
Description Logics:

an Introductory Course on a Nice Family of Logics

Day 2: Tableau Algorithms

Uli Sattler

University of
Manchester

1

Warm up

Which of the following subsumptions hold?

r some (A and B) is subsumed by r some A

∃r.(A ⊓ B) ⊑ ∃r.A

(r some A) and (r only B) is subsumed by r some B

∃r.A ⊓ ∀r.B ⊑ ∃r.B

r only (A and not A) is subsumed by r only B

∀r.(A ⊓ ¬A) ⊑ ∀r.B

r some (r only A) is subsumed by r some (r some (A or not A))

∃r.(∀r.A) ⊑ ∃r.(∃r.(A ⊔ ¬A)

r only (A and B) is subsumed by (r only A) and (r only B)

∀r.(A ⊓ B) ⊑ ∀r.A ⊓ ∀r.B

r some B is subsumed by r only B

∃r.B ⊑ ∀r.A

University of
Manchester

2

Today

• relationship between standard DL reasoning problems

• a tableau algorithm to decide consistency of ALC ontologies and all other standard DL

reasoning problems

• a proof of its correctness

• with some model properties

• some optimisations

• some extensions

– inverse roles

– (sketch) number restrictions

• some discussions

• ...loads of stuff: ask if you have a question!

University of
Manchester

3

Standard DL Reasoning Problems

Given an ontology O = (T , A),

• is O consistent? O |= ⊤ ⊑ ⊥?

• is O coherent? is there concept name A with O |= A ⊑ ⊥?

• compute class hierarchy! for all concept names A, B: O |= A ⊑ B?

• classify individuals! for all concept names A, individual names b: O |= b : B?

Theorem 2 Let O be an ontology and a an individual name not in O. Then

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent

2. O is coherent iff, for each concept name A,

O ∪ {a : A} is consistent

3. O |= A ⊑ B iff O ∪ {a : (A ⊓ ¬B)} is not consistent

4. O |= b : B iff O ∪ {b : ¬B} is not consistent

➥ a decision procedure to solve consistency decides all standard DL reasoning problems

University of
Manchester

4

Decision Procedure

• A problem is a set P ⊆ M

– e.g., M is the set of all ALC ontologies,

– P ⊆ M is the set of all consistent ALC ontologies

– ...and the problem P is to decide whether, for a given m ∈ M , we have m ∈ P

• An algorithm is a decision procedure for a problem P ⊆ M if it is

– sound for P : if it answers ”m ∈ P ”, then m ∈ P

– complete for P : if m ∈ P , then it answers ”m ∈ P ”

– terminating: it stops after finitely many steps on any input m ∈ M

Why does ”sound and complete” not suffice for being a decision procedure?

University of
Manchester

5

A tableau algorithm for ALC ontologies

For now: • ALC: ⊓, ⊔, ¬, ∃r.C, ∀r.C

• an algorithm to decide consistency of an ontology

The algorithm decides ”Is O consistent” by trying to construct a model I for O:

• if successful, O is consistent: ”look, here is a (description of a) model”

• otherwise, no model exists – provably (we were not simply too lazy to find it)

Algorithm works on a set of ABoxes:

• intialised with a singleton set S = {A} when started with

O = (T , A)

• ABoxes are extended by rules to make constraints on models of O
explicit

• O is consistent if, for (at least) one of the ABoxes A′ in S, (T , A′)

is consistent

University of
Manchester

6

Negation Normal Form

Technical: we say C and D are equivalent, written C ≡ D, if they mutually

subsume each other.

Technical: all concepts are assumed to be in Negation Normal Form

transform all concepts in O into NNF(C) by

pushing negation inwards, using

¬(C ⊓ D) ≡ ¬C ⊔ ¬D ¬(C ⊔ D) ≡ ¬C ⊓ ¬D

¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)

Lemma: Let C be an ALC concept. Then C ≡ NNF(C).

From now on, all concepts in GCIs and concept assertions are assumed to be in NNF, and

we use ¬̇C to denote the NNF(¬C).

University of
Manchester

7

A tableau algorithm for ALC ontologies

The algorithm • works on sets of ABoxes S

• starts with a singleton set S = {A} when started with O =

(T , A)

• applies rules that infer constraints on models of O

• a rule is applied to some A ∈ S; its application replaces A with

one or two ABoxes

• answers ”O is consistent” if rule application leads to an ABox A
that is

– complete, i.e., to which no more rules apply and

– clash-free, i.e., {a : A, a : ¬A} 6⊆ A, for any a, A

• for optimisation, we can avoid applying rules to ABoxes containing

a clash

University of
Manchester

8

Using the tableau algorithm for ALC ontologies

Following Theorem 2, we can use the algorithm to test

• satisfiability of a concept C by starting it with {a : C}

• satisfiability of a concept C wr.t. O by starting it with O ∪ {a : C} (a not in O)

• subsumption C ⊑ D by starting it with {a : (C ⊓ ¬D)}

• subsumption C ⊑ D wr.t. O by starting it with O ∪ {a : (C ⊓ ¬D)} (a not in O)

• whether b is an instance of C w.r.t. O by starting it with O ∪ {b : ¬C}

• ...and interpreting the results according to Theorem 2.

University of
Manchester

9

Preliminary Tableau Expansion Rules for ALC

⊓-rule: if a : C1 ⊓ C2 ∈ A and {a : C1, a : C2} 6⊆ A

then replace A with A ∪ {a : C1, a : C2}

⊔-rule: if a : C1 ⊔ C2 ∈ A and {a : C1, a : C2} ∩ A = ∅

then replace A with A ∪ {a : C1} and A ∪ {a : C2}

∃-rule: if a : ∃s.C ∈ A and there is no b with {(a, b) : s, b : C} ⊆ A

then create a new individual name c and

replace A with A ∪ {(a, c) : s, c : C}

∀-rule: if {a : ∀s.C, (a, b) : s} ⊆ A and b : C 6∈ A

then replace A with A ∪ {b : C}

GCI-rule: if C ⊑ D ∈ T and a : (¬̇C ⊔ D) 6∈ A for a in A,

then replace A with A ∪ {a : (¬̇C ⊔ D)}

University of
Manchester

10

Tableau Algorithm for ALC: Observations

• We only apply rules if their application does “something new”

• The ⊔-rule is the only one to replace an ABox with more than one other

• To understand the GCI-rule, convince yourself that

I satisfies a GCI C ⊑ D iff, for each e ∈ ∆I , we have e 6∈ CI or e ∈ DI

– and e 6∈ CI is the case iff e ∈ (¬C)I

• The GCI-rule adds a disjunction per individual and GCI ⇒ this is

– bad, and

– stupid for GCIs with a concept name on its left hand side (why?)

⇒ we add an abbreviated GCI rule:

GCI-2-rule: if B is a concept name, a : F 6∈ A for a : B ∈ A and B ⊑ F ∈ T ,

then replace A with A ∪ {a : F}

• If A is replaced with A′, then A ⊆ A′

University of
Manchester

11

Tableau Algorithm for ALC

Example: apply the tableau algorithm to O = (T , A) with

T = {A ⊑ B ⊓ ∃r.G ⊓ ∀r.C, A = { a : A, b : E,

E ⊑ A ⊓ H ⊓ ∀r.F, (a, c) : r, (b, c) : r,

G ⊑ E ⊓ P, c : G}
H ⊑ E ⊔ ∀r.¬C}

University of
Manchester

12

Termination of our Tableau Algorithm for ALC

As is, the tableau algorithm does not terminate:

Example: apply the tableau algorithm to O = (T , A) with T = {A ⊑ ∃r.A}
and A = {a : A}.

To ensure termination, use blocking: each rule is only applicable to an individual a in an

ABox A if there is no other individual b with

{C | a : C ∈ A} ⊆ {C | b : C ∈ A}.

In case we have

• a freshly introduced individual (i.e., not present in input ontology) a,

• an individual b with

– {C | a : C ∈ A} ⊆ {C | b : C ∈ A},

– b is older than a (i.e., was created earlier than a)

we say b blocks a and we say a is blocked.

University of
Manchester

13

Tableau Expansion Rules for ALC

⊓-rule: if a : C1 ⊓ C2 ∈ A, a is not blocked, and {a : C1, a : C2} 6⊆ A

then replace A with A ∪ {a : C1, a : C2}

⊔-rule: if a : C1 ⊔ C2 ∈ A, a is not blocked, and {a : C1, a : C2} ∩ A = ∅

then replace A with A ∪ {a : C1} and A ∪ {a : C2}

∃-rule: if a : ∃s.C ∈ A, a is not blocked, and there is no b with

{(a, b) : s, b : C} ⊆ A

then create a new individual c and replace A with A ∪ {(a, c) : s, c : C}

∀-rule: if {a : ∀s.C, (a, b) : s} ⊆ A, a is not blocked, and b : C 6∈ A

then replace A with A ∪ {b : C}

GCI-rule: if C ⊑ D ∈ T , a is not blocked, and

if C is a concept name, a : C ∈ A but a : D 6∈ A,

then replace A with A ∪ {a : D}

else if a : (¬̇C ⊔ D) 6∈ A for a in A,

then replace A with A ∪ {a : (¬̇C ⊔ D)}

University of
Manchester

14

Termination of our Tableau Algorithm for ALC

Convince yourself that, for the given example, the tableau algorithm terminates:

Example: apply the tableau algorithm to O = (T , A) with T = {A ⊑ ∃r.A}
and A = {a : A}.

...now for the general case!

University of
Manchester

15

Properties of our tableau algorithm

Lemma 3: Let O an ALC ontology in NNF. Then

1. the algorithm terminates when applied to O

2. if the rules generate a complete & clash-free ABox, then O is consistent

3. if O is consistent, then the rules generate a clash-free & complete ABox

Corollary 1: 1. Our tableau algorithm decides consistency of ALC ontologies.

2. Satisfiability (and subsumption) of ALC concepts is decidable in

PSpace.

3. Consistency of ALC ontologies is decidable in ExpSpace.

4. ALC ontologies have the finite model property

i.e., every consistent ontology has a finite model.

5. ALC ontologies have the tree model property

i.e., every consistent ontology has a tree model.

University of
Manchester

16

Proof of Lemma 3.1: Termination

Let sub(O) be the set of all subconcepts of concepts occurring in A together with

all subconcepts of ¬̇C ⊔ D for each C ⊑ D ∈ T .

(1) Termination is a consequence of these observations:

1. a rule replaces one ABox with at most two ABoxes

2. the ABoxes are constructed in a monotonic way,

i.e., each rule adds assertions, nothing is removed

3. concept assertions added are restricted to sub(O) and

sub(O) ≤ ΣC⊑D∈O(2 + |C| + |D|) + Σa : C∈O|C|

because, at each position in a concept, at most one sub-concept starts

4. due to blocking, there can be at most 2# sub(O) individuals in each ABox: if

{C | a : C ∈ A} ⊆ {C | b : C ∈ A}, a is blocked and no rules are applied to a.

Eventually, all ABoxes will be complete (and possibly have a clash), and the algorithm

terminates.
University of
Manchester

17

Regarding Corollary 1.2

If we start the algorithm with {a : C}
to test satisfiability of C, and

construct ABox in non-deterministic depth-first manner

rather than constructing set of ABoxes

so that we only consider a single ABox and

re-use space for branches already visited,

mark b : ∃R.C ∈ A with “todo” or “done”

we can run tableau algorithm (even without blocking) in

polynomial space:

• ABox is of depth bounded by |C|, and

• we keep only a single branch in memory at any time.

University of
Manchester

18

Regarding Corollary 1.3

If we start the algorithm with O to test its consistency, and

construct ABox in non-deterministic depth-first manner

rather than constructing set of ABoxes

so that we only consider a single ABox

we can run tableau algorithm in exponential space:

• number of individuals in ABox is bounded by 2# sub(O)

This is not optimal: we will see tomorrow that consistency of ALC ontologies is decidable

in exponential time, in fact ExpTime-complete.

University of
Manchester

19

Proof of Lemma 3.2: Soundness

(2) Let Af be a complete & clash-free ABox generated for O = (T , A),

and let Bf be Af without assertions involving blocked individuals.

Define an interpretation I as follows:

∆I := {x | x is an individual in Bf}
AI := {x ∈ ∆I | x : A ∈ Bf} for concept names A

rI := {(x, y) ∈ ∆I× ∈ ∆I | (x, y) : r ∈ Bf or

(x, y′) : r ∈ Af and y blocks y′ in Af}

and show, by induction on structure of concepts:

(C1) x : D ∈ Bf implies x ∈ DI

(C2) C ⊑ D ∈ T implies CI ⊆ DI

➙ I is a model of (T , Bf) (I satisfies all role assertions by definition)

➙ I is a model of (T , A) because A ⊆ Bf

➙ O = (T , A) is consistent

University of
Manchester

20

Proof of Lemma 3.2: Soundness II

∆I := {x | x is an individual in Bf}
AI := {x ∈ ∆I | x : A ∈ Bf} for concept names A

rI := {(x, y) ∈ ∆I× ∈ ∆I | (x, y) : r ∈ Bf or

(x, y′) : r ∈ Bf and y blocks y′}

Show, by induction on structure of concepts: (C1) x : D ∈ Bf implies x ∈ DI

• for concept names D: by definition of I

• for negated concept names D: due to clash-freeness and induction

• for conjunctions/disjunctions/existential restrictions/universal restrictions D:

due to completeness and by induction

University of
Manchester

21

Proof of Lemma 3.2: Soundness III

∆I := {x | x is an individual in Bf}
AI := {x ∈ ∆I | x : A ∈ Bf} for concept names A

rI := {(x, y) ∈ ∆I× ∈ ∆I | (x, y) : r ∈ Bf or

(x, y′) : r ∈ Bf and y blocks y′}

(C2): C ⊑ D ∈ T implies CI ⊆ DI

This is an immediate consequence of

• ∆I being a set of individual names in Af ,

• Af being complete ⇒ the GCI-rule is not applicable ⇒ if C ⊑ D ∈ T :

– if C is a concept name x ∈ CI , then x : C ∈ Bf , and thus x : D ∈ Bf

– else, x : (¬̇C ⊔ D) ∈ Bf

• (C1)

University of
Manchester

22

Proof of Lemma 3.3: Completeness

(3) Let O be consistent, and let I be a model of O.

Use I to identify a clash-free & complete ABox:

Inductively define a total mapping π :

start with π(a) = aI , and show that

each rule can be applied such that (∗) is preserved

ABox O

π

π

π

Model of

C

(∗) if x : C ∈ A, then π(x) ∈ CI

if (x, y) : r ∈ A, then 〈π(x), π(y)〉 ∈ rI

• easy for ⊓-, ∀-, and the GCI-rule,

• for ∃-rule, we need to extend π to the newly created r-successor

• for ⊔-rule, if C1 ⊔ C2 : x ∈ A, (∗) implies that π(x) ∈ (C1 ⊔ C2)
I

Ã we can choose Ai = A ∪ {x : Ci} with π(x) ∈ CI
i and thus preserve (∗)

Ã easy to see: (∗) implies that ABox is clash-free
University of
Manchester

23

Proof of Lemma 3: Harvest

Consider the model I constructed for a clash-free, complete ABox in soundness proof:

I is • finite because ABox has finitely many individuals

• a tree if blocking has not occurred

• not a tree if blocking has occurred:

but it can be unravelled into an (infinite) tree model

Hence we get Corollary 1.4 and 1.5 for (almost) free from our proof:

Corollary 1: 4. ALC ontologies have the finite model property

i.e., every consistent ontology has a finite model.

5. ALC ontologies have the tree model property

i.e., every consistent ontology has a tree model.

University of
Manchester

24

A tableau algorithm for ALC ontologies: Summary

The tableau algorithm presented here

➔ decides consistency of ALC ontologies, and thus also

➔ all other standard reasoning problems

➔ uses blocking to ensure termination, and

➔ can be implemented as such or

using a non-deterministic alternative for the ⊔-rule and backtracking.

➔ in the worst case, it builds ABoxes that are exponential in the size of the input.

Hence it runs in (worst case) ExpSpace,

➔ can be implemented in various ways,

– order/priorities of rules

– data structure

– etc.

➔ is amenable to optimisations...

University of
Manchester

25

Implementing the ALC Tableau Algorithm

Naive implementation of ALC tableau algorithm is doomed to failure:

It constructs a

• set of ABoxes,

• each ABox being of possibly exponential size, with possibly exponentially many indi-

viduals (see binary counting example)

• in the presence of a GCI such as ⊤ ⊑ (C1⊔D1)⊓ . . .⊓(Cn⊓Dn) and exponentially

many individuals, algorithm might generate double exponentially many ABoxes

Ã requires double exponential space or

• use non-deterministic variant and backtracking to consider one ABox at a time

Ã requires exponential space

University of
Manchester

26

Implementing the ALC Tableau Algorithm

Optimisations are crucial

concern every aspect of the algorithm

help in “many” cases (which?)

are implemented in various DL reasoners

e.g., FaCT++, Pellet, RacerPro

In the following: a selection of some vital optimisations

University of
Manchester

27

Optimising the ALC Tableau Algorithm: Classification

Reasoners provides service “classify all concept names T ”, i.e.,

for all concept names C, D in T , reasoner decides does T |= C ⊑ D?

Ã test consistency of T ∪ {a : (C ⊓ ¬D)}

Ã n2 consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept

C into hierarchy computed so

far

NO YES

D2

⊤

D1

E1 E2

C ⊑ Di w.r.t. T ?

C ⊑ Di w.r.t. T ?

University of
Manchester

28

Optimising the ALC Tableau Algorithm: Classification II

Reasoners provides service “classify all concept names T ”, i.e.,

for all concept names C, D in T , reasoner decides does T |= C ⊑ D?

Ã test consistency of T ∪ {a : (C ⊓ ¬D)}

Ã n2 consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept

C into hierarchy computed so

far

NO YES

D2

⊤

D1

E1 E2

C ⊑ Di w.r.t. T ?

C ⊑ Di w.r.t. T ?

University of
Manchester

29

Optimising the ALC Tableau Algorithm: Classification III

Reasoners provides service “classify all concept names T ”, i.e.,

for all concept names C, D in T , reasoner decides does T |= C ⊑ D?

Ã test consistency of T ∪ {a : (C ⊓ ¬D)}

Ã n2 consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept

C into hierarchy computed so

far

YESNO

D2

⊤

D1

E1 E2

C ⊑ Di w.r.t. T ?

C ⊑ Ei w.r.t. T ?

University of
Manchester

30

Optimising the ALC Tableau Algorithm: Classification IV

Reasoners provides service “classify all concept names T ”, i.e.,

for all concept names C, D in T , reasoner decides does T |= C ⊑ D?

Ã test consistency of T ∪ {a : (C ⊓ ¬D)}

Ã n2 consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 2: • maintain graph with a node for each concept name

• edges representing subsumption, disjointness (T |= A ⊑ ¬B), and

non-subsumption

• initialise graph with all “obvious” information in T

• to avoid testing subsumption, exploit

– all info in ABox during tableau algorithm to update graph

– transitivity of subsumption and its interaction with disjointness

University of
Manchester

31

Optimising the ALC Tableau Algorithm: Absorption

Remember: for T = {Ci ⊑ Di | 1 ≤ i ≤ n}, where no Ci is a concept name,

each individual x will have n disjunctions x : (¬̇Ci ⊔ Di) due to

GCI-rule: if C ⊑ D ∈ T , a is not blocked, and

if C is a concept name, a : C ∈ A but a : D 6∈ A,

then replace A with A ∪ {a : D}

else if a : (¬̇C ⊔ D) 6∈ A for a in A,

then replace A with A ∪ {a : (¬̇C ⊔ D)}

Problem: high degree of choice and huge search space

blows up set of ABoxes

Observation: many GCIs are of the form A ⊓ . . . ⊑ C for concept name A

e.g., Human ⊓ . . . ⊑ C or Device ⊓ . . . ⊑ C

University of
Manchester

32

Optimising the ALC Tableau Algorithm: Absorption

Idea: localise GCIs to concept names by transforming

A ⊓ X ⊑ C into equivalent A ⊑ ¬X ⊔ C

e.g., Human ⊓ ∃owns.Pet ⊑ C becomes Human ⊑ ¬∃owns.Pet ⊔ C

For “absorbed” T = {Ai ⊑ Di | 1 ≤ i ≤ n1} ∪ {Ci ⊑ Di | 1 ≤ i ≤ n2}
the second, non-deterministic choice in GCI-rule is taken only n2 times.

GCI-rule: if C ⊑ D ∈ T , a is not blocked, and

if C is a concept name, a : C ∈ A but a : D 6∈ A,

then replace A with A ∪ {a : D}

else if a : (¬̇C ⊔ D) 6∈ A for a in A,

then replace A with A ∪ {a : (¬̇C ⊔ D)}

Observations: If no GCI is absorbable, nothing changes

Each absorption saves 1 disjunction per individual outside Ai,

in the best case, this avoids almost all disjunctions from TBox axioms!

University of
Manchester

33

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A ⊓ B) ⊓ ((C1 ⊔ D1) ⊓ . . . ⊓ (Cn ⊔ Dn)) ⊓ ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

x

⊔

⊔ ⊔

⊔

⊔⊔
x

x

R

yL(y) = {(A ⊓ B), ¬A, A, B}

Clash

R

y L(y) = {(A ⊓ B), ¬A, A, B}

Clash Clash . . . Clash

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

L(x) ∪ {Cn}

University of
Manchester

34

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A ⊓ B) ⊓ ((C1 ⊔ D1) ⊓ . . . ⊓ (Cn ⊔ Dn)) ⊓ ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

⊔

⊔ ⊔

⊔

⊔⊔
x

x

R

yL(y) = {(A ⊓ B), ¬A, A, B}

Clash

University of
Manchester

35

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A ⊓ B) ⊓ ((C1 ⊔ D1) ⊓ . . . ⊓ (Cn ⊔ Dn)) ⊓ ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

⊔

⊔ ⊔

⊔

⊔⊔
x

x

R

yL(y) = {(A ⊓ B), ¬A, A, B}

Clash

R

y

Clash

L(y) = {(A ⊓ B), ¬A, A, B}

University of
Manchester

36

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A ⊓ B) ⊓ ((C1 ⊔ D1) ⊓ . . . ⊓ (Cn ⊔ Dn)) ⊓ ∀R.¬A

R

y

Clash

L(y) = {(A ⊓ B), ¬A, A, B}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

⊔

⊔ ⊔

⊔

⊔⊔
x

x

R

yL(y) = {(A ⊓ B), ¬A, A, B}

Clash

University of
Manchester

37

Optimising the ALC Tableau Algorithm: SAT Optimisations

Finally: ALC extends propositional logic

Ã heuristics developed for SAT are relevant

Summing up: optimisations are possible at each aspect of tableau algorithm

can dramatically enhance performance

Ã do they interact?

Ã how?

Ã which combination works best for which “cases”?

Ã is the optimised algorithm still correct?

University of
Manchester

38

Stuff seen today so far

• standard reasoning problems for ALC ontologies

• and their relationship & reducibility

• tableau algorithm for ALC ontologies that

– requires blocking for termination

– is a decision procedure for all standard ALC reasoning problems

– works on a set of ABoxes or in a non-deterministic way with backtracking

– is implemented in state-of-the-art reasoners

• proof of soundness, completeness, and termination of tableau algorithm

• some optimisations

Next: extension to more expressive DLs

University of
Manchester

39

A tableau algorithm for ALCI ontologies

Example: Does ∀parent.∀child.Blond ⊑ Blond w.r.t. T = {⊤ ⊑ ∃parent.⊤}?

Motivation: with inverse roles, one can use both

has-child and is-child-of

has-part and is-part-of

.

and capture their interaction

ALCI is the extension of ALC with inverse roles R− in the place of role names:

(r−)I := {〈y, x〉 | 〈x, y〉 ∈ rI}.

Example: Does ∀parent.∀parent−.Blond ⊑ Blond w.r.t. T = {⊤ ⊑ ∃parent.⊤}?

Is ∃r.∃s.A satisfiable w.r.t. T = {⊤ ⊑ ∀s−.∀r−.¬A}?

University of
Manchester

40

A tableau algorithm for ALCI ontologies

Modifications necessary to handle inverse roles: consider role assertions in both directions

① introduce Inv(r) =

{

r− if r is a role name

s if r = s−

② call y an r-neighbour of x if either (x, y) : r ∈ A or (y, x) : Inv(r) ∈ A

③ substitute “(x, y) : r ∈ A” in the ∀- and ∃-rule with “has an r-neighbour y”...

University of
Manchester

41

Tableau Expansion Rules for ALCI

⊓-rule: if a : C1 ⊓ C2 ∈ A, a is not blocked, and {a : C1, a : C2} 6⊆ A

then replace A with A ∪ {a : C1, a : C2}

⊔-rule: if a : C1 ⊔ C2 ∈ A, a is not blocked, and {a : C1, a : C2} ∩ A = ∅

then replace A with A ∪ {a : C1} and A ∪ {a : C2}

∃-rule: if a : ∃s.C ∈ A, a is not blocked, and there is no

s-neighbour b of a with b : C ∈ A

then create a new individual c and replace A with A ∪ {(a, c) : s, c : C}

∀-rule: if a : ∀s.C ∈ A, and a has an

s-neighbour b in A that is not blocked with b : C 6∈ A

then replace A with A ∪ {b : C}

GCI-rule: if C ⊑ D ∈ T , a is not blocked, and

if C is a concept name, a : C ∈ A but a : D 6∈ A,

then replace A with A ∪ {a : D}

else if a : (¬̇C ⊔ D) 6∈ A for a in A,

then replace A with A ∪ {a : (¬̇C ⊔ D)}

University of
Manchester

42

A tableau algorithm for ALCI ontologies

Example: Is A satisfiable w.r.t. {A ⊑ ∃R−.A ⊓ (∀R.(¬A ⊔ ∃S.B))}?

Is B satisfiable w.r.t. {B ⊑ ∃R.B ⊓ ∀R−.∀R−.(A ⊓ ¬A)}?

University of
Manchester

43

A tableau algorithm for ALCI ontologies

Example: Is A satisfiable w.r.t. {A ⊑ ∃R−.A ⊓ (∀R.(¬A ⊔ ∃S.B))}?

Is B satisfiable w.r.t. {B ⊑ ∃R.B ⊓ ∀R−.∀R−.(A ⊓ ¬A)}?

The algorithm is no longer sound!

“subset-blocking” ({C | a : C ∈ A} ⊆ {C | b : C ∈ A}) no longer suffices:

In case we have

• a freshly introduced individual (i.e., not present in input ontology) a,

• an individual b with

– L(a) := {C | a : C ∈ A} = {C | b : C ∈ A} =: L(b),

– b is older than a (i.e., b was introduced earlier than a)

we say b blocks a and we say a is blocked.

University of
Manchester

44

A tableau algorithm for ALCI ontologies

Lemma 4: Let O be an ALCI ontology in NNF. Then

1. the algorithm terminates when applied to O

2. if the rules generate a complete & clash-free ABox, then O is consistent

3. if O is consistent, then the rules generate a clash-free & complete ABox

University of
Manchester

45

A tableau algorithm for ALCI ontologies

Proof: 1. (Termination): identical to the ALC case.

2. (Soundness): again, construct a finite (non-tree) model from

a complete, clash-free ABox Af for O

∆I := ...

AI := ...

rI := {〈x, y〉 ∈ ∆I2
| y is or blocks an r-neighbour of x or }

Again, prove that, for all x ∈ ∆I :

(C1) x : D ∈ Bf implies x ∈ DI

(C2) C ⊑ D ∈ O implies CI ⊆ DI

➙ I is a model of (T , Bf) (I defines all role assertions by definition)

➙ I is a model of (T , A) because A ⊆ Bf

➙ O = (T , A) is consistent

University of
Manchester

46

A tableau algorithm for ALCI ontologies

3. Completeness: again, use model I of O and a mapping π to find a complete &

clash-free ABox.

Corollary: • Consistency of ALCI ontologies is decidable

• ALCI has the finite model property

It can be shown that

• pure ALCI-concept satisfiability (without TBoxes) is

PSpace-complete, just like ALC

• these algorithms can be extended to ABoxes and thus ontology consistency; rather

straighforward

University of
Manchester

47

Even more expressive DLs

Most reasoners support more expressive DLs, in particular with number restrictions

(aka cardinality restrictions or counting quantifiers).

They generalize

• existential restrictions ∃r.C

“there is at least one r-successor that is an instance of C”

to at-least restrictions (≥ n r.C)

“there are ≥ n r-successors that are instances of C”, for a non-neg. integer n,

e.g., Bike ⊑ (≥ 2hasPart.Wheel)

• universal restrictions ∀r.C

“there are zero r-successor that are instances of ¬C”

to at-most restrictions (≤ n r.D)

“there are at most n r-successors that are instances of D” for a non-neg. integer n,

e.g., Bike ⊑ (≤ 2hasPart.Wheel)

University of
Manchester

48

The DL ALCQI

ALCQI is the extension of ALCI with cardinality restrictions, i.e.,

concepts are built like ALCI concepts, plus (≥ n r.C) and (≥
n r.C),

where C is an ALCQI concept.

An interpretation I has to satisfy, in addition:

(≥ n r.C)I = {x ∈ ∆I | |{y | (x, y) ∈ rI and y ∈ CI}| ≥ n}
(≤ n r.C)I = {x ∈ ∆I | |{y | (x, y) ∈ rI and y ∈ CI}| ≤ n}

TBoxes, ABoxes, and Ontologies are defined analogously.

Observation: ALCQI ontologies do not enjoy the finite model property.

Example: for T = {A ⊑ ∃r.A ⊓ (≤ 1 r−.⊤)}, the concept (¬A ⊓ ∃r.A) is

satisfiable w.r.t. T , but only in infinite models.

Question: Is ALCQI still decidable?

University of
Manchester

49

A Tableau algorithm for ALCQI

ALCQI is decidable (in ExpTime), but tableau algorithm goes beyond scope of this

course.

Main changes to ALCI tableau required for handling cardinality restrictions:

• blocking:

– ALC: subset blocking

– ALCI : equality blocking

– ALCQI : double equality blocking (between 2 pairs of individuals)

• new rules:

– (obvious) ≥-rule that generates n r-neighbours in C for (≥ n r.C)

– (obvious) ≤-rule that merges r-neighbours in C for (≤ n r.C) in case there are

more than n

– ?-rule to determine/guess, for x : (≤ n r.C), which of x’s r-successors are Cs

(and which are ¬Cs)

University of
Manchester

50

A Tableau algorithm for ALCQI

ALCQI is decidable (in ExpTime), but tableau algorithm goes beyond scope of this

course.

Main changes to ALCI tableau required for handling cardinality restrictions:

• tableau algorithm is no longer monotonic (because ≤-rule merges individuals)

⇒ yo-yo effect might lead to non-termination

⇒ use explicit inequality relation on individuals, to avoid yo-yo-ing, e.g., when

– x : (≥ 3 r.⊤) leads to generation of r-successors of x via ≥-rule

in case there are less than 3 of them in r

– x : (≤ 2 r.⊤) leads to merging of r-successors of x via ≤-rule

if there are more than 2 of them

University of
Manchester

51

Thank you for your attention!

University of
Manchester

52

