Description Logics: a Nice Family of Logics

— Modularity —

Uli Sattler! Thomas Schneider?

1School of Computer Science, University of Manchester, UK

?Department of Computer Science, University of Bremen, Germany

ESSLLI, 10 August 2012

Uli Sattler, Thomas Schneider DL: Modularity

Introduction Modules

Plan for today

@ What is modularity good for?

© Modules for reuse

© Summary and Outlook

Uli Sattler, Thomas Schneider DL: Modularity

Summary and Outlook

Y

Introduction Modules Summary and Outlook

@ What is modularity good for?
© Modules for reuse

© Summary and Outlook

Introduction

What can | do with my ontology?

Ontology users and engineers want to use ontologies to

@ represent and archive knowledge (M)
in a structured way

@ compute inferences from archived knowledge (M)
e.g., classification, query answering

o explain inferences (M)
justifications = pinpointing, abduction

o reuse (parts of) other ontologies to build their ontology (M)
import

« expose the logical structure of the represented knowledge (M)
comprehension

(M) = modularity helps

Uli Sattler, Thomas Schneider DL: Modularity

Introduction

What can | do with my ontology?

Building and using an ontology often requires

o fast reasoning (M)
expressivity <> complexity; optimisations, incremental reasoning

@ collaborative development (M)
@ version control (M)
o efficient reuse (M)

@ an understanding of the ontology’s content and structure (M)
comprehension

(M) = modularity helps

Uli Sattler, Thomas Schneider DL: Modularity

Introduction

A priori vs. a posteriori modularisation

A priori (not covered today)

@ At first, a modular structure is decided on.

@ Then, the ontology is developed and used according to that
structure.

A posteriori

@ The ontology is regarded as a monolithic entity.

@ At some point, a module is extracted
or the ontology is decomposed into several modules.

Uli Sattler, Thomas Schneider DL: Modularity

Introduction Modules Summary and Outlook

@ What is modularity good for?
© Modules for reuse

© Summary and Outlook

Modules

Comparing two ontologies

Assume that ...

@ you want to buy a medical ontology from me

@ | offer two medical ontologies @1 and O

Q: which one do you choose?

Possible A: the one that contains more knowledge.

Q: how do you measure the amount of knowledge in O;?

Possible A: Number-oef-axioms?
o Well, compare {AC B, BC A} vs. {A=B}
sor {ACB, BCLAU-A AMN-ALCB} vs. {A=B}

Possible A: Number of entailments? Number of models?

Uli Sattler, Thomas Schneider DL: Modularity

Y

8

Modules

Ontologies and their entailments

Think of axioms as generating entailments — e.g.:
ALC 3r.B

E ACD
3rTCCND

Q: how many entailments can a TBox have?

A:07 17 272 ... n? ... 2"7 ... o007

Uli Sattler, Thomas Schneider DL: Modularity

Modules

Ontologies and their entailments

Think of axioms as generating entailments — e.g.:

ALC 3r.B

E ACD
3rTCCND

Q: how many entailments can a TBox have?

A:

ACD ACDUA ACDU(AMD),

Uli Sattler, Thomas Schneider DL: Modularity

Modules

Ontologies and their models

Think of axioms as restricting possible models

Axioms “filter out” unwanted models — e.g.:

@ Hand [dhasPart.Finger

~» models cannot have instances of Hand with no
hasPart-edge to an instance of Finger

@ Hand T = ShasPart.Finger

~» models cannot have instances of Hand with # 5
hasPart-edges to instances of Finger

Q: how many models can a TBox have?

A:07 17 27 ... n? ... 2"7?7 ... o007

Uli Sattler, Thomas Schneider DL: Modularity 10

Modules

Ontologies and their models

Think of axioms as restricting possible models

Axioms “filter out” unwanted models — e.g.:

@ Hand [dhasPart.Finger

~» models cannot have instances of Hand with no
hasPart-edge to an instance of Finger

@ Hand T = ShasPart.Finger

~» models cannot have instances of Hand with # 5
hasPart-edges to instances of Finger

Q: how many models can a TBox have?

A: 0 les)

Uli Sattler, Thomas Schneider DL: Modularity 10

Modules

Next attempt at “more” entailments/models

We cannot compare numbers of entailments or models
But we can use set inclusion:
“O knows at most as much as O’ " if

@ every entailment of O is one of O’:

Ok € {n|O0 En} or

@ every model of O’ is one of O:
{Z|TE O} C {T|TF O}

Problem:

How do we test these conditions?

Uli Sattler, Thomas Schneider DL: Modularity 11

Modules

Knowledge w.r.t. a signature

Let's reformulate the initial dialogue. @
Assume that ... ©

@ you want to buy a subset of a medical ontology O from me
that covers the subdomain of, say, diseases

o | offer two subsets M7 and M>

Q: which one do you choose?

Possible A: the one that “knows more” about diseases!

Q: which is the best subset | can offer?

Possible A: a module for diseases
e M C O that knows as much as O about diseases:
M indistinguishable from O w.r.t. all terms relevant for diseases

e M as small as possible @

Uli Sattler, Thomas Schneider DL: Modularity 12

Modules

Inseparability w.r.t. a signature

Definition @
e Signature ¥ = a set of concept/role name 0

@ The signature of axiom (ontology) X
= all concept/role names in X

@ 01 and O, are Y -inseparable w.r.t. a logic £,
written 07 =£ Oy, if: [Konev et al. 2009]

for all n € L with sig(n) C &,

01 En iff O FEn

e O is a X-conservative extension (X-dCE) of M w.r.t. £
fMCO and M=£0 [Ghilardi et al. 2006]
Alternative names:
o M covers O for X w.r.t. £
e M is a module of O for X w.r.t. £ @

Uli Sattler, Thomas Schneider DL: Modularity 13

Modules

Choosing the signature X

Definition (repeated from previous slide)
(@)

O is a X-module of M w.r.t. £
fMCO and M=£0

The signature X ...
@ can be seen as a “topic”
@ that the module is required to cover

@ is difficult to formulate:

Q: how many interesting entailments in ¥ = {Disease}
can O possibly have?

Uli Sattler, Thomas Schneider DL: Modularity 14

Modules

Choosing the logic £

Definition (repeated from previous slide)
(@)

O is a X-module of M w.r.t. £
fMCO and M=£0

Choice of L depends on your usage of the module:

e for ontology design: subsumptions betw. (complex?) concepts

e for ontology usage: your favourite query language

Uli Sattler, Thomas Schneider DL: Modularity 15

Modules

Modules for reuse

If we want to reuse module M,
()

&,

we need a stronger guarantee:

MUO' =£0U0 forall O

x

Q: is this reasonable to expect? A: no! Consider
O={ACB, AC3r.C} T={Ar,C} O ={BLC C}
Then M = {AC 3r.C} =8¢ 0,

but MU0 Z4C ou O,
because OU O’ EAC C

Uli Sattler, Thomas Schneider DL: Modularity 16

Modules

Modules for reuse

If we want to reuse module M,
()

&,

we need a stronger guarantee:
MUO' =£0U0 forall O

x

Q: is this reasonable to expect? A: no!

Solution:

Lemma [Konev et al. 2009]

IfM=£0, then MUO =£ OU, for
e every O’ with sig(O) Nsig(0’) C &,
@ expressive enough £, e.g. SROZQ (OWL).

Consequence: @
we can safely import M into any 0’ that reuses only terms from &

Uli Sattler, Thomas Schneider DL: Modularity 16

Modules

How is a minimal 2-module extracted?

Simple module extraction algorithm: @
oM<+ O ©

o While M\ {a} =£ O, for some a € M,
do M +— M\ {a}

o Output M

Observation:

Different orders of choosing «
can lead to different minimal modules

Uli Sattler, Thomas Schneider DL: Modularity 17

Modules

Example
Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint M 3hasPart.Patella M
TJhasFunct.Hinge
Patella C Bone M Sesamoid
Ginglymus = Joint M JhasFunct.Hinge
Joint M JhasPart.(BoneMSesamoid) C Ginglymus
Ginglymus = HingeJoint

Meniscus = FibroCartilage M JlocatedIn.Knee

w N
— —

~ o~~~
(S
=

6)

C-Minimal module for X7

Uli Sattler, Thomas Schneider DL: Modularity

Modules

Example
Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint M JhasPart.Patella M
TJhasFunct.Hinge
Patella C Bone M Sesamoid

Joint M JhasPart.(BoneMSesamoid) C Ginglymus
Ginglymus = HingeJoint

C-Minimal module for £ 7 {(1),(2),(4),(5)}

Uli Sattler, Thomas Schneider DL: Modularity

18

Modules

Example
Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint I JhasPart.Patella M (1)
TJhasFunct.Hinge

Ginglymus = Joint M JhasFunct.Hinge 3)
Ginglymus = HingeJoint (5)
C-Minimal module for X ? {(1),(3),(5)}

Uli Sattler, Thomas Schneider DL: Modularity 18

Modules

Example

Let ¥ = {Knee, HingeJoint}. Suppose Galen contains:

Knee = Joint M JhasPart.Patella M (1)
TJhasFunct.Hinge
Patella C Bone M Sesamoid (2)
Ginglymus = Joint M JhasFunct.Hinge 3)
Joint M JhasPart.(BoneMSesamoid) C Ginglymus (4)
Ginglymus = HingeJoint (5)
Meniscus = FibroCartilage M SlocatedIn.Knee (6)

C-Minimal module for £ 7 {(1), (2),(4),(5)} and {(1),(3),(5)}

Note that a module for ¥ does not necessarily contain
@ all axioms that use terms from ¥
@ only axioms that only use terms from X @

Uli Sattler, Thomas Schneider DL: Modularity 18

Modules

Bad news for expressive ontology languages?

Big, sad theorem [Ghilardi et al. 2006]
Let O1, Oy be ontologies in £ and ¥ a signature.

Determining whether O7 =£ O is

ExpTiME-complete for L = &L
2ExPTiME-complete for ALC < L < ALCQZ, and
undecidable for L > ALCQQO, including OWL

(even if 01,05 are in ALC).

Uli Sattler, Thomas Schneider DL: Modularity 19

Introduction Modules Summary and Outlook

Consequences for modules of expressive DLs

Extracting modules is highly complex for expressive DLs.

@ Give up? No: modules clearly too important

@ Reduce expressivity of logic? Yes! (Not covered here.)

© Approximate for expressive logics? Yes — but from the right
direction!

Next: 2 approximations, i.e., sufficient conditions for inseparability
@ based on semantic locality
@ based on syntactic locality
[Cuenca Grau et al. 2009]

Uli Sattler, Thomas Schneider DL: Modularity 20

Modules

Model-theoretic inseparability

Remember: O; =£ O, if:
for all n € L with sig(n) C &,

OrkEn iff OxfFn

Good news: 0
Tz I TEO} ={ZIz | TF O}

@ i.e., O1 and O, have the same models modulo X
(Z|5 is the restriction of Z to X))
@ shorthand: 01 =¥™ O, (model-inseparable)

@ this notion does not depend on £

Bad news: O; =™ O, is undecidable already for ALC! @

Uli Sattler, Thomas Schneider DL: Modularity 21

Modules

Semantic locality

We can approximate model-inseparability, @
exploiting that M is a subset of O ©
M =" 0
(>

every 7 = M can be extended to J = O with |y = J|x

f

every Z = M can be extended to J = O with Z|x = J|x
andvX ¢ : X7 =0

x

every a € O \ M is semantically local w.r.t. © U sig(M):
a, with all terms not in £ U sig(M) replaced by L, is a tautology

Uli Sattler, Thomas Schneider DL: Modularity 22

Modules

From semantic to syntactic locality

@ Semantic locality involves tautology check
~> can be tested using a reasoner

~» has the same complexity as standard reasoning

@ A syntactic approximation that can be tested in poly-time:
syntactic locality

(describes “obviously” sem. local axioms via a grammar)

@ Both notions lead to modules that are
o (X Usig(M))-inseparable from O

e not necessarily minimal

Uli Sattler, Thomas Schneider DL: Modularity 23

Modules

Examples of syntactically (non)-local axioms

BL A form C C C? ~» not {B, ... }-local
AC BM3r.C form € C C ~» {B, C}-local
XMALCY is X-local if, e.g., A€ X
Br3arCC A is {B, C}-local
AC AUB is not {A, B}-local, yet a tautology!

Uli Sattler, Thomas Schneider DL: Modularity

24

Modules

Module extraction

Module extraction algorithm: @
oM<+ 0 ©

e While a not local w.r.t. ¥ Usig(M), for some a € O\ M,
do M +— MU {a}

o Output M

Variations:

e this notion: (semantic/syntactic) L-module
@ dual notion: (semantic/syntactic) T-module

@ smaller modules by nesting T- and _L-module extraction:
T_L*-modules

Uli Sattler, Thomas Schneider DL: Modularity 25

Introduction Modules Summary and Outlook

@ What is modularity good for?
© Modules for reuse

© Summary and Outlook

Summary and Outlook

Summary

@ Inseparability/coverage is a guarantee relevant
(not only) for reuse

@ Approximation of minimal covering modules via locality

@ Modules based on syntactic locality can be extracted
efficiently in logics up to SROZQ (OWL 2)

@ Tool support for extracting modules:
http://owl.cs.manchester.ac.uk/modularity
http://owlapi.sourceforge.net/

@ This line of research is rather new for DLs and ontology
languages, and many questions are (half)open.

Uli Sattler, Thomas Schneider DL: Modularity 27

http://owl.cs.manchester.ac.uk/modularity
http://owlapi.sourceforge.net/

Summary and Outlook

An import/reuse scenario

“Borrow” knowledge from external ontologies

iy

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.

Uli Sattler, Thomas Schneider DL: Modularity 28

Summary and Outlook

A collaboration scenario

Collaborative ontology development

1o o R
- R

e Developers work (edit, classify) locally
@ Extra care at re-combination

@ Prescriptive/analytic behaviour

This approach is mostly understood, but not implemented yet. @

Uli Sattler, Thomas Schneider DL: Modularity 29

Understanding and/or structuring an ontology

Compute the modular structure of an ontology

1,000,000 axioms

Uli Sattler, Thomas Schneider DL: Modularity

Summary and Outlook

30

Summary and Outlook

Understanding and/or structuring an ontology

Compute the modular structure of an ontology

This is work in progress.

Uli Sattler, Thomas Schneider DL: Modularity 30

Summary and Outlook

See also . ..

. slides from ESSLLI 2011 course “Modularity in Ontologies”

http://www.informatik.uni-bremen.de/ ts/teaching

...the references at the end of this presentation

Over to Uli for Justifications!

Uli Sattler, Thomas Schneider DL: Modularity 31

http://www.informatik.uni-bremen.de/~ts/teaching

References

@ B. Cuenca Grau, |. Horrocks, Y. Kazakov, U. Sattler.
Extracting Modules from Ontologies: a Logic-Based Approach.
In H. Stuckenschmidt et al., eds: Modular Ontologies, pages 159-186, vol.
5445 of LNCS, Springer, 2009.
http://www.springerlink.com/content/qq732374182825q0/
http://web.comlab.ox.ac.uk/oucl/work/bernardo.cuenca.grau/
publications/paperJAIR.pdf (previous version)

[§ s. Ghilardi, C. Lutz, F. Wolter.
Did | Damage My Ontology? A Case for Conservative Extensions in
Description Logics.
In Proc. KR, pages 187-197, 2006.
http://www.csc.liv.ac.uk/"frank/publ/GLWZshort.pdf
http://www.csc.liv.ac.uk/"frank/publ/GLWZlong.ps

@ B. Konev, C. Lutz, D. Walther, and F. Wolter.
Formal Properties of Modularisation.
In H. Stuckenschmidt et al., eds: Modular Ontologies, pages 25-66, vol.
5445 of LNCS, Springer, 2009. @
http://www.csc.liv.ac.uk/ frank/publ/modulebook.pdf

Uli Sattler, Thomas Schneider DL: Modularity 32

http://www.springerlink.com/content/qq732374182825q0/
http://web.comlab.ox.ac.uk/oucl/work/bernardo.cuenca.grau/publications/paperJAIR.pdf
http://web.comlab.ox.ac.uk/oucl/work/bernardo.cuenca.grau/publications/paperJAIR.pdf
http://www.csc.liv.ac.uk/~frank/publ/GLWZshort.pdf
http://www.csc.liv.ac.uk/~frank/publ/GLWZlong.ps
http://www.csc.liv.ac.uk/~frank/publ/modulebook.pdf

	Appendix

