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Complexity

We distinguish between

• cognitive complexity:

– e.g., how hard is it, for a human, to determine/understand O |=? C ⊑ D

– interesting, little understood topic

– relevant to provide tool support for ontology engineers

– more tomorrow

• computational complexity:

– e.g., how much time/space do we need to determine O |=? C ⊑ D

– well understood topic

– loads of results thanks to relationships DL - FOL - Modal Logic

– relevant to understand

∗ trade-off between expressivity (of a DL) and complexity of reasoning

∗ whether a given algorithm is optimal/can be improved
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Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• e.g., P = the set of consistent ALC ontologies and

M = the set of all ALC ontologies

• think of it as black box with

– input m ∈ M

– output “yes” if m ∈ P

“no” if m 6∈ P

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′

• m ∈ P iff π(m) ∈ P ′

• e.g., our translation t() from ALC to FOL

• e.g., our reduction from subsumption to ontology consistency
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Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• think of it as black box with

– input m ∈ M

– output: “yes” if m ∈ P , “no” otherwise

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′ with m ∈ P iff π(m) ∈ P ′
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Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• think of it as black box with

– input m ∈ M

– output: “yes” if m ∈ P , “no” otherwise

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′ with m ∈ P iff π(m) ∈ P ′

Fact: if P ⊆ M is reducible to P ′ ⊆ M ′, then

P is at most as hard/complexa as P ′

because P can be solved by solving P ′ via π
aOf course only for suitably complex problems.
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Computational Complexity

Some standard complexity classes:

Name Meaning Examples

L logarithmic space graph accessibility

P polynomial time model checking

NP nondeterministic pol. time prop. logic SAT

PSpace polynomial space Q-SAT

ExpTime exponential time

NExpTime nondeterministic exponential time

ExpSpace exponential space

. . . . . .

undecidable FOL-SAT
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Computational Complexity: Decision Problems

To determine that a problem P ⊆ M is

• in a complexity class C, it suffices to

– design/find an algorithm

– show that it is sound, complete, and terminating, and

– show that this algorithm runs, for every m ∈ M , in at most C resources

– ...this algorithm can be a reduction to a problem known to be in C

• hard for a complexity class C, we need to

– find a suitable problem P ′ ⊆ M ′ that is known to be hard for C and

– a reduction from P ′ to P

• complete for a complexity class C, we need to show that it is

– in C and

– hard for C

University of
Manchester

7



Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,

e.g., like this, on all problems of size 7:

University of
Manchester

8



Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,

e.g., or like this, on all problems of size 7:
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Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,

e.g., or like this, on all problems of size 7:
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Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,

e.g., or like this, on all problems of size 7:

University of
Manchester

11



Known Complexity Results from Days 1-3

• Yesterday, we have seen that ALCI satisfiability w.r.t. TBoxes is in ExpTime:

– automata-based approach runs in (best & worst case) exponential time

– can be extended to ABoxes & ontology consistency

✔ we can’t do better: already ALC satisfiability w.r.t. TBoxes is ExpTime-hard:

– but proof is cumbersome

– via a reduction of the halting problem of a polynomial-space-bounded alternating TM

• on Tuesday, we “saw” that ALCI satisfiability (no TBoxes) is in PSpace:

– non-deterministic tableau algorithm runs in polynomial space

– can be extended to ABoxes & ontology consistency

✔ we can’t do better: already ALC satisfiability is PSpace-hard:

– but proof is a bit cumbersome

– via a reduction of satisfiability of quanitified Boolean formulae
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Are all DLs in ExpTime?

Next, we will see that consistency of ALCQIO ontologies,

the extension of ALCI with

• number restrictions, in fact functionality restrictions (≤ 1r ⊤) and

• nominals, i.e., individual names used as concept names

⇒ is harder, namely NExpTime-hard

• this is typical phenomenon where

– combination of otherwise harmless constructors

– leads to increased complexity
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ALCQIO is NExpTime-hard

We follow hardness proof recipe:

• to show that consistency of ALCQIO ontologies is NExpTime-hard, we

– find a suitable problem P ′ ⊆ M ′ that is known to be NExpTime-hard and

– a reduction from P ′ to P

The NExpTime version of the domino problem
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Domino Problems

Definition: A domino system D = (D, H, V )

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions

H ⊆ D × D and V ⊆ D × D

A tiling for D is a function:

t : N × N → D such that

〈t(m, n), t(m + 1, n)〉 ∈ H and

〈t(m, n), t(m, n + 1)〉 ∈ V

Domino problems: classical given D, has D a tiling?

⇒ well-known that this problem is undecidable [Berger66]

NexpTime given D, has D a tiling for 2n × 2n square?

⇒ well-known that this problem is NExpTime-hard
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Reduction of NExpTime Domino Problem to ALCQIO Consistency

To reduce the NExpTime domino problem to ALCQIO consistency, we need to

• define a mapping π from domino problems to ALCQIO ontologies such that

• D has an 2n × 2n mapping iff π(D) is consistent and

• size of π(D) is polynomial in n
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Mapping a Domino System into an ALCQIO Ontology

We can express various obligations of the domino problem in ALC TBox axioms:

① each element carries exactly one domino type Di

Ã use unary predicate symbol Di for each domino type and

⊤ ⊑ D1 ⊔ . . . ⊔ Dd % each element carries a domino type

D1 ⊑ ¬D2 ⊓ . . . ⊓ ¬Dd % but not more than one

D2 ⊑ ¬D3 ⊓ . . . ⊓ ¬Dd % ...
... ...

Dd−1 ⊑ ¬Dd
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Mapping a Domino System into an ALCQIO Ontology

② every element has a horizontal (X-) successor and a vertical (Y -) successor

⊤ ⊑ ∃X.⊤ ⊓ ∃Y.⊤

③ every element satisfies D’s horizontal/vertical matching conditions:

D1 ⊑ ⊔
(D1,D)∈H

∀X.D ⊓ ⊔
(D1,D)∈V

∀Y.D

D2 ⊑ ⊔
(D2,D)∈H

∀X.D ⊓ ⊔
(D2,D)∈V

∀Y.D

... ...

Dd ⊑ ⊔
(Dd,D)∈H

∀X.D ⊓ ⊔
(Dd,D)∈V

∀Y.D

Does this suffice?

I.e., does D have a 2n × 2n tiling iff one Di is satisfiable w.r.t. ① to ③?

• if yes, we have shown that satisfiability of ALC is NExpTime-hard

• so no...what is missing?
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Mapping a Domino System into an ALCQIO Ontology

Two things are missing:

1. the model must be large enough, namely 2n × 2n and

2. for each element, its horizontal-vertical-successors coincide with their

vertical-horizontal-successors and vice versa

This will be addressed using a “counting and binding together” trick ...
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Mapping a Domino System into an ALCQIO Ontology

④ counting and binding together

(a) use A1, . . . , An, B1, . . . , B2 as “bits” for binary representation of grid position

e.g., (010, 011) is represented by an instance of ¬A3, A2, ¬A1, ¬B3, B2, B1

write GCI to ensure that X- and Y -successors are incremented correctly

e.g., X-successor of (010, 011) is (011, 011)

(b) use nominals to ensure that there is only one (111. . . 1, 111. . . 1)

this implies, with ⊤ ⊑ (≤ 1 X−.⊤)⊓(≤ 1 Y −.⊤) uniqueness of grid positions
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Mapping a Domino System into an ALCQIO Ontology

④ counting and binding together

(a) Ãi for “bit Ai is incremented correctly”:

⊤ ⊑ Ã1 ⊓ . . . ⊓ Ãn

Ã1 ⊑ (A1 ⊓ ∀X.¬A1) ⊔ (¬A1 ⊓ ∀X.A1)

Ãi ⊑ (⊓
ℓ<i

Aℓ ⊓ ((Ai ⊓ ∀X.¬Ai) ⊔ (¬Ai ⊓ ∀X.Ai)) ⊔

(¬ ⊓
ℓ<i

Aℓ ⊓ ((Ai ⊓ ∀X.Ai) ⊔ (¬Ai ⊓ ∀X.¬Ai))

(add the same for the Bis)

(b) ensure uniqueness of grid positions:

A1 ⊓ . . . ⊓ An ⊓ B1 ⊓ . . . ⊓ Bn ⊑ {o} % top right (2n, 2n) is unique

⊤ ⊑ (≤ 1 X−.⊤) ⊓ (≤ 1 Y −.⊤) % everything else is also unique
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Reduction of NExpTime Domino Problem to ALCQIO Consistency

Since the NExpTime-domino problem is NExpTime-hard, this implies

consistency of ALCQIO is also NExpTime-hard:

Lemma: let OD be ontology consisting of all axioms mentioned in reduction of D:

• D has an 2n × 2n tiling iff OD is consistent

• size of OD is polynomial (quadratic) in

– the size of D and

– n
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Let’s do this again!
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Are all DLs decidable?

So far, we have extended ALC with

• inverse role and

• number restrictions

• ...which resulted in logics whose reasoning problems are decidable

• ...we even discussed decision procedures for these extensions

Next, we will discuss some undecidable extension

• ALC with role chain inclusions

• ALC with number restrictions on complex roles
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An undecidable DL: ALC with role chain inclusions

OWL 2 supports axioms of the form

• r ⊑ s: a model of O with r ⊑ s ∈ O must satisfy rI ⊆ sI

• trans(r): a model of O with trans(r) ∈ O must satisfy rI ◦rI ⊆ rI ,

where p ◦ q = {(x, z) | there is y : (x, y) ∈ p and (y, z) ∈ q},

i.e., a model I of O must interpret r as a transitive relation

• r ◦s ⊑ t: a model of O with r ◦s ⊑ t ∈ O must satisfy rI ◦sI ⊆ tI

subject to some complex restrictions

...why do we need restrictions?

...because axioms of this form lead to loss of tree model property and

undecidability
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How to prove undecidability of a DL

Often, we prove undecidability of a DL as follows:

1. fix reasoning problem, e.g., satisfiability of a concept w.r.t. a TBox

• remember Theorem 2?

• if concept satisfiability w.r.t. TBox is undecidable,

• then so is consistency of ontology

• then so is subsumption w.r.t. an ontology

• ...

2. pick a decision problem known to be undecidable, e.g., the domino problem

3. provide a (computable) mapping π(·) that

• takes an instance D of the domino problem and

• turns it into a concept AD and a TBox TD such that

• D has a tiling if and only if AD is satisfiable w.r.t. TD

i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as

a decision procedure for the domino problem
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The Classical Domino Problem

using D?

types
dominoe
of
set
a fixed
D,

can we tile the 

��
��
��
��

first quadrant 

��
��
��
��

����

University of
Manchester

27



The Classical Domino Problem

Definition: A domino system D = (D, H, V )

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions H ⊆ D × D and V ⊆ D × D

A tiling for D is a (total) function:

t : N × N → D such that

〈t(m, n), t(m + 1, n)〉 ∈ H and

〈t(m, n), t(m, n + 1)〉 ∈ V

Domino problem: given D, has D a tiling?

It is well-known that this problem is undecidable [Berger66]
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Almost Encoding the Classical Domino Problem in ALC

We have already see how to express various obligations of the domino problem in

ALC TBox axioms:

① each element carries exactly one domino type Di ✔

Ã use unary predicate symbol Di for each domino type and

⊤ ⊑ D1 ⊔ . . . ⊔ Dd % each element carries a domino type

D1 ⊑ ¬D2 ⊓ . . . ⊓ ¬Dd % but not more than one

D2 ⊑ ¬D3 ⊓ . . . ⊓ ¬Dd % ...
... ...

Dd−1 ⊑ ¬Dd
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Almost Encoding the Classical Domino Problem in ALC

② every element has a horizontal (X-) successor and a vertical (Y -) successor ✔

⊤ ⊑ ∃X.⊤ ⊓ ∃Y.⊤

③ every element satisfies D’s horizontal/vertical matching conditions: ✔

D1 ⊑ ⊔
(D1,D)∈H

∀X.D ⊓ ⊔
(D1,D)∈V

∀Y.D

D2 ⊑ ⊔
(D2,D)∈H

∀X.D ⊓ ⊔
(D2,D)∈V

∀Y.D

... ...

Dd ⊑ ⊔
(Dd,D)∈H

∀X.D ⊓ ⊔
(Dd,D)∈V

∀Y.D

Does this suffice?

No, we know that it doesn’t!
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Encoding the Classical Domino Problem in ALC with role chain inclusions

④ for each element, its horizontal-vertical-successors coincide with their

vertical-horizontal-successors & vice versa

X ◦ Y ⊑ Y ◦ X and Y ◦ X ⊑ X ◦ Y

Lemma: Let TD be the axioms from ① to ④.

Then ⊤ is satisfiable w.r.t. TD iff D has a tiling.

• since the domino problem is undecidable, this implies undecidability of

concept satisfiability w.r.t. TBoxes of ALC with role chain inclusions

• due to Theorem 2, all other standard reasoning problems are undecidable, too

• Proof: 1. show that, from a tiling for D, you can construct a model of TD

2. show that, from a model I of TD, you can construct a tiling for D

(tricky because elements in I can have several X- or Y -successors

but we can simply take the right ones...)
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Let’s do this again!
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Let’s do this again!

What other constructors can us help to express ④?

• counting and complex roles (role chains and role intersection):

⊤ ⊑ (≤ 1X.⊤) ⊓ (≤ 1Y.⊤) ⊓ (∃(X ◦ Y ) ⊓ (Y ◦ X).⊤)

• restricted role chain inclusions (only 1 role on RHS), and counting (an all roles):

⊤ ⊑ (≤ 1X.⊤) ⊓ (≤ 1Y.⊤)

X ◦ Y ⊑ r

Y ◦ X ⊑ r

⊤ ⊑ (≤ 1r.⊤)

• various others...

University of
Manchester

33



Over to Thomas for easy fast DLs!
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