
Motivation Guarantees Safety, modules Summary

Modularity in Ontologies:
Locality-based modules

Thomas Schneider 1 Dirk Walther2

1Department of Computer Science, University of Bremen, Germany

2Faculty of Informatics, Technical University of Madrid, Spain

ESSLLI, 3 August 2011

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 1

Motivation Guarantees Safety, modules Summary

Plan for today

Yesterday, we discussed inseparability relations and their properties:
inseparability = same functionality w.r.t. interface
= same answers to queries
decidability/complexity
robustness under vocabulary extensions, joins, replacement

Today, we’ll look a bit closer on how to use these insights to help
ontology engineers re-use ontologies

in a controlled way
without (unwanted) side-effects

Thanks: partly based on slides by Uli Sattler.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 2

Motivation Guarantees Safety, modules Summary

Plan for today

1 Motivation: Modular reuse of ontologies

2 Logical guarantees in detail

3 Efficient safety test and module extraction

4 Summary

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 3

Motivation Guarantees Safety, modules Summary

And now . . .

1 Motivation: Modular reuse of ontologies

2 Logical guarantees in detail

3 Efficient safety test and module extraction

4 Summary

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 4

Motivation Guarantees Safety, modules Summary

Remember: an import/reuse scenario

“Borrow” knowledge from external ontologies

Provides access to well-established knowledge
Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 5

Motivation Guarantees Safety, modules Summary

A real example

Build an ontology JRAO that describes JRA
JRA = Juvenile Rheumatoid Arthritis

Describe JRA subkinds by
Joints affected
Occurrence of concomitant symptoms, e.g., fever
Treatment with certain drugs

Re-use information provided by biomedical ontologies
NCI: diseases, drugs, proteins etc.
Galen: human anatomy

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 6

Motivation Guarantees Safety, modules Summary

A real example

NCI

JRAO Galen

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 7

Motivation Guarantees Safety, modules Summary

Why reuse an ontology?

Saves time and effort
Provides access to well-established knowledge and terminology
Doesn’t require expertise in drugs, proteins, anatomy etc.

; A tool supporting reuse should guarantee:
reusing imported terms doesn’t change their meaning Safety
all relevant parts of external ont.s are imported Coverage
in addition, import only relevant parts (Economy)
the order of imports doesn’t matter Independence

Does this sound like inseparability?

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 8

Motivation Guarantees Safety, modules Summary

Guarantees by example

Safety
Concerns the usage of (imported) terms in the importing ontology:

Let JRA, GeneticDisorder ∈ sig(NCI).

JRAO ∪ NCI |= JRA v GeneticDisorder

iff
NCI |= JRA v GeneticDisorder

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 9

Motivation Guarantees Safety, modules Summary

Guarantees by example

Coverage
Concerns what we would consider a module:

JRAO ∪ NCI |= JRA v GeneticDisorder

iff
JRAO ∪ NCI-module |= JRA v GeneticDisorder

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 9

Motivation Guarantees Safety, modules Summary

Guarantees by example

Independence
If JRAO is safe for Galen and for NCI, then
JRAO ∪ NCI-module is still safe for Galen and
JRAO ∪ Galen-module is still safe for NCI.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 9

Motivation Guarantees Safety, modules Summary

And now . . .

1 Motivation: Modular reuse of ontologies

2 Logical guarantees in detail

3 Efficient safety test and module extraction

4 Summary

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 10

Motivation Guarantees Safety, modules Summary

Safety guarantee in detail

Safety for an ontology
O1 imports O2 in an L-safe way (or O1 is safe for O2 w.r.t. L)

if O1 ∪ O2 ≡L
sig(O2) O2.

Intuition: O1 ∪ O2 doesn’t change the meaning of O2-terms.

Problems
Which L to choose?

for ontology design: subsumptions betw. (complex?) concepts
for ontology usage: my favourite query language

We might not have control over O2 and sig(O2)

O2 = NCI might change over time, we want latest version

Solution: Safety for a signature!

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 11

Motivation Guarantees Safety, modules Summary

Safety guarantee in detail

Safety for an ontology
O1 imports O2 in an L-safe way (or O1 is safe for O2 w.r.t. L)

if O1 ∪ O2 ≡L
sig(O2) O2.

Intuition: O1 ∪ O2 doesn’t change the meaning of O2-terms.

Problems
Which L to choose?

for ontology design: subsumptions betw. (complex?) concepts
for ontology usage: my favourite query language

We might not have control over O2 and sig(O2)

O2 = NCI might change over time, we want latest version

Solution: Safety for a signature!

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 11

Motivation Guarantees Safety, modules Summary

Safety guarantee in detail

Safety for an ontology
O1 imports O2 in an L-safe way (or O1 is safe for O2 w.r.t. L)

if O1 ∪ O2 ≡L
sig(O2) O2.

Intuition: O1 ∪ O2 doesn’t change the meaning of O2-terms.

Problems
Which L to choose?

for ontology design: subsumptions betw. (complex?) concepts
for ontology usage: my favourite query language

We might not have control over O2 and sig(O2)

O2 = NCI might change over time, we want latest version

Solution: Safety for a signature!

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 11

Motivation Guarantees Safety, modules Summary

Safety for a signature

Definition
O1 is safe for Σ w.r.t. L if,

for every L-ontology O2 with sig(O1) ∩ sig(O2) ⊆ Σ,
O1 ∪ O2 ≡L

Σ O2.

Theorem
1 If O1 is a model Σ-conservative extension of ∅ (O1 ≡SO

Σ ∅),
then O1 is safe for Σ w.r.t. any L 6 SO.

2 Let L be robust under replacements.
Then O1 is safe for Σ w.r.t. L iff O1 ≡L

Σ ∅.

Bad news: robustness under replacements fails easily . . .

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 12

Motivation Guarantees Safety, modules Summary

Safety for a signature

Definition
O1 is safe for Σ w.r.t. L if,

for every L-ontology O2 with sig(O1) ∩ sig(O2) ⊆ Σ,
O1 ∪ O2 ≡L

Σ O2.

Theorem
1 If O1 is a model Σ-conservative extension of ∅ (O1 ≡SO

Σ ∅),
then O1 is safe for Σ w.r.t. any L 6 SO.

2 Let L be robust under replacements.
Then O1 is safe for Σ w.r.t. L iff O1 ≡L

Σ ∅.

Bad news: robustness under replacements fails easily . . .

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 12

Motivation Guarantees Safety, modules Summary

Safety for a signature

Definition
O1 is safe for Σ w.r.t. L if,

for every L-ontology O2 with sig(O1) ∩ sig(O2) ⊆ Σ,
O1 ∪ O2 ≡L

Σ O2.

Theorem
1 If O1 is a model Σ-conservative extension of ∅ (O1 ≡SO

Σ ∅),
then O1 is safe for Σ w.r.t. any L 6 SO.

2 Let L be robust under replacements.
Then O1 is safe for Σ w.r.t. L iff O1 ≡L

Σ ∅.

Bad news: robustness under replacements fails easily . . .

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 12

Motivation Guarantees Safety, modules Summary

When robustness under replacements fails

Take ontology language ALC and L = “ALC-concept inclusions”.

Consider O1 = {A v ∃r .B} and Σ = {A,B}.

O1 ≡ALC
Σ ∅,

but if we take O2 = {A ≡ >, B ≡ ⊥},
then O1 ∪ O2 |= > v ⊥,
while O2 6|= > v ⊥.

Hence, O1 ∪ O2 6≡ALC
Σ O2.

Hence, O1 is not safe for Σ.

(This problem can be resolved by extending L to
“Boolean conjunctions of ALC-concept inclusions”.)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 13

Motivation Guarantees Safety, modules Summary

When robustness under replacements fails

Take ontology language ALC and L = “ALC-concept inclusions”.

Consider O1 = {A v ∃r .B} and Σ = {A,B}.

O1 ≡ALC
Σ ∅,

but if we take O2 = {A ≡ >, B ≡ ⊥},
then O1 ∪ O2 |= > v ⊥,
while O2 6|= > v ⊥.

Hence, O1 ∪ O2 6≡ALC
Σ O2.

Hence, O1 is not safe for Σ.

(This problem can be resolved by extending L to
“Boolean conjunctions of ALC-concept inclusions”.)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 13

Motivation Guarantees Safety, modules Summary

When robustness under replacements fails

Take ontology language ALC and L = “ALC-concept inclusions”.

Consider O1 = {A v ∃r .B} and Σ = {A,B}.

O1 ≡ALC
Σ ∅,

but if we take O2 = {A ≡ >, B ≡ ⊥},
then O1 ∪ O2 |= > v ⊥,
while O2 6|= > v ⊥.

Hence, O1 ∪ O2 6≡ALC
Σ O2.

Hence, O1 is not safe for Σ.

(This problem can be resolved by extending L to
“Boolean conjunctions of ALC-concept inclusions”.)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 13

Motivation Guarantees Safety, modules Summary

Coverage guarantee in detail

Module for an ontology
M ⊆ O2 is a module for O1 in O2 w.r.t. L if

O1 ∪ O2 ≡L
sig(O1) O1 ∪M.

Problems
Which L to choose?

for ontology design: subsumptions betw. (complex?) concepts
for ontology usage: my favourite query language

The module shouldn’t depend on the importing ontology,
but only on the signature we want to use.

Solution: Module for a signature!
; interoperability of M

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 14

Motivation Guarantees Safety, modules Summary

Coverage guarantee in detail

Module for an ontology
M ⊆ O2 is a module for O1 in O2 w.r.t. L if

O1 ∪ O2 ≡L
sig(O1) O1 ∪M.

Problems
Which L to choose?

for ontology design: subsumptions betw. (complex?) concepts
for ontology usage: my favourite query language

The module shouldn’t depend on the importing ontology,
but only on the signature we want to use.

Solution: Module for a signature!
; interoperability of M

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 14

Motivation Guarantees Safety, modules Summary

Coverage guarantee in detail

Module for an ontology
M ⊆ O2 is a module for O1 in O2 w.r.t. L if

O1 ∪ O2 ≡L
sig(O1) O1 ∪M.

Problems
Which L to choose?

for ontology design: subsumptions betw. (complex?) concepts
for ontology usage: my favourite query language

The module shouldn’t depend on the importing ontology,
but only on the signature we want to use.

Solution: Module for a signature!
; interoperability of M

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 14

Motivation Guarantees Safety, modules Summary

Module for a signature

Definition
M ⊆ O2 is a module for Σ in O2 w.r.t. L if,

for every L-ontology O1 with sig(O1) ∩ sig(O2) ⊆ Σ,
O1 ∪ O2 ≡L

sig(O1) O1 ∪M.

Observation
1 If M ⊆ O2 and O2 is a model Σ-c.e. of M (O2 ≡SO

Σ M),
then M is a module for Σ in O2 w.r.t. any L 6 SO

2 Let L be robust under replacements.
Then M ⊆ O2 is a module for Σ in O2 w.r.t. L
iff O2 \M ≡L

Σ ∅.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 15

Motivation Guarantees Safety, modules Summary

Module for a signature

Definition
M ⊆ O2 is a module for Σ in O2 w.r.t. L if,

for every L-ontology O1 with sig(O1) ∩ sig(O2) ⊆ Σ,
O1 ∪ O2 ≡L

sig(O1) O1 ∪M.

Observation
1 If M ⊆ O2 and O2 is a model Σ-c.e. of M (O2 ≡SO

Σ M),
then M is a module for Σ in O2 w.r.t. any L 6 SO

2 Let L be robust under replacements.
Then M ⊆ O2 is a module for Σ in O2 w.r.t. L
iff O2 \M ≡L

Σ ∅.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 15

Motivation Guarantees Safety, modules Summary

Modules and Safety are closely related

The following is immediate from the previous definitions.
Homework: Prove.

Let O1, M ⊆ O2 be ontologies in L and Σ a signature. Then

1 O1 is safe for Σ w.r.t. L iff ∅ is a Σ-module in O1 w.r.t. L
O1 constrains interpretation of terms in Σ as much as ∅

2 If O2 \M is safe for Σ ∪ sig(M) w.r.t. L,
then M is a Σ-module in O2 w.r.t. L
O2 \M doesn’t constrain interpretation of terms from Σ ∪ sig(M)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 16

Motivation Guarantees Safety, modules Summary

Modules and Safety are closely related

The following is immediate from the previous definitions.
Homework: Prove.

Let O1, M ⊆ O2 be ontologies in L and Σ a signature. Then

1 O1 is safe for Σ w.r.t. L iff ∅ is a Σ-module in O1 w.r.t. L
O1 constrains interpretation of terms in Σ as much as ∅

2 If O2 \M is safe for Σ ∪ sig(M) w.r.t. L,
then M is a Σ-module in O2 w.r.t. L
O2 \M doesn’t constrain interpretation of terms from Σ ∪ sig(M)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 16

Motivation Guarantees Safety, modules Summary

Independence Guarantee in Detail

Basic requirement for importing ontologies independently.

Independence
Safety is preserved under imports:

If O1 is safe for Σi (Oi), then O1 ∪ Oj is still safe for Σi (Oi).

Independence is difficult to guarantee . . .
when the Σi share terms:
e.g., O1 = {A v >} is safe for Σ = {A,B},
but O1 ∪ {A v B} is not safe for Σ

when the Σi don’t share terms:
e.g., O1 = {A v B} is safe for Σ2 = {A} and Σ3 = {B},
but O1 ∪ {B ≡ ⊥} is not safe for Σ2
and O1 ∪ {A ≡ >} is not safe for Σ3

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 17

Motivation Guarantees Safety, modules Summary

Independence Guarantee in Detail

Basic requirement for importing ontologies independently.

Independence
Safety is preserved under imports:

If O1 is safe for Σi (Oi), then O1 ∪ Oj is still safe for Σi (Oi).

Independence is difficult to guarantee . . .
when the Σi share terms:
e.g., O1 = {A v >} is safe for Σ = {A,B},
but O1 ∪ {A v B} is not safe for Σ

when the Σi don’t share terms:
e.g., O1 = {A v B} is safe for Σ2 = {A} and Σ3 = {B},
but O1 ∪ {B ≡ ⊥} is not safe for Σ2
and O1 ∪ {A ≡ >} is not safe for Σ3

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 17

Motivation Guarantees Safety, modules Summary

Problems to solve for supporting Ontology Engineering

Given “our” ontology O1
and ontologies Oi from which we want to reuse terms Σi ,

1 make sure that O1 is safe for Σi

2 determine modules for Σi from Oi ; but which?
(a) Did engineer “forget something” when specifying Σi?
(b) Should modules be as small as possible?
(c) Even minimal modules are not unique (see next slide)

; which one to use?

3 add modules Mi to O1
(a) static/call-by-value: determine and add Mi

(b) dynamic/call-by-name: always use “freshest” Mi ; how?
(We need to provide mechanisms/syntax for this.)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 18

Motivation Guarantees Safety, modules Summary

Example

Let Σ = {Knee,HingeJoint}. Suppose Galen contains:

Knee ≡ Joint u ∃hasPart.Patella u (1)
∃hasFunct.Hinge

Patella v Bone u Sesamoid (2)
Ginglymus ≡ Joint u ∃hasFunct.Hinge (3)

Joint u ∃hasPart.(BoneuSesamoid) v Ginglymus (4)
Ginglymus ≡ HingeJoint (5)
Meniscus ≡ FibroCartilage u ∃locatedIn.Knee (6)

⊆-Minimal module for Σ ?

Note that a module for Σ does not necessarily contain
all axioms that use terms from Σ

only axioms that only use terms from Σ

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 19

Motivation Guarantees Safety, modules Summary

Example

Let Σ = {Knee,HingeJoint}. Suppose Galen contains:

Knee ≡ Joint u ∃hasPart.Patella u (1)
∃hasFunct.Hinge

Patella v Bone u Sesamoid (2)

Ginglymus ≡ Joint u ∃hasFunct.Hinge (3)

Joint u ∃hasPart.(BoneuSesamoid) v Ginglymus (4)
Ginglymus ≡ HingeJoint (5)

Meniscus ≡ FibroCartilage u ∃locatedIn.Knee

⊆-Minimal module for Σ ? {(1), (2), (4), (5)}

Note that a module for Σ does not necessarily contain
all axioms that use terms from Σ

only axioms that only use terms from Σ

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 19

Motivation Guarantees Safety, modules Summary

Example

Let Σ = {Knee,HingeJoint}. Suppose Galen contains:

Knee ≡ Joint u ∃hasPart.Patella u (1)
∃hasFunct.Hinge

Patella v Bone u Sesamoid (2)

Ginglymus ≡ Joint u ∃hasFunct.Hinge (3)

Joint u ∃hasPart.(BoneuSesamoid) v Ginglymus (4)

Ginglymus ≡ HingeJoint (5)

Meniscus ≡ FibroCartilage u ∃locatedIn.Knee

⊆-Minimal module for Σ ? {(1), (3), (5)}

Note that a module for Σ does not necessarily contain
all axioms that use terms from Σ

only axioms that only use terms from Σ

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 19

Motivation Guarantees Safety, modules Summary

Example

Let Σ = {Knee,HingeJoint}. Suppose Galen contains:

Knee ≡ Joint u ∃hasPart.Patella u (1)
∃hasFunct.Hinge

Patella v Bone u Sesamoid (2)
Ginglymus ≡ Joint u ∃hasFunct.Hinge (3)

Joint u ∃hasPart.(BoneuSesamoid) v Ginglymus (4)
Ginglymus ≡ HingeJoint (5)
Meniscus ≡ FibroCartilage u ∃locatedIn.Knee (6)

⊆-Minimal module for Σ ? {(1), (2), (4), (5)} and {(1), (3), (5)}

Note that a module for Σ does not necessarily contain
all axioms that use terms from Σ

only axioms that only use terms from Σ

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 19

Motivation Guarantees Safety, modules Summary

Example

Let Σ = {Knee,HingeJoint}. Suppose Galen contains:

Knee ≡ Joint u ∃hasPart.Patella u (1)
∃hasFunct.Hinge

Patella v Bone u Sesamoid (2)
Ginglymus ≡ Joint u ∃hasFunct.Hinge (3)

Joint u ∃hasPart.(BoneuSesamoid) v Ginglymus (4)
Ginglymus ≡ HingeJoint (5)
Meniscus ≡ FibroCartilage u ∃locatedIn.Knee (6)

⊆-Minimal module for Σ ? {(1), (2), (4), (5)} and {(1), (3), (5)}

Note that a module for Σ does not necessarily contain
all axioms that use terms from Σ

only axioms that only use terms from Σ

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 19

Motivation Guarantees Safety, modules Summary

Bad news for expressive ontology languages?

Big, sad theorem ó Tuesday’s lecture
Let O1, M ⊆ O2 be ontologies in L and Σ a signature.

1 Determining whether O1 is safe for O2 w.r.t. L or
whether M is a module for O1 in O2 w.r.t. L is

ExpTime-complete for L = EL, ó Tuesday’s lecture
2ExpTime-compl. for ALC 6 L 6 ALCQI, and
undecidable for L > ALCQIO, including OWL

2 Determining whether O1 is safe for a signature Σ or
whether M is a Σ-module in O2 w.r.t. L is

undecidable w.r.t. L = ALCO (even if O1 is in ALC).

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 20

Motivation Guarantees Safety, modules Summary

Consequences for safety/modules of expressive DLs

Deciding safety/modules is highly complex or even undecidable
for expressive DLs.

What to do?
1 Give up? No: modules/safety clearly too important
2 Reduce expressivity of logic? Yes! ó Thursday’s lecture
3 Approximate for expressive logics? Yes – but from the right

direction!

Next: 2 approximations, i.e., sufficient conditions for safety
1 based on semantic locality
2 based on syntactic locality

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 21

Motivation Guarantees Safety, modules Summary

And now . . .

1 Motivation: Modular reuse of ontologies

2 Logical guarantees in detail

3 Efficient safety test and module extraction

4 Summary

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 22

Motivation Guarantees Safety, modules Summary

Locality

Remember: O is Σ-safe w.r.t. any L
if

O is a model Σ-conserv. extension of ∅
iff

for each I, there is J |= O with I|Σ = J |Σ

if
∀I ∃J |= O with I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀I ∃J ∀α ∈ O : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀I ∀α ∈ O ∃J : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀α ∈ O : “α with all X /∈ Σ replaced by ⊥” is a tautology

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Motivation Guarantees Safety, modules Summary

Locality

Remember:

O is Σ-safe w.r.t. any L
if

O is a model Σ-conserv. extension of ∅
iff

for each I, there is J |= O with I|Σ = J |Σ
if

∀I ∃J |= O with I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀I ∃J ∀α ∈ O : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀I ∀α ∈ O ∃J : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀α ∈ O : “α with all X /∈ Σ replaced by ⊥” is a tautology

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Motivation Guarantees Safety, modules Summary

Locality

Remember:

O is Σ-safe w.r.t. any L
if

O is a model Σ-conserv. extension of ∅
iff

for each I, there is J |= O with I|Σ = J |Σ
if

∀I ∃J |= O with I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ
iff

∀I ∃J ∀α ∈ O : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀I ∀α ∈ O ∃J : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀α ∈ O : “α with all X /∈ Σ replaced by ⊥” is a tautology

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Motivation Guarantees Safety, modules Summary

Locality

Remember:

O is Σ-safe w.r.t. any L
if

O is a model Σ-conserv. extension of ∅
iff

for each I, there is J |= O with I|Σ = J |Σ
if

∀I ∃J |= O with I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ
iff

∀I ∃J ∀α ∈ O : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ
iff

∀I ∀α ∈ O ∃J : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ

iff
∀α ∈ O : “α with all X /∈ Σ replaced by ⊥” is a tautology

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Motivation Guarantees Safety, modules Summary

Locality

Remember:

O is Σ-safe w.r.t. any L
if

O is a model Σ-conserv. extension of ∅
iff

for each I, there is J |= O with I|Σ = J |Σ
if

∀I ∃J |= O with I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ
iff

∀I ∃J ∀α ∈ O : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ
iff

∀I ∀α ∈ O ∃J : J |= α and I|Σ = J |Σ and XI = ∅, ∀X /∈ Σ
iff

∀α ∈ O : “α with all X /∈ Σ replaced by ⊥” is a tautology

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 23

Motivation Guarantees Safety, modules Summary

Testing locality
Ergo: O is Σ-safe w.r.t. any L if:
for each α ∈ O and each I where all r ,A /∈ Σ are interpreted as ∅,
we have I |= α.

Algorithm for testing locality
Input: Σ, O ALC TBox
safe← true
For each C1 v C2 ∈ O with Ci in NNF, construct C ′i from Ci by

replacing all A /∈ Σ with ⊥
replacing all ∃r .C with r /∈ Σ with ⊥
replacing all ∀r .C with r /∈ Σ with >

safe← false if C ′1 u¬C ′2 is satisfiable % can find countermodel
Return safe

Answers “true” if O is Σ-safe w.r.t. ALC; extensible to more
expressive DLs

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 24

Motivation Guarantees Safety, modules Summary

Dual notion of locality
Analogously: O is Σ-safe w.r.t. any L if:
for each α ∈ O and each I where all r ,A /∈Σ are interpreted as ∆,
we have I |= α.

Algorithm for testing locality
Input: Σ, O ALC TBox
safe← true
For each C1 v C2 ∈ O with Ci in NNF, construct C ′i from Ci by

replacing all A /∈ Σ with >
replacing all ∃r .> with r /∈ Σ with >
replacing all ∀r .⊥ with r /∈ Σ with ⊥

safe← false if C ′1 u¬C ′2 is satisfiable % can find countermodel
Return safe

Answers “true” if O is Σ-safe w.r.t. ALC; extensible to more
expressive DLs

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 25

Motivation Guarantees Safety, modules Summary

Testing locality

Both variants of our algorithm decide Σ-safety.

But:
Both locality notions only approximate Σ-safety.

We still need to perform reasoning:
for each axiom α, test satisfiability of C ′1 u ¬C ′2

There are highly optimised reasoners available to do so, but . . .
Testing satisfiability in ALC is ExpTime-complete!
Testing satisfiability in SROIQ is N2ExpTime-complete!

Q: Isn’t there a cheaper approximation?

A: We can use syntactic approximation of locality!

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 26

Motivation Guarantees Safety, modules Summary

Syntactic approximation of locality

Axiom α is syntactically Σ-local: α of form C v C∆ or C∅ v C ,
for C∅ and C∆ given by the following grammars.

Start with A6Σ, r 6Σ terms not in Σ, and r ,C any term

C∅ ::= A6Σ | ¬C∆ | C u C∅ | C∅ u C | ∃r 6Σ.C | ∃r .C∅

C∆ ::= > | ¬C∅ | C∆ u C∆

An ontology is syntactically Σ-local
if it contains only syntactically Σ-local axioms.

Theorem
Syntactic Σ-locality implies semantic Σ-locality implies Σ-safety

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 27

Motivation Guarantees Safety, modules Summary

Syntactic approximation of locality

Axiom α is syntactically Σ-local: α of form C v C∆ or C∅ v C ,
for C∅ and C∆ given by the following grammars.

Start with A6Σ, r 6Σ terms not in Σ, and r ,C any term

C∅ ::= A6Σ | ¬C∆ | C u C∅ | C∅ u C | ∃r 6Σ.C | ∃r .C∅

C∆ ::= > | ¬C∅ | C∆ u C∆

An ontology is syntactically Σ-local
if it contains only syntactically Σ-local axioms.

Theorem
Syntactic Σ-locality implies semantic Σ-locality implies Σ-safety

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 27

Motivation Guarantees Safety, modules Summary

Examples of syntactically (non)-local axioms

B v A form C v C∅ ; not {B, . . . }-local
A v B u ∃r .C form C∅ v C ; {B,C}-local

X u A v Y is Σ-local if, e.g., A /∈ Σ

B u ∃r .C v A is {B,C}-local
A v A t B is not {A,B}-local, yet a tautology!

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 28

Motivation Guarantees Safety, modules Summary

Back to our real example

NCI

JRAO Galen

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy

In JRAO, we can reuse

{Arthritis, Joint,Knee}

and “syntactically safely” write:

JRA ≡ Arthritis u ∃affects.(Joint u ∃locatedIn.Juvenile)

KJRA ≡ JRA u ∃affects.Knee

; safely reference and refine existing terms from NCI and Galen.

Generalise terms? – Use different syntactic locality: dual notion

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 29

Motivation Guarantees Safety, modules Summary

Back to our real example

NCI

JRAO Galen

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy

In JRAO, we can reuse

{Arthritis, Joint,Knee}

and “syntactically safely” write:

JRA ≡ Arthritis u ∃affects.(Joint u ∃locatedIn.Juvenile)

KJRA ≡ JRA u ∃affects.Knee

; safely reference and refine existing terms from NCI and Galen.

Generalise terms? – Use different syntactic locality: dual notion

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 29

Motivation Guarantees Safety, modules Summary

Locality for modules

Remember: If O2 \M is safe for Σ ∪ sig(M) w.r.t. L,
then M is a Σ-module in O2 w.r.t. L.

; poly-time algorithm to compute a Σ-module in O2:

Algorithm
Input: Sig. Σ, TBox O
M← ∅, Σ1 ← Σ, Σ0 ← Σ
Repeat Σ0 ← Σ1

For each α ∈ O2 \M
If α not Σ1-safe, then add α to M and sig(α) to Σ1

Until Σ0 = Σ1
Return M

Observation: M is a Σ1-module in O and therefore a Σ-module
(since Σ ⊆ Σ1 and – we need some anti-monotonicity here)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 30

Motivation Guarantees Safety, modules Summary

Locality for modules

Remember: If O2 \M is safe for Σ ∪ sig(M) w.r.t. L,
then M is a Σ-module in O2 w.r.t. L.

; poly-time algorithm to compute a Σ-module in O2:

Algorithm
Input: Sig. Σ, TBox O
M← ∅, Σ1 ← Σ, Σ0 ← Σ
Repeat Σ0 ← Σ1

For each α ∈ O2 \M
If α not Σ1-safe, then add α to M and sig(α) to Σ1

Until Σ0 = Σ1
Return M

Observation: M is a Σ1-module in O and therefore a Σ-module
(since Σ ⊆ Σ1 and – we need some anti-monotonicity here)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 30

Motivation Guarantees Safety, modules Summary

Locality for modules

Remember: If O2 \M is safe for Σ ∪ sig(M) w.r.t. L,
then M is a Σ-module in O2 w.r.t. L.

; poly-time algorithm to compute a Σ-module in O2:

Algorithm
Input: Sig. Σ, TBox O
M← ∅, Σ1 ← Σ, Σ0 ← Σ
Repeat Σ0 ← Σ1

For each α ∈ O2 \M
If α not Σ1-safe, then add α to M and sig(α) to Σ1

Until Σ0 = Σ1
Return M

Observation: M is a Σ1-module in O and therefore a Σ-module
(since Σ ⊆ Σ1 and – we need some anti-monotonicity here)

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 30

Motivation Guarantees Safety, modules Summary

Variations to the module extraction algorithm

Different safety checks, based on locality,
lead to different notions of a locality-based modules:

semantic locality ; “∅-modules”
dual notion ; ”∆-modules“
syntactic locality (⊥-locality) ; ⊥-modules
dual notion (>-locality) ; >-modules
Remember: the first two require reasoning (often intractable),
while a syntactic locality check is tractable!

Smaller modules by nesting >- and ⊥-module extraction:
>⊥∗-modules

More efficient extraction of (semantic) ∅- and ∆-modules:
start with extracting a ⊥- or >-module

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 31

Motivation Guarantees Safety, modules Summary

And now . . .

1 Motivation: Modular reuse of ontologies

2 Logical guarantees in detail

3 Efficient safety test and module extraction

4 Summary

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 32

Motivation Guarantees Safety, modules Summary

Summary

Safety and economy/coverage are important guarantees
(not only) for reuse.

They can be approximated using locality.

Modules based on syntactic locality can be extracted
efficiently in logics up to OWL.

There is tool support for extracting modules.
http://owl.cs.manchester.ac.uk/modularity
http://owlapi.sourceforge.net/

This line of research is rather new for DLs and ontology
languages, and many questions are (half)open.

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 33

http://owl.cs.manchester.ac.uk/modularity
http://owlapi.sourceforge.net/

Motivation Guarantees Safety, modules Summary

Course overview

4 Versioning and Forgetting
Logical difference
Forgetting/uniform interpolants

5 Recent Advances/Current Work
Atomic decomposition
Signature decomposition, relevance of terms

Thomas Schneider, Dirk Walther Modularity: Locality-based modules 34

