Description Logics: a Nice Family of Logics

— Automata-Based Decision Procedures —

Uli Sattler! Thomas Schneider?

1School of Computer Science, University of Manchester, UK

2Department of Computer Science, University of Bremen, Germany

ESSLLI, 8 August 2012

Uli Sattler, Thomas Schneider DL: Automata

Plan for today

Yesterday, we looked at tableau-based decision procedures:
@ based on the simple idea of model construction
@ yield the finite model property and the tree model property
@ often require hard termination proofs

@ often don't yield tight upper complexity bounds

Today, we want to explore automata-based decision procedures:
@ elegant and simple
@ don't require termination proofs
@ yield tight EXPTIME upper bounds

@ are difficult to implement

)
Thanks to Carsten Lutz for most of the material on these slides. u

Uli Sattler, Thomas Schneider DL: Automata 2

Automata basics ALC upper bound

Plan for today

@ Automata basics
© An ExpTiME upper bound for ALC
© Extensions

@ Final remarks

Uli Sattler, Thomas Schneider DL: Automata

Extensions

Final remarks

Automata basics ALC upper bound Extensions Final remarks

© Automata basics
© An ExpTiME upper bound for ALC
Q Extensions

0 Final remarks

Automata basics

Automata

Types of automata:
e Finite automata (DFA/NFA): work on finite words
@ w-automata: work on infinite words
@ Automata on finite trees

@ Automata on infinite trees

Uli Sattler, Thomas Schneider DL: Automata

Automata basics

Trees

Infinite k-ary tree:

@ Nodes € {1,..., k}*
£,0,...,k00,... kk,...

@ ¢ denotes the root

2-ary tree

@ node n has successors
nl, ..., nk (ordered!)

@ e.g., node 12 is the
2Md_|eft succ. of the 15t-left succ. of the root

k-ary M-tree T: e 2-ary {a,b}-tree

@ nodes labelled @ e

with elements from M

eeg: T(12)=a B @ (@ (2
Q: T(22) =7 AN A Y

Uli Sattler, Thomas Schneider DL: Automata 6

Automata basics

Automata and DLs

Idea for deciding satisfiability w.r.t. TBoxes:

© Choose a DL that has the tree model property

(infinite trees are ok)

@ For concept Cp and TBox T, define automaton A(Cy, T)
that accepts precisely the tree models of Cy and T

© Check whether the language recognised by A(Cp, T) is empty

(If you don’t have tree model property: try some tricks)

Establish ExpTiME upper bound:
e Size of A(Cy, T) is usually exponential in the size of Cy and T

@ Emptiness can be decided in deterministic polynomial time

Uli Sattler, Thomas Schneider DL: Automata

Automata basics

Looping tree automata

LTAs are tuples A = (S, M, I, A) where:
@ S is a finite set of states
@ M is an alphabet
e /| C Q is a set of initial states
i.e., every run (= computation) of A starts in a state from /
o A C S X M x S¥is a transition relation

o i.e., A consists of tuples (so, a, 51, .., Sk), meaning:

“if A is in state sy and reads a in the current node's label,

A next visits the k successor nodes in states sy, ..., sk, resp.”

e non-deterministic choices:
several tuples starting with the same (sp, a) are allowed

Language recognised by A: a set of k-ary M-trees

Uli Sattler, Thomas Schneider DL: Automata

Automata basics

Example automaton and its runs

Example: LTA A on alphabet {a, b}

S ={s, t}
M = {a, b}
I = {s.}

Recognised language: all trees with infinite a-path starting at root @_))

Uli Sattler, Thomas Schneider DL: Automata 9

Automata basics

Definition of a run

Example: LTA on alphabet {a, b}

S = {s,, t} A = { (sa, 3,54, 1),
M = {a, b} (Say @, t, 53),
I ={s.} (t,a,t, t),

(t,b,t,t) }

Definition: a run r of Aon T
assigns to each node in T a state from S such that

@ T's root is labelled with a state from /
o ((r(n), T(n), r(n1),...,r(nk)) € A
for all nodes n € {1,..., k}*
Recognised language: L(.A) = {T | there is a run of Aon T} @_))

Uli Sattler, Thomas Schneider DL: Automata 10

Automata basics ALC upper bound Extensions Final remarks

@ Automata basics
© An ExpTIME upper bound for ALC
e Extensions

e Final remarks

ALC upper bound

Roadmap

Goal: prove that ALC-satisfiability w.r.t. TBoxes is in EXPTIME

2 steps:

© Represent tree interpretations as Hintikka trees
o Tree models have labelled edges (roles), automata trees don't

e Convenient to label nodes with complex concepts

@ Define automaton that accepts exactly those Hintikka trees
that represent models for the input concept + TBox

This reduces sat. w.r.t. TBoxes to emptiness of the automaton

Y

Uli Sattler, Thomas Schneider DL: Automata 12

ALC upper bound

Hintikka sets

. are used as node labels in Hintikka trees (~» constitute set M)

Intuitively, a HS contains relevant concepts satisfied by some
domain element

Definition: Let Cp, 7 be in NNF; sub(Co, 7) = sub(T U {a: Go})
(i.e., sub(Co, T") consists of all subconcepts of C, in T,
and of “C U D foreach CE D € T)
A Hintikka set for Cp and 7 is a subset H C sub(Cp, 7') such that:
(H1) fCMDegH,thenC € Hand D € H.
H) FCUDEH,thenC € HorDeH.
(H3) For all C € sub(Co, T),
‘H does not contain C and - C at the same time.
(H) fCE D e T,then =2CUD € H.

i
$(Co, T): set of all Hintikka sets for Cp and T u

Uli Sattler, Thomas Schneider DL: Automata 13

ALC upper bound

Excursion: Hintikka sets vs. 1-types
A Hintikka set

@ contains relevant concepts satisfied by some domain element
@ does not need to have “full knowledge” about that element

@ in particular, can be empty

A 1-type (aka type) has stronger requirements:

@ contains all concepts satisfied by some domain element
@ thus has “full knowledge™” about that domain element
@ is a subset t C sub(Cp, T) such that:
(T)) CNDetiffCetandD € t.
(T2) CUDEtiffCEtorDE L.
(T3) Forall C € sub(Co, T), C € tiff 5C ¢ t.
(T4) f CC DE T, then =CUD € t. W

Uli Sattler, Thomas Schneider DL: Automata 14

ALC upper bound

Hintikka trees

@ Let k be the number of successors a domain element can be
forced to have:

k = #{D € sub(Cy,T) | D is of the form 3R.C}

o Hintikka sets will be k-ary $(Co, 7)-trees

How can we deal with the non-labelled edges?

@ Intuitively, there is one potential successor for each IR.C
~» The connecting role for each successor is already fixed!

@ Enumerate all concepts AR.C using Eq, ..., Ex

o If E; =3dR.Cis ...

e in node n's label, then the role between n and ni is R

e not in n's label, then the connection btn. n, ni is a “dummy”

Uli Sattler, Thomas Schneider DL: Automata

Y

15

ALC upper bound

Example

Let k =2 E; =3R.C

d = dummy

Uli Sattler, Thomas Schneider

E; =3R.D

DL: Automata

E; =3S.D

ALC upper bound

Hintikka Trees I

Next step: describe relationship between

@ the Hintikka set of each node n and

@ the Hintikka sets of n's successors

Definition:

A (k+1)-tuple of Hintikka sets #H, M1, ..., Hg is matching if,

forevery i=1,..., k with £, = 3R.C € H:

(M) C € H; (for satisfying E;, it suffices to consider i-th successor)

(M2) if VR.D € H, then D € H,; W

Uli Sattler, Thomas Schneider DL: Automata 17

ALC upper bound

Hintikka Trees IlI

Definition
A Hintikka tree for Cy and T is a k-ary $(Co, T)-tree such that:
(1)) Go € T(e) —i.e., Gois in the root's label

(T2) For every node n,
the tuple (T(n), T(nl),..., T(nk)) is matching.

Lemma
(o is satisfiable w.r.t. 7 iff there is a Hintikka tree for Cy and T.J

Y

Uli Sattler, Thomas Schneider DL: Automata 18

ALC upper bound

Constructing automata |

Basic idea:

@ Use Hintikka sets as states and define A such that
so = ¢ inall tuples (sp,%,s1,...,5) € A
Recal: A C S x M x Sk
~ If there is an accepting run, it will be identical to the tree

@ Use initial states to ensure that Gy € T(¢)

@ Check matching via transition relation, e.g.,
whenever (sp, ¢, s1,...,5¢) € A and E; = IR.C € s, then:
M1) C€Es;
(M2) ifVR.D € sy, then D € s;

Uli Sattler, Thomas Schneider DL: Automata 19

ALC upper bound

Constructing automata I
Automaton for Gy and T
A(Co, T) = (5, M, 1, A), where

S :ﬁ(vaT)
M :ﬁ(cf)vT)
I={seS| G € s}
and (sg, 4, s1,...,5¢) € Aiff

@ sp=/¢ and

e the tuple (sp, s1, ..., Sk) is matching
Lemma
T € L(A(Co,T)) iff T is a Hintikka tree for Cp and 7. J @

Uli Sattler, Thomas Schneider DL: Automata 20

ALC upper bound

Results

Size of A(Co, T): Let|Go, T| = |G| + |T].
Number of Hintikka sets exponential in |Gy, T|
= |Q|, ||, M| exponential in |Co, T|
= |A| exponential in |Co, T| since |A| = |M]| - |S|<*1

= Size of A(Cp, T) exponential in |Co, T |

Decision procedure for ALC-concept satisfiability w.r.t. TBoxes:
@ Given Gy, T, construct A(Cop, T) - in time exp. in |Gy, T |
@ Test emptiness of A(Cp,7) - in time polynomial in |A(Co, T)|

Theorem
ALC-concept satisfiability w.r.t. TBoxes is in EXPTIME. l

Complexity bound is optimal: ALC with TBoxes is EXPTIME-hard.

Uli Sattler, Thomas Schneider DL: Automata 21

ALC upper bound

Emptiness problem of looping automata

Determine in |S| rounds the set of blocking states B C S:
o Initialisation:
Set By +— {s € S| thereis no (s, a,s,...,s¢) € A}
@ Round i:

Set B < Bi_1U{s € S| forall (s,a,s1,...,5¢) € A
there is 1<i< k with s, € B;_1}

@ Set B = B|5|
Lemma
L(A):(Z) iff 1 C B. J

Computation of B is clearly in polynomial time. W

Uli Sattler, Thomas Schneider DL: Automata 22

Automata basics ALC upper bound Extensions Final remarks

@ Automata basics
© An ExpTiME upper bound for ALC
© Extensions

e Final remarks

Extensions

Transfer to the other standard reasoning problems

The procedure shown can be applied to decide ...
TBox Consistency. These are equivalent:

@ 7 is consistent

@ some fresh® Cy is satisfiable w.r.t. T

Consistency of ontologies. Transform (7, .A) into (77, A’), where

o A’ consists of a single concept assertion a: Cy
o but 77 is in ALCI Feg

Then test satisfiability of (Cop, 77)
with the decision procedure extended to ALCT Freg

Other reasoning problems: as shown on Tuesday

lie., G or r doesn't occur in T
Uli Sattler, Thomas Schneider DL: Automata 24

Extensions

Extension to ALCZ

Recall: ALCT = ALC + inverse roles: IR™.C and VR™.C

Question: what do we need to change in the

definition of a Hintikka set?

definition of a Hintikka tree?

construction of the automaton?

@ elsewhere?

Answer: only

@ the matching condition for Hintikka trees

@ and its “encoding” in the automaton’s transition function

From now on, R denotes a role or its inverse. @

Uli Sattler, Thomas Schneider DL: Automata 25

Extensions

Adapting Hintikka Trees to ALCZ

Remember: they describe relationship between
@ the Hintikka set of each node n and

@ the Hintikka sets of n's successors

Definition:
A (k+1)-tuple of Hintikka sets H, H1, . .., H is matching if,
foreveryi=1,...,k with £, = 3R.C € H:

(M) C € H; (for satisfying E;, it suffices to consider i-th successor)
(M2) if VR.D € H, then D € H;

(M3) if VInv(R).D € H;, then D € HJ Inv(P)=P~, Inv(P™)=P U

Uli Sattler, Thomas Schneider DL: Automata 26

Extensions

Adapting the automata construction to ALCT

Remember — basic idea:
@ Use Hintikka sets as states and define A such that
so = ¢ inall tuples (sp,%,s1,...,5) € A
Recall: A C S x M x Sk
~» If there is an accepting run, it will be identical to the tree
@ Use initial states to ensure that Cp € T(¢)

@ Check matching via transition relation, e.g.,
whenever (s, ¢, s1,...,5¢) € A and E; = 3R.C € s, then:
(M) Ces
(M2) if VR.D € sy, then D € s;

(M3) ifVInv(R).D € s;, thenD € % |

Uli Sattler, Thomas Schneider DL: Automata 27

Automata basics ALC upper bound Extensions Final remarks

@ Automata basics
© An ExpTiME upper bound for ALC
Q Extensions

@ Final remarks

Final remarks

What we haven't covered

@ More expressive DLs ~» more complex automata models
o Biichi tree automata for eventualities (trans. closure of roles)

e and variants thereof
@ Alternative approach to ExPTIME-decision procedures:
alternating automata
e States are formulas, not sets of formulas
o Size of automaton is polynomial in |Gy, T|

o Emptiness check is in EXPTIME
~ avoid the problem of constructing an exp. large automaton

Uli Sattler, Thomas Schneider DL: Automata

Final remarks

Automata versus tableaux: complexity

Tableau algorithms

@ usually don't yield tight upper bounds
(e.g., EXPSPACE for ALC)

~» are usually not worst-case optimal
@ but can be optimised in many ways

~ are efficient in many cases

Automata-based algorithms
e often yield tight upper bounds (e.g., ExPTIME for ALC)
~~ are often worst-case optimal
@ rely on the construction of an exponential-size automaton
~ are exponential in the best and average case too

~ leave less room for optimisations @

Uli Sattler, Thomas Schneider DL: Automata

30

Final remarks

Automata versus tableaux: summary

Tableau algorithms
@ based on a simple idea (model construction)
@ amenable to optimisation techniques
@ basis for state-of-the-art DL reasoners
6 bad for proving deterministic upper time bounds

© termination proofs can become very hard

Automata-based algorithms
@ elegant and simple
@ well-suited for proving EXPTIME upper bounds
@ no termination proofs
© no optimised implementations exist (?)

That's all for today. Thanks! Y

Uli Sattler, Thomas Schneider DL: Automata 31

