
A case for modularity Modularisation approaches Course overview

Modularity in Ontologies:
Introduction (Part B)

Thomas Schneider 1 Dirk Walther2

1Department of Computer Science, University of Bremen, Germany

2Center for Advancing Electronics, Technical University of Dresden, Germany

ESSLLI, 12 August 2013

Thomas Schneider, Dirk Walther Modularity: Introduction B 1



A case for modularity Modularisation approaches Course overview

Plan for the rest of today’s lecture

1 A case for modularity of ontologies

2 Overview and comparison of modularisation approaches

3 Overview of the remainder of this course

Thomas Schneider, Dirk Walther Modularity: Introduction B 2



A case for modularity Modularisation approaches Course overview

And now . . .

1 A case for modularity of ontologies

2 Overview and comparison of modularisation approaches

3 Overview of the remainder of this course

Thomas Schneider, Dirk Walther Modularity: Introduction B 3



A case for modularity Modularisation approaches Course overview

What can I do with my ontology?

Ontology users and engineers use ontologies to

represent and archive knowledge
compute inferences from that knowledge (quickly)
e.g., classification, query answering, explanation

Modularity can help with these tasks.

Thomas Schneider, Dirk Walther Modularity: Introduction B 4



A case for modularity Modularisation approaches Course overview

What can I do with my ontology?

Building and using an ontology can be eased by

frequent and fast reasoning
classification, explanations;
expressivity↔ complexity, optimisations, incremental reasoning

reusing knowledge from existing ontologies
efficient import

exposing the logical structure of the represented knowledge
comprehension

collaborative development
version control

Modularity can help with these tasks.

Thomas Schneider, Dirk Walther Modularity: Introduction B 5



A case for modularity Modularisation approaches Course overview

An import/reuse scenario

“Borrow” knowledge from external ontologies

Provides access to well-established knowledge
Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.
ó Tuesday + Wednesday

Thomas Schneider, Dirk Walther Modularity: Introduction B 6



A case for modularity Modularisation approaches Course overview

A collaboration scenario

Collective ontology development

Developers work (edit, invoke reasoning) locally
Extra care at re-combination
Prescriptive/analytic behaviour

This approach is mostly understood, but not implemented yet.

Thomas Schneider, Dirk Walther Modularity: Introduction B 7



A case for modularity Modularisation approaches Course overview

Understanding and/or structuring an ontology

Compute the logical structure of an ontology

1,000,000 axioms

This is work in progress. ó Thursday

Thomas Schneider, Dirk Walther Modularity: Introduction B 8



A case for modularity Modularisation approaches Course overview

And now . . .

1 A case for modularity of ontologies

2 Overview and comparison of modularisation approaches

3 Overview of the remainder of this course

Thomas Schneider, Dirk Walther Modularity: Introduction B 9



A case for modularity Modularisation approaches Course overview

A priori vs. a posteriori

A priori modularisation approaches

First, a modular structure for the ontology O is decided on.
Then, O is developed and used according to that structure.

Development

−→

Use

Thomas Schneider, Dirk Walther Modularity: Introduction B 10



A case for modularity Modularisation approaches Course overview

A-priori modularisation approaches

Provide a framework to develop an ontology modularly
from the start

Provide means to “bridge” between the modules
dependency of modules/signature, flow of knowledge

Often consist of extensions of (description) logics

Sometimes allow for distributed reasoning

Generally, don’t guarantee that modules are logically closed
in some cases, this is deliberately so

Thomas Schneider, Dirk Walther Modularity: Introduction B 11



A case for modularity Modularisation approaches Course overview

A-priori: different files with imports

Used to develop large ontologies about different domains

Each domain expert (team) maintains “their” file Fi

The overall ontology O imports all files:
O = F1 ∪ · · · ∪ Fn

Example: F1,F2,F3 about diseases, anatomy and drugs
Problems?

The Fi are not necessarily logically closed
Experts’ knowledge interferes with each other,
e.g.: diseases are located in body parts and treated by drugs

; Maintenance of O as difficult as in the monolithic case
Reasoning or reuse might still require the whole ontology

Still used to develop and maintain ontologies!
see e.g. http://bioportal.bioontology.org

Thomas Schneider, Dirk Walther Modularity: Introduction B 12

http://bioportal.bioontology.org


A case for modularity Modularisation approaches Course overview

Package-based description logics (PB-DLs)

[Bao et al. 2006, 2009]

Extension of standard DLs

Domain-specific files are called packages

Semantic import links between packages (explicit dependency)

Terms annotated with “home package”

Semantics local w.r.t. each package

Reasoning controlled by the links

Translation to “plain” DLs yields implicit decision procedures
Problems?

Reasoning or reuse might still require the whole ontology

Thomas Schneider, Dirk Walther Modularity: Introduction B 13



A case for modularity Modularisation approaches Course overview

Distributed description logics

[Borgida and Serafini 2003] [Serafini and Tamilin 2009]

Similar to PB-DLs

Replace import links by “bridge rules”:
subconcept relations between (complex) concepts from
different packages

Distributed decision procedures exist

Related notion: E-connections
[Kutz et al. 2001]

Thomas Schneider, Dirk Walther Modularity: Introduction B 14



A case for modularity Modularisation approaches Course overview

A priori vs. a posteriori

A posteriori modularisation approaches

The ontology O is built and used as a monolithic entity.
A module is extracted or O is decomposed into modules.

Development

−→

(standalone)

Use

M

(module extraction) (decomposition)

Thomas Schneider, Dirk Walther Modularity: Introduction B 15



A case for modularity Modularisation approaches Course overview

A-posteriori modularisation approaches

Regard an ontology O as a monolithic entity
remember: O is a set of axioms

Module: subset M ⊆ O

Extract one module (e.g., for reuse) or
decompose O into several modules (e.g., for comprehension)

Often, a signature (set of terms) Σ ⊆ sig(O) is specified
and the module extracted using Σ as a parameter

Ideally, modules encapsulate knowledge in some form
e.g., all consequences of O in Σ

Not all a-posteriori module notions guarantee encapsulation

Thomas Schneider, Dirk Walther Modularity: Introduction B 16



A case for modularity Modularisation approaches Course overview

Graph-based a-posteriori modularisation approaches

Are based on a graph representation of the ontology
usually concept/role hierarchy, sometimes enriched with disjointness

Start with a signature Σ

Traverse the graph and “harvest” entities and axioms
follow subconcept relation and/or restrictions (∃, domain, range)

Resulting module = set of harvested axioms
Examples

Ontology segmentation [Seidenberg and Rector 2006, 2009]
Traversals [Noy and Musen 2003, 2009]
More general framework [d’Aquin et al. 2007]

Thomas Schneider, Dirk Walther Modularity: Introduction B 17



A case for modularity Modularisation approaches Course overview

Pro and contra graph-based approaches

Pro
Modules can usually be extracted efficiently
time polynomial in the size of O ; robustly scalable

Easy to implement

Applicable to many logics

Contra
Heuristic, no characterisation of the expected module contents

In particular, no logical guarantees such as entailment
preservation

; Modules typically lose knowledge from O

Thomas Schneider, Dirk Walther Modularity: Introduction B 18



A case for modularity Modularisation approaches Course overview

A-posteriori approaches with coverage

Coverage
M ⊆ O covers O for Σ if
all Σ-consequences of O already follow from M.

i.e., M preserves all knowledge in O about α
ó Tuesday

This guarantee is needed, e.g., for ontology reuse or reasoning
ó Tuesday + Wednesday

Of course, O is always covering

Problems
Minimal covering modules are, in general, hard to extract
ó Tuesday

Thomas Schneider, Dirk Walther Modularity: Introduction B 19



A case for modularity Modularisation approaches Course overview

Coverage-providing module notions

Restricted to logics where coverage can be decided efficiently
e.g., MEX for acyclic EL ó Wednesday
[Konev et al. 2008]

Or use a tractable condition sufficient for coverage,
leading to modules that always contain minimal modules
Examples:

Modules obtained from partitions based on E-connections
[Cuenca Grau et al. 2006]
Locality-based modules ó Wednesday
[Cuenca Grau et al. 2007, 2009]
Reachability-based modules ó Friday
[Suntisrivaraporn 2008]

Thomas Schneider, Dirk Walther Modularity: Introduction B 20



A case for modularity Modularisation approaches Course overview

Comparison of a-posteriori module extraction approaches

Module notion Covrg. Min. Covered DLs Complexity

All axioms referencing Σ 8 any easy

Graph-based 8 any easy

The whole ontology 3 88 any easy

Minim. mod. with coverage? 3 3 few hard
MEX? 3 3 acyclic EL easy

E-connections based mod. 3 8 OWL easy

Locality-based mod.? 3 8 OWL easy

Reachability-based mod.? 3 8 almost OWL easy

(Modules with rewriting) 3? 33? few? hard?

?Will be covered here ó Tuesday, Wednesday, Friday

Thomas Schneider, Dirk Walther Modularity: Introduction B 21



A case for modularity Modularisation approaches Course overview

And now . . .

1 A case for modularity of ontologies

2 Overview and comparison of modularisation approaches

3 Overview of the remainder of this course

Thomas Schneider, Dirk Walther Modularity: Introduction B 22



A case for modularity Modularisation approaches Course overview

Course overview

2 Module extraction and its formal foundations
A case scenario: modular reuse
Logical guarantees required
Conservative extensions, inseparability, robustness

3 Module extraction
Efficient module notions (locality, MEX)
Module extraction algorithms and tools

4 Decomposing ontologies
Atomic decomposition

5 Recent advances/current work
Forgetting and interpolation
Reachability-based modules
Incremental reasoning
Modular reasoning

Thomas Schneider, Dirk Walther Modularity: Introduction B 23


