Modularity in Ontologies:
Locality-based modules

Thomas Schneider® Dirk Walther?

IDepartment of Computer Science, University of Bremen, Germany

2Faculty of Informatics, Technical University of Madrid, Spain

ESSLLI, 3 August 2011

Thomas Schneider, Dirk Walther Modularity: Locality-based modules

ye

Plan for today

Yesterday, we discussed inseparability relations and their properties:

@ inseparability = same functionality w.r.t. interface
= same answers to queries

e decidability/complexity

@ robustness under vocabulary extensions, joins, replacement

Today, we'll look a bit closer on how to use these insights to help
ontology engineers re-use ontologies

@ in a controlled way

e without (unwanted) side-effects

Thanks: partly based on slides by Uli Sattler.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 2

Motivation Guarantees Safety, modules

Plan for today

@ Motivation: Modular reuse of ontologies
© Logical guarantees in detail

© Efficient safety test and module extraction

@ Summary

Thomas Schneider, Dirk Walther Modularity: Locality-based modules

Summary

Motivation Guarantees Safety, modules Summary

@ Motivation: Modular reuse of ontologies
© Logical guarantees in detail

© Efficient safety test and module extraction

e Summary

Motivation

Remember: an import/reuse scenario

“Borrow” knowledge from external ontologies

iy

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules

(WK

Motivation

A real example

@ Build an ontology JRAO that describes JRA
JRA = Juvenile Rheumatoid Arthritis

@ Describe JRA subkinds by

e Joints affected
o Occurrence of concomitant symptoms, e.g., fever
e Treatment with certain drugs

@ Re-use information provided by biomedical ontologies

e NCI: diseases, drugs, proteins etc.
e Galen: human anatomy

Thomas Schneider, Dirk Walther Modularity: Locality-based modules

Wie

Motivation

A real example

Autoimmune Rheumatologic
Disease Disorder

(Atrophic Arthritis) (Polyarthritis) (Rheumatoid Arthritis)

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

NCI

Thomas Schneider, Dirk Walther Modularity: Locality-based modules

Motivation

Why reuse an ontology?

@ Saves time and effort
@ Provides access to well-established knowledge and terminology

@ Doesn't require expertise in drugs, proteins, anatomy etc.

~> A tool supporting reuse should guarantee:

@ reusing imported terms doesn't change their meaning Safety

@ all relevant parts of external ont.s are imported Coverage
in addition, import only relevant parts (Economy)
@ the order of imports doesn't matter Independence

Does this sound like inseparability?
Y

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 8

Motivation Guarantees Safety, modules Summary

Guarantees by example

Concerns the usage of (imported) terms in the importing ontology:

Let JRA, GeneticDisorder € sig(NCI).

JRAO U NCI |= JRA C GeneticDisorder
iff
NCI |= JRA C GeneticDisorder

Wae

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 9

Motivation Guarantees Safety, modules Summary

Guarantees by example

Concerns what we would consider a module:

JRAO U NCI = JRA C GeneticDisorder
iff
JRAO U NCI-module |= JRA C GeneticDisorder

Yn

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 9

Motivation Guarantees Safety, modules Summary

Guarantees by example

If JRAO is safe for Galen and for NCI, then
JRAO U NCI-module is still safe for Galen and
JRAO U Galen-module is still safe for NCI.

Yn

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 9

Motivation Guarantees Safety, modules Summary

@ Motivation: Modular reuse of ontologies
© Logical guarantees in detail

© Efficient safety test and module extraction

e Summary

Motivation Guarantees Safety, modules Summary

Safety guarantee in detail

O; imports O, in an L-safe way (or O; is safe for Oy w.r.t. £)

if 01U 02 =f, ,) O2-

Intuition: O1 U O3 doesn’t change the meaning of O,-terms.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 11

Guarantees

Safety guarantee in detail

Safety for an ontology
O imports O, in an L-safe way (or O; is safe for O, w.r.t. £)

if 01U 02 =5, 0, O2-

Intuition: Q1 U Oy doesn't change the meaning of O,-terms.

Problems
@ Which L to choose?

o for ontology design: subsumptions betw. (complex?) concepts
e for ontology usage: my favourite query language

e We might not have control over Oy and sig(O3)

O, = NCI might change over time, we want latest version
Y

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 11

Guarantees

Safety guarantee in detail

Safety for an ontology
O imports O, in an L-safe way (or O; is safe for O, w.r.t. £)

if 01U 02 =5, 0,) O2-

Intuition: Q1 U Oy doesn't change the meaning of O,-terms.

Problems
@ Which L to choose?

o for ontology design: subsumptions betw. (complex?) concepts
e for ontology usage: my favourite query language

e We might not have control over Oy and sig(O3)

O, = NCI might change over time, we want latest version

Solution: Safety for a signature! @J) B

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 11

Motivation Guarantees Safety, modules Summary

Safety for a signature

O, is safe for ~ w.r.t. L if,

for every L-ontology O, with sig(O1) Nsig(O2) C X,
01U Oy E§ Os.

OF)

 Thomas Schneider, Dirk Walther | Modularity: Locality-based modules i

Motivation Guarantees Safety, modules Summary

Safety for a signature

O, is safe for ~ w.r.t. L if,

for every L-ontology O, with sig(O1) Nsig(O2) C X,
01U Oy E§ Os.

O If O1 is a model ¥-conservative extension of @ (07 =3° 0),
then O is safe for ¥ w.r.t. any £ < SO.

@ Let £ be robust under replacements.
Then O is safe for = w.r.t. £ iff O; =£ 0.

OF)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 12

Motivation Guarantees Safety, modules Summary

Safety for a signature

O, is safe for ~ w.r.t. L if,

for every L-ontology O, with sig(O1) Nsig(O2) C X,
01U Oy Eg Os.

O If O1 is a model ¥-conservative extension of @ (07 =3° 0),
then O is safe for ¥ w.r.t. any £ < SO.

@ Let £ be robust under replacements.
Then O is safe for = w.r.t. £ iff O; =£ 0.

Bad news: robustness under replacements fails easily . ..

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 12

Guarantees

When robustness under replacements fails

Take ontology language ALC and £ = “ALC-concept inclusions”.
Consider 01 = {A C 3r.B} and X = {A, B}.

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 13

Guarantees

When robustness under replacements fails

Take ontology language ALC and £ = “ALC-concept inclusions”.
Consider 01 = {A C 3r.B} and X = {A, B}.

o 05 =4LC g
o butifwetake O, ={A=T, B= 1},

then O; U0, ETC L,
while O, £ T C L.

@ Hence, O1 U O, %éﬁc Os.

@ Hence, O; is not safe for 2.

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 13

Guarantees

When robustness under replacements fails

Take ontology language ALC and £ = “ALC-concept inclusions”.
Consider 01 = {A C 3r.B} and X = {A, B}.

o 05 =4LC g
o butifwetake O, ={A=T, B= 1},

then O; U O, IZT C 1,
while O, £ T C L.

@ Hence, O1 U O, %éﬁc Os.

@ Hence, O; is not safe for 2.

(This problem can be resolved by extending L to
“Boolean conjunctions of ALC-concept inclusions”.)

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 13

Motivation Guarantees Safety, modules Summary

Coverage guarantee in detail

M C O, is a module for O1 in Oy w.r.t. L if

01 U Oy Eﬁg(ol) O U M.

OF)

 Thomas Schneider, Dirk Walther | Modularity: Locality-based modules i

Guarantees

Coverage guarantee in detail

Module for an ontology
M C O, is a module for O1 in Oy w.r.t. L if

Problems
@ Which L to choose?

o for ontology design: subsumptions betw. (complex?) concepts
o for ontology usage: my favourite query language

@ The module shouldn't depend on the importing ontology,
but only on the signature we want to use.

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 14

Guarantees

Coverage guarantee in detail

Module for an ontology
M C O, is a module for O1 in Oy w.r.t. L if

Problems
@ Which L to choose?

o for ontology design: subsumptions betw. (complex?) concepts
o for ontology usage: my favourite query language

@ The module shouldn't depend on the importing ontology,
but only on the signature we want to use.

Solution: Module for a signature!

~~ interoperability of M @) 8

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 14

Motivation Guarantees Safety, modules Summary

Module for a signature

M C O, is a module for X in O, w.r.t. £ if,

for every L-ontology O; with sig(O1) Nsig(O2) C X,
01U Oy Eﬁg((%) O1 U M.

OF)

 Thomas Schneider, Dirk Walther | Modularity: Locality-based modules i

Motivation Guarantees Safety, modules Summary

Module for a signature

M C O, is a module for X in O, w.r.t. L if,

for every L- ontology O1 with sig(01) Nsig(02) C X,
O1U0O; = sng(O) O1 U M.

Q If M C Oy and O, is a model T-ce. of M (02 =3° M),
then M is a module for X in Os w.r.t. any £ < SO

@ Let L be robust under replacements.

Then M C 05 is a module for ¥ in Oy w.r.t. L
iff O \ M =£ 0.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 15

Guarantees

Modules and Safety are closely related

The following is immediate from the previous definitions.
Homework: Prove.

Let O1, M C O, be ontologies in £ and ¥ a signature. Then

Q@ O issafe for X w.r.t. £ iff 0is a X-module in O7 w.r.t. £

O, constrains interpretation of terms in ¥ as much as)

ye

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 16

Guarantees

Modules and Safety are closely related

The following is immediate from the previous definitions.
Homework: Prove.

Let O1, M C O, be ontologies in £ and ¥ a signature. Then

Q@ O issafe for X w.r.t. £ iff 0is a X-module in O7 w.r.t. £

O, constrains interpretation of terms in ¥ as much as)

Q If Oy \ M is safe for ¥ U sig(M) w.r.t. L,
then M is a X-module in O w.r.t. £
O, \ M doesn't constrain interpretation of terms from ¥ U sig(M)

ye

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 16

Motivation Guarantees Safety, modules Summary

Independence Guarantee in Detail

Basic requirement for importing ontologies independently.

Safety is preserved under imports:

If Oy is safe for ¥; (O;), then O1 U O; is still safe for ¥; (O;).

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 17

Guarantees

Independence Guarantee in Detail

Basic requirement for importing ontologies independently.

Independence
Safety is preserved under imports:

If Oy is safe for X; (O;), then O1 U O is still safe for X; (O;).

Independence is difficult to guarantee ...

@ when the X; share terms:
e.g., O1 = {ALC T} is safe for ¥ = {A, B},
but O; U {A C B} is not safe for X

@ when the ¥; don't share terms:
e.g., O1 = {AC B} is safe for ¥ = {A} and X3 = {B},
but O1 U {B = L} is not safe for ¥
and O1 U {A = T} is not safe for X3 (WK

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 17

Guarantees

Problems to solve for supporting Ontology Engineering

Given “our” ontology O
and ontologies O; from which we want to reuse terms ¥;,

@ make sure that O; is safe for ¥;

@ determine modules for ¥; from O; ~» but which?
(a) Did engineer “forget something” when specifying X;?
(b) Should modules be as small as possible?

(c) Even minimal modules are not unique (see next slide)
~> which one to use?

© add modules M; to O,
(a) static/call-by-value: determine and add M;
(b) dynamic/call-by-name: always use “freshest” M; ~» how?
(We need to provide mechanisms/syntax for this.)

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 18

Guarantees

Example

Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint I JhasPart.Patella M (1)
TJhasFunct.Hinge
Patella C Bone M Sesamoid (2)
Ginglymus = Joint M JhasFunct.Hinge 3)
Joint M JhasPart.(BoneMSesamoid) C Ginglymus (4)
Ginglymus = HingeJoint (5)
Meniscus = FibroCartilage M SlocatedIn.Knee (6)

C-Minimal module for X7

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 19

Guarantees

Example
Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint M JhasPart.Patella M
TJhasFunct.Hinge
Patella C Bone M Sesamoid

Joint M JhasPart.(BoneMSesamoid) C Ginglymus
Ginglymus = HingeJoint

C-Minimal module for £ 7 {(1),(2),(4),(5)}

Thomas Schneider, Dirk Walther Modularity: Locality-based modules

Wie

19

Guarantees

Example
Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint M JhasPart.Patella M
TJhasFunct.Hinge

Ginglymus = Joint M JhasFunct.Hinge

Ginglymus = HingeJoint

(3)

()

C-Minimal module for 7 {(1),(3),(5)}

Thomas Schneider, Dirk Walther Modularity: Locality-based modules

ye

19

Guarantees

Example

Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint I JhasPart.Patella M (1)
TJhasFunct.Hinge
Patella C Bone M Sesamoid (2)
Ginglymus = Joint M JhasFunct.Hinge 3)
Joint M JhasPart.(BoneMSesamoid) C Ginglymus (4)
Ginglymus = HingeJoint (5)
Meniscus = FibroCartilage M SlocatedIn.Knee (6)

C-Minimal module for X7 {(1), (2),(4),(5)} and {(1),(3),(5)}

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 19

Guarantees

Example

Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint I JhasPart.Patella M (1)
TJhasFunct.Hinge
Patella C Bone M Sesamoid (2)
Ginglymus = Joint M JhasFunct.Hinge 3)
Joint M JhasPart.(BoneMSesamoid) C Ginglymus (4)
Ginglymus = HingeJoint (5)
Meniscus = FibroCartilage M SlocatedIn.Knee (6)

C-Minimal module for X7 {(1), (2),(4),(5)} and {(1),(3),(5)}

Note that a module for ¥ does not necessarily contain
@ all axioms that use terms from &
@ only axioms that only use terms from ¥ @ -]

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 19

Guarantees

Bad news for expressive ontology languages?

Big, sad theorem #»* Tuesday's lecture
Let O1, M C O, be ontologies in £ and ¥ a signature.
@ Determining whether O is safe for Oy w.r.t. £ or
whether M is a module for O1 in Oy w.r.t. L is

ExpTime-complete for L = &L, =» Tuesday's lecture
2ExpTime-compl. for ALC < L < ALCQOZ, and
undecidable for L > ALCOTO, including OWL

@ Determining whether O; is safe for a signature ¥ or
whether M is a X-module in Oy w.r.t. L is

undecidable w.r.t. £ = ALCO (even if Oy is in ALC).

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 20

Motivation Guarantees Safety, modules Summary

Consequences for safety/modules of expressive DLs

Deciding safety/modules is highly complex or even undecidable
for expressive DLs.

@ Give up? No: modules/safety clearly too important

@ Reduce expressivity of logic? Yes! »» Thursday’s lecture

© Approximate for expressive logics? Yes — but from the right
direction!

Next: 2 approximations, i.e., sufficient conditions for safety
@ based on semantic locality

@ based on syntactic locality
e

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 21

Motivation Guarantees Safety, modules Summary

@ Motivation: Modular reuse of ontologies
© Logical guarantees in detail

© Efficient safety test and module extraction

e Summary

Safety, modules

Locality
Remember: O is L-safe w.r.t. any £
if
O is a model Y-conserv. extension of @
iff

for each Z, there is J | O with Z|y = J|x

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Safety, modules

Locality

O is X-safe w.r.t. any L

if
O is a model X-conserv. extension of @
iff
for each Z, there is J | O with Z|y = J|x
if

VI3JT EOwithZ|y = J|x and X2 =0, VX ¢ &

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Safety, modules

Locality
O is X-safe w.r.t. any L
if
O is a model -conserv. extension of ()
iff
for each Z, there is 7 = O with Z|s = J|x
if
VI3JT EOwithZ|y = J|x and X2 =0, VX ¢ &
iff

VI3JVa€eO: JEaandI|ls=J|xand XT =0,VX ¢ ©

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Safety, modules

Locality
O is X-safe w.r.t. any L
O is a model Z—cor:]:;erv. extension of ()
for each Z, there is .7If|f: O with Z|ys = J|x
VZ 37 E O with I|x = %z and X2 =0,vX ¢ ©
VZ 3J Va € O : j|:aandg|fz_\7|z and XT =0, VX ¢ ©
iff

VIVa e O3J: JEaandI|ls =J|x and XT =0,VX ¢ ©

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Safety, modules

Locality
O is X-safe w.r.t. any L
O is a model Z—cor:]:;erv. extension of ()
for each Z, there is .7If|f: O with Z|ys = J|x
VZ 37 E O with I|x = %z and X2 =0,vX ¢ ©
VZ 3J Va € O : j|:aandg|fz_\7|z and XT =0, VX ¢ ©
VIVa € O3IJ : j|:aandg|fz:j|z and XT =0, VX ¢ ©
iff

Va € O : “a with all X ¢ ¥ replaced by L" is a tautology
Y

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Safety, modules

Testing locality

Ergo: O is X-safe w.r.t. any L if:
for each a« € O and each Z where all r; A ¢ X are interpreted as 0,
we have 7 = a.

Algorithm for testing locality
Input: X, O ALC TBox

safe < true
For each GG C G, € O with C; in NNF, construct C,.’ from C; by
replacing all A & ¥ with L
replacing all 3r.C with r & ¥ with L
replacing all Vr.C with r & ¥ with T
safe < false if C{ M —C} is satisfiable % can find countermodel
Return safe

Answers “true” if O is X-safe w.r.t. ALC; extensible to more @ B
expressive DLs

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 24

Safety, modules

Dual notion of locality

Analogously: O is X-safe w.r.t. any L if:
for each a € O and each Z where all r, A¢ ¥ are interpreted as A,
we have 7 = a.

Algorithm for testing locality
Input: X, O ALC TBox

safe < true
For each GG C G, € O with C; in NNF, construct C,.’ from C; by
replacing all A & ¥ with T
replacing all 3r. T with r € ¥ with T
replacing all Vr..L with r ¢ ¥ with L
safe < false if C{ M —C} is satisfiable % can find countermodel
Return safe

Answers “true” if O is X-safe w.r.t. ALC; extensible to more @ B
expressive DLs

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 25

Safety, modules

Testing locality

Both variants of our algorithm decide ¥-safety.

But:

@ Both locality notions only approximate ¥ -safety.

@ We still need to perform reasoning:
for each axiom «, test satisfiability of C{ M —|C£

e There are highly optimised reasoners available to do so, but ...
o Testing satisfiability in ALC is ExpTime-complete!
o Testing satisfiability in SROZQ is N2ExpTime-complete!

Q: Isn't there a cheaper approximation?

A: We can use syntactic approximation of locality!

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 26

Safety, modules

Syntactic approximation of locality

Axiom « is syntactically Y-local: « of form C = C2 or C? C C,
for C? and C2 given by the following grammars.

Start with A%, r¥ terms not in X, and r, C any term

CO =A% | -Cc2 | cnc® | c®nc|3r¥.c|3r.c?
CAu=T|-C?|CcAncA

An ontology is syntactically > -local
if it contains only syntactically X-local axioms.

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 27

Safety, modules

Syntactic approximation of locality

Axiom « is syntactically ¥-local: « of form C C C2 or C? C C,
for C? and C2 given by the following grammars.

Start with A%, r¥ terms not in X, and r, C any term
CO =A% | -Cc2 | cnc® | c®nc|3r¥.c|3r.c?
CAu=T|-C?|CcAncA

An ontology is syntactically > -local
if it contains only syntactically X-local axioms.

Theorem
Syntactic X-locality implies semantic X-locality implies Z-safetyJ

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 27

Safety, modules

Examples of syntactically (non)-local axioms

BL A form C C C? ~» not {B, ... }-local
AC BM3r.C form C? C C ~» {B, C}-local
XMALCY is X-local if, e.g., A€ X
Br3arCC A is {B, C}-local
AC AUB is not {A, B}-local, yet a tautology!

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 28

Safety, modules

Back to our real example

In JRAO, we can reuse

{Arthritis, Joint, Knee}

and “syntactically safely” write:

JRA = Arthritis M Jaffects.(Joint M JlocatedIn.Juvenile)
KJRA = JRA M Faffects.Knee

~» safely reference and refine existing terms from NC/ and Galen.

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 29

Safety, modules

Back to our real example

In JRAO, we can reuse

{Arthritis, Joint, Knee}

and “syntactically safely” write:

JRA = Arthritis M Jaffects.(Joint M JlocatedIn.Juvenile)
KJRA = JRA M Faffects.Knee

~» safely reference and refine existing terms from NC/ and Galen.
Generalise terms? — Use different syntactic locality: dual notion
Y

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 29

Safety, modules

Locality for modules

Remember: If O, \ M is safe for ¥ U sig(M) w.r.t. L,
then M is a X-module in Oy w.r.t. L.

~» poly-time algorithm to compute a >-module in O:

ye

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 30

Safety, modules

Locality for modules

Remember: If O, \ M is safe for ¥ U sig(M) w.r.t. L,
then M is a X-module in Oy w.r.t. L.

~» poly-time algorithm to compute a >-module in O:

Algorithm
Input: Sig. ¥, TBox O
M0, Y13 Yo+ X
Repeat X + X1

For each o € Oy \ M

If @ not X;-safe, then add o to M and sig(«) to ¥

Until X9 = 23
Return M

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 30

Safety, modules

Locality for modules

Remember: If O, \ M is safe for ¥ U sig(M) w.r.t. L,
then M is a X-module in Oy w.r.t. L.

~» poly-time algorithm to compute a >-module in O:

Algorithm
Input: Sig. ¥, TBox O
M0, Y13 Yo+ X
Repeat X + X1

For each o € Oy \ M

If @ not X;-safe, then add o to M and sig(«) to ¥

Until X9 = 23
Return M

Observation: M is a X1-module in O and therefore a X-module __
(since ¥ C ¥; and — we need some anti-monotonicity here) @ L]

Thomas Schneider, Dirk Walther Modularity: Locality-based modules

Variations

Safety, modules

to the module extraction algorithm

o Different safety checks, based on locality,
lead to different notions of a locality-based modules:

semantic locality ~ “@-modules”

dual notion ~» "A-modules”

syntactic locality (L-locality) ~» _L-modules
dual notion (T-locality) ~» T-modules

Remember: the first two require reasoning (often intractable),
while a syntactic locality check is tractable!

@ Smaller modules by nesting T- and _L-module extraction:

TL*

-modules

@ More efficient extraction of (semantic) @- and A-modules:
start with extracting a L- or T-module

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 31

Motivation Guarantees Safety, modules Summary

@ Motivation: Modular reuse of ontologies
© Logical guarantees in detail

© Efficient safety test and module extraction

@ Summary

Summary

Summary

Safety and economy/coverage are important guarantees
(not only) for reuse.

@ They can be approximated using locality.

@ Modules based on syntactic locality can be extracted
efficiently in logics up to OWL.

@ There is tool support for extracting modules.
http://owl.cs.manchester.ac.uk/modularity
http://owlapi.sourceforge.net/

@ This line of research is rather new for DLs and ontology
languages, and many questions are (half)open.

(WK

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 33

http://owl.cs.manchester.ac.uk/modularity
http://owlapi.sourceforge.net/

Summary

Course overview

@ Versioning and Forgetting

o Logical difference
e Forgetting/uniform interpolants

© Recent Advances/Current Work

e Atomic decomposition
e Signature decomposition, relevance of terms

Wie

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 34

