
Automata basics ALC upper bound Extensions Final remarks

Description Logics: a Nice Family of Logics

— Automata-Based Decision Procedures —

Uli Sattler
1 Thomas Schneider 2

1School of Computer Science, University of Manchester, UK
2Department of Computer Science, University of Bremen, Germany

ESSLLI, 8 August 2012

Uli Sattler, Thomas Schneider DL: Automata 1

Automata basics ALC upper bound Extensions Final remarks

Plan for today

Yesterday, we looked at tableau-based decision procedures:

based on the simple idea of model construction

yield the finite model property and the tree model property

often require hard termination proofs

often don’t yield tight upper complexity bounds

Today, we want to explore automata-based decision procedures:

elegant and simple

don’t require termination proofs

yield tight EXPTIME upper bounds

are difficult to implement

Thanks to Carsten Lutz for most of the material on these slides.

Uli Sattler, Thomas Schneider DL: Automata 2

Automata basics ALC upper bound Extensions Final remarks

Plan for today

1 Automata basics

2 An EXPTIME upper bound for ALC

3 Extensions

4 Final remarks

Uli Sattler, Thomas Schneider DL: Automata 3

Automata basics ALC upper bound Extensions Final remarks

And now . . .

1 Automata basics

2 An EXPTIME upper bound for ALC

3 Extensions

4 Final remarks

Uli Sattler, Thomas Schneider DL: Automata 4

Automata basics ALC upper bound Extensions Final remarks

Automata

Types of automata:

Finite automata (DFA/NFA): work on finite words

ω-automata: work on infinite words

Automata on finite trees

Automata on infinite trees

Uli Sattler, Thomas Schneider DL: Automata 5

Automata basics ALC upper bound Extensions Final remarks

Trees

Infinite k-ary tree:

Nodes ∈ {1, . . . , k}∗:

ε, 0, . . . , k, 00, . . . , kk, . . .

ε denotes the root

node n has successors

n1, . . . , nk (ordered!)

e.g., node 12 is the

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ε

1 2

11 12

2-ary tree

2
nd

-left succ. of the 1
st

-left succ. of the root

k-ary M-tree T :

nodes labelled

with elements from M
e.g.: T (12) = a

Q: T (22) = ?

a

b a

b a a a
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2-ary {a,b}-tree

Uli Sattler, Thomas Schneider DL: Automata 6

Automata basics ALC upper bound Extensions Final remarks

Automata and DLs

Idea for deciding satisfiability w.r.t. TBoxes:
1 Choose a DL that has the tree model property

(infinite trees are ok)

2 For concept C0 and TBox T , define automaton A(C0, T)
that accepts precisely the tree models of C0 and T

3 Check whether the language recognised by A(C0, T) is empty

(If you don’t have tree model property: try some tricks)

Establish EXPTIME upper bound:

Size of A(C0, T) is usually exponential in the size of C0 and T

Emptiness can be decided in deterministic polynomial time

Uli Sattler, Thomas Schneider DL: Automata 7

Automata basics ALC upper bound Extensions Final remarks

Looping tree automata

LTAs are tuples A = (S, M, I,∆) where:

S is a finite set of states
M is an alphabet
I ⊆ Q is a set of initial states

i.e., every run (= computation) of A starts in a state from I
∆ ⊆ S × M × Sk

is a transition relation
i.e., ∆ consists of tuples (s0, a, s1, . . . , sk), meaning:

“if A is in state s0 and reads a in the current node’s label,

A next visits the k successor nodes in states s1, . . . , sk , resp.”

non-deterministic choices:

several tuples starting with the same (s0, a) are allowed

Language recognised by A : a set of k-ary M-trees

Uli Sattler, Thomas Schneider DL: Automata 8

Automata basics ALC upper bound Extensions Final remarks

Example automaton and its runs

Example: LTA A on alphabet {a, b}

S = {sa, t} ∆ = { (sa, a, sa, t),
M = {a, b} (sa, a, t, sa),

I = {sa} (t, a, t, t),
(t, b, t, t) }

a

b a

b a a a
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

sa

t sa

t t t sa

a

b a

b a b b
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

sa

t sa

t t t sa

Stuck!

Recognised language: all trees with infinite a-path starting at root

Uli Sattler, Thomas Schneider DL: Automata 9

Automata basics ALC upper bound Extensions Final remarks

Definition of a run

Example: LTA on alphabet {a, b}

S = {sa, t} ∆ = { (sa, a, sa, t),
M = {a, b} (sa, a, t, sa),

I = {sa} (t, a, t, t),
(t, b, t, t) }

Definition: a run r of A on T
assigns to each node in T a state from S such that

T ’s root is labelled with a state from I�
(r(n), T (n), r(n1), . . . , r(nk)

�
∈ ∆

for all nodes n ∈ {1, . . . , k}∗

Recognised language: L(A) = {T | there is a run of A on T}

Uli Sattler, Thomas Schneider DL: Automata 10

Automata basics ALC upper bound Extensions Final remarks

And now . . .

1 Automata basics

2 An EXPTIME upper bound for ALC

3 Extensions

4 Final remarks

Uli Sattler, Thomas Schneider DL: Automata 11

Automata basics ALC upper bound Extensions Final remarks

Roadmap

Goal: prove that ALC-satisfiability w.r.t. TBoxes is in EXPTIME

2 steps:
1 Represent tree interpretations as Hintikka trees

Tree models have labelled edges (roles), automata trees don’t

Convenient to label nodes with complex concepts

2 Define automaton that accepts exactly those Hintikka trees

that represent models for the input concept + TBox

This reduces sat. w.r.t. TBoxes to emptiness of the automaton

Uli Sattler, Thomas Schneider DL: Automata 12

Automata basics ALC upper bound Extensions Final remarks

Hintikka sets

. . . are used as node labels in Hintikka trees (❀ constitute set M)

Intuitively, a HS contains relevant concepts satisfied by some

domain element

Definition: Let C0, T be in NNF; sub(C0, T) = sub(T ∪ {a :C0})
(i.e., sub(C0, T) consists of all subconcepts of C , in T ,

and of ¬̇C � D for each C � D ∈ T)

A Hintikka set for C0 and T is a subset H ⊆ sub(C0, T) such that:

(H1) If C � D ∈ H, then C ∈ H and D ∈ H.

(H2) If C � D ∈ H, then C ∈ H or D ∈ H.

(H3) For all C ∈ sub(C0, T),
H does not contain C and ¬̇C at the same time.

(H4) If C � D ∈ T , then ¬̇C � D ∈ H.

H(C0, T): set of all Hintikka sets for C0 and T

Uli Sattler, Thomas Schneider DL: Automata 13

Automata basics ALC upper bound Extensions Final remarks

Excursion: Hintikka sets vs. 1-types

A Hintikka set
contains relevant concepts satisfied by some domain element

does not need to have “full knowledge” about that element

in particular, can be empty

A 1-type (aka type) has stronger requirements:

contains all concepts satisfied by some domain element

thus has “full knowledge” about that domain element

is a subset t ⊆ sub(C0, T) such that:

(T1) C � D ∈ t iff C ∈ t and D ∈ t.

(T2) C � D ∈ t iff C ∈ t or D ∈ t.

(T3) For all C ∈ sub(C0, T), C ∈ t iff ¬̇C /∈ t.

(T4) If C � D ∈ T , then ¬̇C � D ∈ t.

Uli Sattler, Thomas Schneider DL: Automata 14

Automata basics ALC upper bound Extensions Final remarks

Hintikka trees

Let k be the number of successors a domain element can be

forced to have:

k = #{D ∈ sub(C0, T) | D is of the form ∃R.C}

Hintikka sets will be k-ary H(C0, T)-trees

How can we deal with the non-labelled edges?
Intuitively, there is one potential successor for each ∃R.C

❀ The connecting role for each successor is already fixed!

Enumerate all concepts ∃R.C using E1, . . . , Ek

If Ei = ∃R.C is . . .

in node n’s label, then the role between n and ni is R
not in n’s label, then the connection btn. n, ni is a “dummy”

Uli Sattler, Thomas Schneider DL: Automata 15

Automata basics ALC upper bound Extensions Final remarks

Example

Let k = 2 E1 = ∃R.C E2 = ∃R.D E3 = ∃S.D
d = dummy

∃R.C

∃R.C
∃S.D

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

R

R d d

d

d d dS

d

d d

Uli Sattler, Thomas Schneider DL: Automata 16

Automata basics ALC upper bound Extensions Final remarks

Hintikka Trees II

Next step: describe relationship between

the Hintikka set of each node n and

the Hintikka sets of n’s successors

H

H1 Hi Hk.

� Ei = ∃R.C

Definition:
A (k +1)-tuple of Hintikka sets H,H1, . . . ,Hk is matching if,

for every i = 1, . . . , k with Ei = ∃R.C ∈ H:

(M1) C ∈ Hi (for satisfying Ei , it suffices to consider i-th successor)

(M2) if ∀R.D ∈ H, then D ∈ Hi

Uli Sattler, Thomas Schneider DL: Automata 17

Automata basics ALC upper bound Extensions Final remarks

Hintikka Trees III

Definition
A Hintikka tree for C0 and T is a k-ary H(C0, T)-tree such that:

(T1) C0 ∈ T (ε) – i.e., C0 is in the root’s label

(T2) For every node n,

the tuple

�
T (n), T (n1), . . . , T (nk)

�
is matching.

Lemma

C0 is satisfiable w.r.t. T iff there is a Hintikka tree for C0 and T .

Uli Sattler, Thomas Schneider DL: Automata 18

Automata basics ALC upper bound Extensions Final remarks

Constructing automata I

Basic idea:

Use Hintikka sets as states and define ∆ such that

s0 = � in all tuples (s0, �, s1, . . . , sk) ∈ ∆

Recall: ∆ ⊆ S × M × Sk

❀ If there is an accepting run, it will be identical to the tree

Use initial states to ensure that C0 ∈ T (ε)

Check matching via transition relation, e.g.,

whenever (s0, �, s1, . . . , sk) ∈ ∆ and Ei = ∃R.C ∈ s0, then:

(M1) C ∈ si

(M2) if ∀R.D ∈ s0, then D ∈ si

Uli Sattler, Thomas Schneider DL: Automata 19

Automata basics ALC upper bound Extensions Final remarks

Constructing automata II

Automaton for C0 and T :
A(C0, T) = (S, M, I,∆), where

S = H(C0, T)

M = H(C0, T)

I = {s ∈ S | C0 ∈ s}

and (s0, �, s1, . . . , sk) ∈ ∆ iff

s0 = � and

the tuple (s0, s1, . . . , sk) is matching

Lemma

T ∈ L(A(C0, T)) iff T is a Hintikka tree for C0 and T .

Uli Sattler, Thomas Schneider DL: Automata 20

Automata basics ALC upper bound Extensions Final remarks

Results

Size of A(C0, T): Let |C0, T | = |C0| + |T |.
Number of Hintikka sets exponential in |C0, T |

⇒ |Q|, |I|, |M| exponential in |C0, T |
⇒ |∆| exponential in |C0, T | since |∆| = |M| · |S|k+1

⇒ Size of A(C0, T) exponential in |C0, T |

Decision procedure for ALC-concept satisfiability w.r.t. TBoxes:
1 Given C0, T , construct A(C0, T) – in time exp. in |C0, T |
2 Test emptiness of A(C0, T) – in time polynomial in |A(C0, T)|

Theorem

ALC-concept satisfiability w.r.t. TBoxes is in EXPTIME.

Complexity bound is optimal: ALC with TBoxes is EXPTIME-hard.

Uli Sattler, Thomas Schneider DL: Automata 21

Automata basics ALC upper bound Extensions Final remarks

Emptiness problem of looping automata

Determine in |S| rounds the set of blocking states B ⊆ S:

Initialisation:

Set B0 ← {s ∈ S | there is no (s, a, s1, . . . , sk) ∈ ∆}

Round i :
Set Bi ← Bi−1 ∪ {s ∈ S | for all (s, a, s1, . . . , sk) ∈ ∆

there is 1� i �k with si ∈Bi−1}

Set B = B|S|

Lemma

L(A) = ∅ iff I ⊆ B.

Computation of B is clearly in polynomial time.

Uli Sattler, Thomas Schneider DL: Automata 22

Automata basics ALC upper bound Extensions Final remarks

And now . . .

1 Automata basics

2 An EXPTIME upper bound for ALC

3 Extensions

4 Final remarks

Uli Sattler, Thomas Schneider DL: Automata 23

Automata basics ALC upper bound Extensions Final remarks

Transfer to the other standard reasoning problems

The procedure shown can be applied to decide . . .

TBox Consistency. These are equivalent:

T is consistent

some fresh1 C0 is satisfiable w.r.t. T

Consistency of ontologies. Transform (T ,A) into (T �,A�), where

A�
consists of a single concept assertion a :C0

but T �
is in ALCIFreg

Then test satisfiability of (C0, T �
)

with the decision procedure extended to ALCIFreg

Other reasoning problems: as shown on Tuesday

1i.e., C0 or r doesn’t occur in T
Uli Sattler, Thomas Schneider DL: Automata 24

Automata basics ALC upper bound Extensions Final remarks

Extension to ALCI

Recall: ALCI = ALC + inverse roles: ∃R−.C and ∀R−.C

Question: what do we need to change in the

definition of a Hintikka set?

definition of a Hintikka tree?

construction of the automaton?

elsewhere?

Answer: only

the matching condition for Hintikka trees

and its “encoding” in the automaton’s transition function

From now on, R denotes a role or its inverse.

Uli Sattler, Thomas Schneider DL: Automata 25

Automata basics ALC upper bound Extensions Final remarks

Adapting Hintikka Trees to ALCI

Remember: they describe relationship between

the Hintikka set of each node n and

the Hintikka sets of n’s successors

H

H1 Hi Hk.

� Ei = ∃R.C

Definition:
A (k +1)-tuple of Hintikka sets H,H1, . . . ,Hk is matching if,

for every i = 1, . . . , k with Ei = ∃R.C ∈ H:

(M1) C ∈ Hi (for satisfying Ei , it suffices to consider i-th successor)

(M2) if ∀R.D ∈ H, then D ∈ Hi

(M3) if ∀ Inv(R).D ∈ Hi , then D ∈ H Inv(P)=P−, Inv(P−)=P

Uli Sattler, Thomas Schneider DL: Automata 26

Automata basics ALC upper bound Extensions Final remarks

Adapting the automata construction to ALCI

Remember – basic idea:

Use Hintikka sets as states and define ∆ such that

s0 = � in all tuples (s0, �, s1, . . . , sk) ∈ ∆

Recall: ∆ ⊆ S × M × Sk

❀ If there is an accepting run, it will be identical to the tree

Use initial states to ensure that C0 ∈ T (ε)

Check matching via transition relation, e.g.,

whenever (s0, �, s1, . . . , sk) ∈ ∆ and Ei = ∃R.C ∈ s0, then:

(M1) C ∈ si

(M2) if ∀R.D ∈ s0, then D ∈ si

(M3) if ∀ Inv(R).D ∈ si , then D ∈ s0

Uli Sattler, Thomas Schneider DL: Automata 27

Automata basics ALC upper bound Extensions Final remarks

And now . . .

1 Automata basics

2 An EXPTIME upper bound for ALC

3 Extensions

4 Final remarks

Uli Sattler, Thomas Schneider DL: Automata 28

Automata basics ALC upper bound Extensions Final remarks

What we haven’t covered

More expressive DLs ❀ more complex automata models

Büchi tree automata for eventualities (trans. closure of roles)

and variants thereof

Alternative approach to EXPTIME-decision procedures:

alternating automata
States are formulas, not sets of formulas

Size of automaton is polynomial in |C0, T |
Emptiness check is in EXPTIME

❀ avoid the problem of constructing an exp. large automaton

Uli Sattler, Thomas Schneider DL: Automata 29

Automata basics ALC upper bound Extensions Final remarks

Automata versus tableaux: complexity

Tableau algorithms

usually don’t yield tight upper bounds

(e.g., EXPSPACE for ALC)

❀ are usually not worst-case optimal

but can be optimised in many ways

❀ are efficient in many cases

Automata-based algorithms

often yield tight upper bounds (e.g., EXPTIME for ALC)

❀ are often worst-case optimal

rely on the construction of an exponential-size automaton

❀ are exponential in the best and average case too

❀ leave less room for optimisations

Uli Sattler, Thomas Schneider DL: Automata 30

Automata basics ALC upper bound Extensions Final remarks

Automata versus tableaux: summary

Tableau algorithms
⊕ based on a simple idea (model construction)

⊕ amenable to optimisation techniques

⊕ basis for state-of-the-art DL reasoners

� bad for proving deterministic upper time bounds

� termination proofs can become very hard

Automata-based algorithms
⊕ elegant and simple

⊕ well-suited for proving EXPTIME upper bounds

⊕ no termination proofs

� no optimised implementations exist (?)

That’s all for today. Thanks!
Uli Sattler, Thomas Schneider DL: Automata 31

