Outlook ## A prototype of a successful marriage #### **Theorem** Satisfiability for ... - CTL \times DL-Lite_{bool} with *only* rigid roles and CTL(E \mathcal{U} , E \square) \times DL-Lite_{bool} is ExpTIME-complete. - ② CTL(E♦) \times DL-Lite_{bool} is PSPACE-complete. (same complexity as the participating CTL fragments) [Meier et al. 2009] #### Technique used [Artale et al. 2012] for LTL \times DL-Lite_{bool} - Encode TBox and rigidity in 1-var. first-order TL - ② Eliminate ∃ quantifiers (using temporal unraveling new!) - Instantiate ∀ quantifiers with all constants - → Poly-time reduction to the participating CTL fragment ## Some more hope . . . - 1 Undecidability of CTL \times ALC - 2 Lightweight DLs to the rescue - 3 Undecidability of non-convex CTL \times \$\mathcal{E}{L}\$ fragments - 4 Convex fragments of CTL \times \mathcal{EL} - 5 Lower bounds for convex fragments - \bigcirc Decidability for fragments of CTL imes DL-Lite_{bool} - Outlook ## Some more hope . . . #### For \mathcal{EL} Further taming seems fit We're working on acyclic/cyclic terminologies #### For DL-Lite_{bool} - Further restrictions: e.g., DL-Lite_{core} etc. - More general result using automata-theoretic techniques #### Ambitious ... - Expanding domains? - Are there successful marriages with temporal roles? ## Thank you.