

Ontology Partitioning Using \mathcal{E} -Connections

Revisited

Sascha Jongebloed and Thomas Schneider

University of Bremen

DL 2018

Tempe, AZ, USA

Oct 28

Introduction

Modularity

Large ontologies with 100,000s of axioms

e.g. S

SNOMED CT

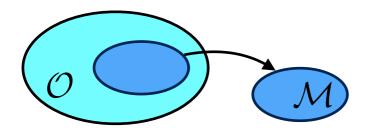
The global language of language

Challenges

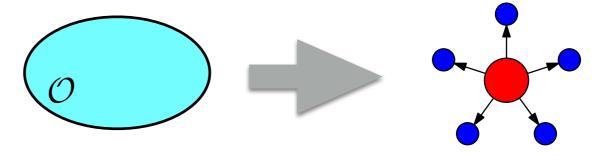
- Loading, navigation
- Understanding the logical structure (comprehension)
- Efficient automated reasoning
- Efficient re-use
- Versioning and more ...

Modularity helps:

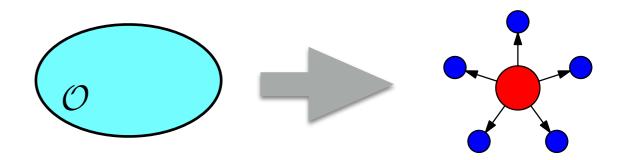
Module extraction and



Decomposition



Decomposition



Existing approaches

- Signature splitting [Parikh '99]
- Signature Δ-decomposition [Konev et al. '10]
- Partitions based on \mathcal{E} -connections [Cuenca Grau et al. '06]
 - Atomic decomposition [Del Vescovo et al. '11]
 - Structure-based partitioning
 [Stuckenschmidt & Klein '04, Amato et al. '15]

\mathcal{E} -Partitions in a Nutshell

Aim: Automatic and efficient partitioning of an ontology; parts are connected via "semantic links" in the style of \mathcal{E} -connections

```
\mathcal{E}-connections ... [Kutz et al. 2004]
```

- combine (heterogeneous) logical theories via link relations
- semantics via partitioned interpretations

An *E*-partition of an ontology \mathcal{O} ... [Cuenca Grau et al. 2006]

- is the unique maximal \mathcal{E} -connection equivalent to \mathcal{O} (with link relations from \mathcal{O} 's role names)
- can be computed in polytime for \mathcal{O} in DLs up to $\mathcal{SHOIQ}(\mathcal{D})$
- its components are logically encapsulating

e.g.:

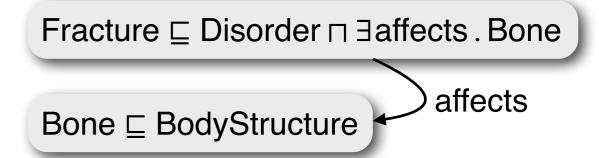
Fracture

□ Disorder

□ ∃affects . Bone

Bone

□ BodyStructure



Our Aims

Where we started

Understand algorithm?

Fix bugs in original implementation?

Where we got

- found a simpler algorithm that runs in linear time
- simplified notation and proofs
- extended the approach to (almost) OWL
- identified potential for extension beyond OWL and limits

Work in progress!

 \mathcal{E} -Connections and

 \mathcal{E} -Partitions for OWL

Indexing the Vocabulary

Let S be an arbitrary index set.

Index function ι

- (concept names) $A \mapsto \operatorname{index} \iota(A) \in S$ (role names) $r \mapsto \operatorname{pair}$ of indices $\iota(r)$
- is extended to complex concepts:

e.g.,
$$\iota(\exists r.D) = i$$
 if $\iota(r) = (i,j)$ and $\iota(D) = j$ (and many more cases) $\exists r.D$ is ι -wellformed

is extended to axioms:

e.g.,
$$\iota(C \sqsubseteq D) = i$$
 if $\iota(C) = \iota(D) = i$

and thus determines a partitioning of ontologies

Two views on an ontology:

- as a monolithic ontology
- as a ι -ontology an \mathcal{E} -connection!

Semantics of \mathcal{E} -Connections

i-interpretations

- Domain $\Delta^{\mathcal{I}}$ is partitioned into $(\Delta_i^{\mathcal{I}})_{i \in S}$
- Concept names A with $\iota(A)=i$ are interpreted within $\Delta_i^{\mathcal{I}}$, analogously for role names
- Extension to complex concepts as usual except negation: $(\neg C)^{\mathcal{I},\iota} = \Delta^{\mathcal{I}}_{\underline{\iota(C)}} \setminus C^{\mathcal{I},\iota}$

Two views on semantics:

- Standard semantics, denoted $\mathcal{I} \models \mathcal{O}$
- Semantics w.r.t. indexing ι , denoted $\mathcal{I} \models^{\iota} \mathcal{O}$

Compatibility and Equivalence

Let \mathcal{O} be an ontology and $\mathbb{O} = (\mathcal{O}_i)_{i \in S}$ a ι -ontology.

Important relationships between \mathcal{O} and \mathbb{O} :

- \mathcal{O} and \mathbb{O} are compatible, written $\mathcal{O} \sim \mathbb{O}$, if $\mathcal{O} = \biguplus_{i \in S} \mathcal{O}_i$.
- \mathcal{O} and \mathbb{O} are equivalent, written $\mathcal{O} \equiv \mathbb{O}$, if for all ι -interpret. \mathcal{I} :

$$\mathcal{I} \models \mathcal{O} \quad \mathsf{iff} \quad \mathcal{I} \models^{\iota} \mathbb{O}$$

Apparently, compatibility and equivalence do **not** imply each other!

Domain-Independence

Well-known notion from database theory relates compatibility & equivalence:

 \mathcal{O} is domain-independent (DI)

if for all interpretations \mathcal{I}, \mathcal{J} with $X^{\mathcal{I}} = X^{\mathcal{J}}$ for all terms X:

$$\mathcal{I} \models \mathcal{O}$$
 iff $\mathcal{J} \models \mathcal{O}$

Nice characterization of all DI concepts [Cuenca Grau et al. 2006] allows to check DI in linear time; additionally gives:

If C is not DI and \mathcal{I}, \mathcal{J} are as above with $\Delta^{\mathcal{I}} = \Delta^{\mathcal{I}} \uplus S$, then $C^{\mathcal{I}} = C^{\mathcal{I}} \cup S$.

Holds for all of OWL except the universal role.

Domain-Independence

Previous characterization is crucial in the proof of the following:

Theorem.

- 1. If \mathcal{O} is DI and $\mathcal{O} \sim \mathbb{O}$, then $\mathcal{O} \approx \mathbb{O}$.
- 2. If additionally \mathcal{O} is consistent, then so is \mathbb{O} .

Consequence

For DI ontologies, it suffices to compute the minimal compatible E-connection.

ightharpoonup From now on, we assume that the input ontology \mathcal{O} is DI.

The New Partitioning Algorithm and First Tests

A Simple Algorithm

Idea:

For input ontology \mathcal{O} ,

find index set S of maximal cardinality and index function ι such that all concepts and axioms in \mathcal{O} are ι -wellformed

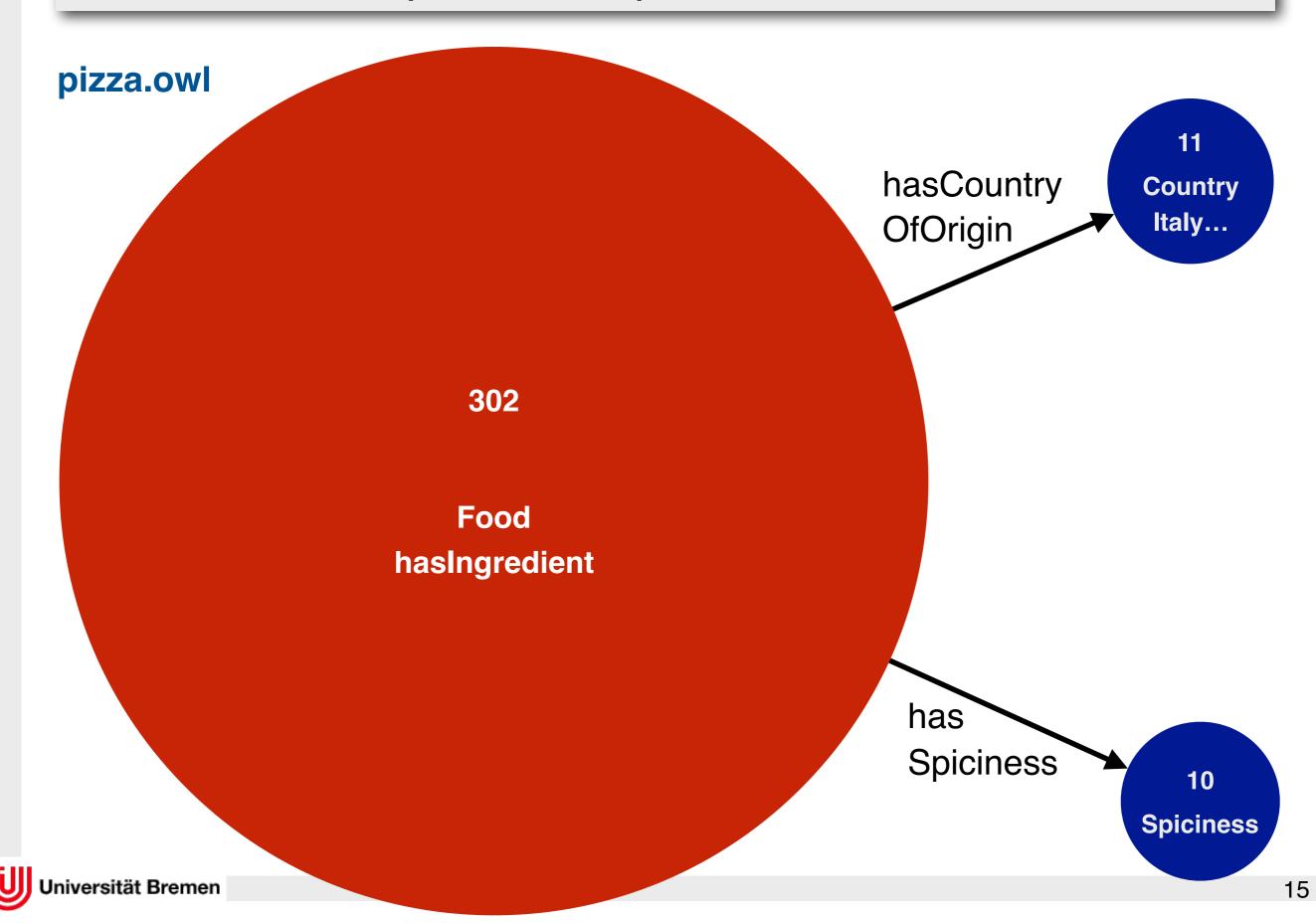
The Algorithm:

- 1. Collect wellformedness constraints in an undirected graph *G*
 - nodes: one per (complex) concept, 2 per role name
 - edges = constraints
- 2. G's connected components induce S, ι , \mathbb{O}

Both steps easy to implement in linear time.

Correctness and maximality are straightforward to show: algo mimics wellformedness definition!

Example Decomposition: Pizza Ont.



Example Decomposition: PTO

Periodic Table Ontology by Robert Stevens

40267

DomainEntity

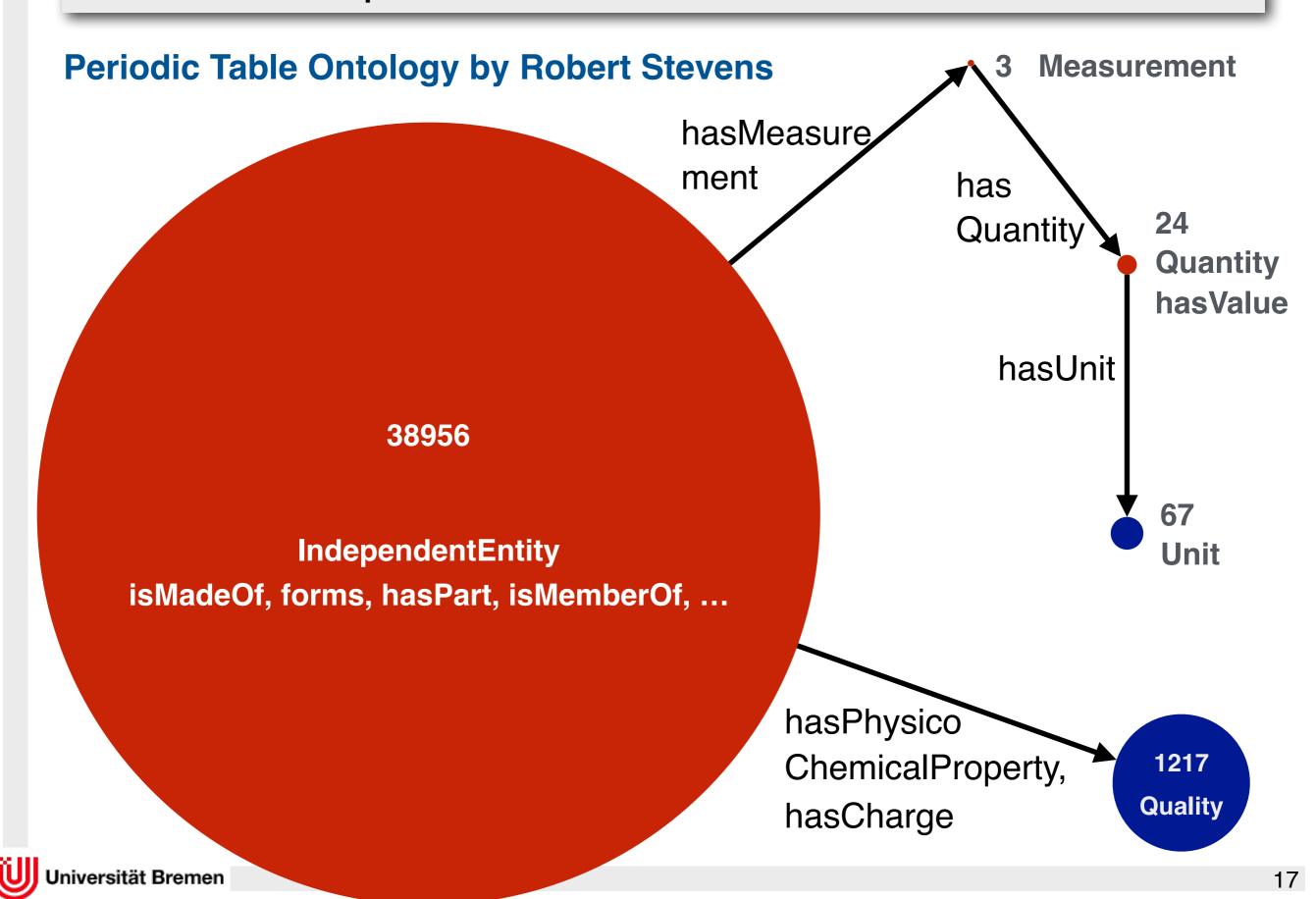
Top-level concepts forbid decomposition

Heuristics:

delete top *n* levels

Alternatively, delete upper-level concepts

Decomposition: PTO with 3 levels removed



Outlook

Outlook

Coming soon:

- Systematic evaluation
- Heuristics for ontologies that don't decompose well
- Extensions: TGDs, UNFO?

The End

Questions?

¿Preguntas?

Fragen?

Vragen?

Thank you.

Pytania?

Kysymyksiä?

Vrae?

Ερωτήσεις;

Întrebări?

Вопросы?

Questões?