Modularity in Ontologies:
Introduction (Part B)

Thomas Schneider® Dirk Walther?

IDepartment of Computer Science, University of Bremen, Germany

2Center for Advancing Electronics, Technical University of Dresden, Germany

ESSLLI, 12 August 2013

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 1

A case for modularity Modularisation approaches Course overview

Plan for the rest of today's lecture

@ A case for modularity of ontologies

© Overview and comparison of modularisation approaches

© Overview of the remainder of this course

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 2

A case for modularity Modularisation approaches Course overview

@ A case for modularity of ontologies
e Overview and comparison of modularisation approaches

© Overview of the remainder of this course

Yo

A case for modularity

What can | do with my ontology?

Ontology users and engineers use ontologies to

@ represent and archive knowledge

@ compute inferences from that knowledge (quickly)
e.g., classification, query answering, explanation

Modularity can help with these tasks.

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 4

A case for modularity

What can | do with my ontology?

Building and using an ontology can be eased by

@ frequent and fast reasoning
classification, explanations;
expressivity <+ complexity, optimisations, incremental reasoning

@ reusing knowledge from existing ontologies
efficient import

@ exposing the logical structure of the represented knowledge
comprehension

@ collaborative development

@ version control

Modularity can help with these tasks.
Y

Thomas Schneider, Dirk Walther Modularity: Introduction B 5

A case for modularity

An import/reuse scenario

“Borrow"” knowledge from external ontologies

iy

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.
»+ Tuesday + Wednesday

Thomas Schneider, Dirk Walther Modularity: Introduction B

Yo

A case for modularity

A collaboration scenario

Collective ontology development

1o o R

5=

@ Developers work (edit, invoke reasoning) locally
@ Extra care at re-combination

@ Prescriptive/analytic behaviour

This approach is mostly understood, but not implemented yet. {{U))

Thomas Schneider, Dirk Walther Modularity: Introduction B 7

A case for modularity

Understanding and/or structuring an ontology

Compute the logical structure of an ontology

1,000,000 axioms %

This is work in progress. »* Thursday
)

Thomas Schneider, Dirk Walther Modularity: Introduction B 8

A case for modularity Modularisation approaches Course overview

And now ...

© Overview and comparison of modularisation approaches

Thomas Schneider, Dirk Walther Modularity: Introduction B 9

Modularisation approaches

A priori vs. a posteriori

A priori modularisation approaches

e First, a modular structure for the ontology O is decided on.

@ Then, O is developed and used according to that structure.

Y
Q
Development Use

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 10

Modularisation approaches

A-priori modularisation approaches

@ Provide a framework to develop an ontology modularly
from the start

@ Provide means to “bridge” between the modules
dependency of modules/signature, flow of knowledge

e Often consist of extensions of (description) logics
@ Sometimes allow for distributed reasoning

@ Generally, don't guarantee that modules are logically closed
in some cases, this is deliberately so

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 11

Modularisation approaches

A-priori: different files with imports

@ Used to develop large ontologies about different domains

e Each domain expert (team) maintains “their” file F;

The overall ontology O imports all files:
O=FU---UF,

Example: Fi, F>, F3 about diseases, anatomy and drugs
@ Problems?
e The F; are not necessarily logically closed

o Experts' knowledge interferes with each other,
e.g.: diseases are located in body parts and treated by drugs

~» Maintenance of O as difficult as in the monolithic case

e Reasoning or reuse might still require the whole ontology

Still used to develop and maintain ontologies!

see e.g. http://bioportal.bioontology.org @)

Thomas Schneider, Dirk Walther Modularity: Introduction B 12

http://bioportal.bioontology.org

Modularisation approaches

Package-based description logics (PB-DLs)

[Bao et al. 2006, 2009]

o Extension of standard DLs

@ Domain-specific files are called packages

@ Semantic import links between packages (explicit dependency)
@ Terms annotated with “home package”

@ Semantics local w.r.t. each package

@ Reasoning controlled by the links

@ Translation to “plain” DLs yields implicit decision procedures

@ Problems?
e Reasoning or reuse might still require the whole ontology

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 13

Modularisation approaches

Distributed description logics

[Borgida and Serafini 2003] [Serafini and Tamilin 2009]

@ Similar to PB-DLs

@ Replace import links by “bridge rules”:
subconcept relations between (complex) concepts from
different packages

@ Distributed decision procedures exist

Related notion: E-connections
[Kutz et al. 2001]

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 14

Modularisation approaches

A priori vs. a posteriori

A posteriori modularisation approaches

@ The ontology O is built and used as a monolithic entity.

@ A module is extracted or O is decomposed into modules.

O-0 @& @®

(standalone) (module extraction) (decomposition)

Development Use

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 15

Modularisation approaches

A-posteriori modularisation approaches

@ Regard an ontology O as a monolithic entity
remember: O is a set of axioms

@ Module: subset M C O

@ Extract one module (e.g., for reuse) or
decompose O into several modules (e.g., for comprehension)

e Often, a signature (set of terms) X C sig(O) is specified
and the module extracted using > as a parameter

@ ldeally, modules encapsulate knowledge in some form
e.g., all consequences of O in &

@ Not all a-posteriori module notions guarantee encapsulation

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 16

Modularisation approaches

Graph-based a-posteriori modularisation approaches

Are based on a graph representation of the ontology
usually concept/role hierarchy, sometimes enriched with disjointness

Start with a signature &

@ Traverse the graph and “harvest” entities and axioms
follow subconcept relation and/or restrictions (3, domain, range)

Resulting module = set of harvested axioms

Examples
o Ontology segmentation [Seidenberg and Rector 2006, 2009]
o Traversals [Noy and Musen 2003, 2009]
o More general framework [d'Aquin et al. 2007]

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 17

Modularisation approaches

Pro and contra graph-based approaches

Pro

@ Modules can usually be extracted efficiently
time polynomial in the size of O ~» robustly scalable

@ Easy to implement

@ Applicable to many logics

Contra

@ Heuristic, no characterisation of the expected module contents

@ In particular, no logical guarantees such as entailment
preservation

~» Modules typically lose knowledge from O
Y

Thomas Schneider, Dirk Walther Modularity: Introduction B 18

Modularisation approaches

A-posteriori approaches with coverage

Coverage
M C O covers O for ¥ if
all X-consequences of O already follow from M.

@ i.e., M preserves all knowledge in O about «
»+ Tuesday

@ This guarantee is needed, e.g., for ontology reuse or reasoning
»+ Tuesday + Wednesday

o Of course, O is always covering

Problems
@ Minimal covering modules are, in general, hard to extract

»r Tuesday @)

Thomas Schneider, Dirk Walther Modularity: Introduction B 19

Modularisation approaches

Coverage-providing module notions

@ Restricted to logics where coverage can be decided efficiently

e.g., MEX for acyclic &L = Wednesday
[Konev et al. 2008]

@ Or use a tractable condition sufficient for coverage,
leading to modules that always contain minimal modules

Examples:

e Modules obtained from partitions based on E-connections
[Cuenca Grau et al. 2006]

e Locality-based modules ®+ Wednesday
[Cuenca Grau et al. 2007, 2009]

e Reachability-based modules »* Friday
[Suntisrivaraporn 2008]

Yo

Thomas Schneider, Dirk Walther Modularity: Introduction B 20

Modularisation approaches

Comparison of a-posteriori module extraction approaches

Module notion Covrg. Min. Covered DLs Complexity
All axioms referencing & b 4 any easy
Graph-based b 4 any easy

The whole ontology v XX any easy
Minim. mod. with coverage* | v/ v few hard
MEX* v v acyclic E€ easy
E-connections based mod. v X OWL easy
Locality-based mod.* v X OwWL easy
Reachability-based mod.* v b 4 almost OWL easy
(Modules with rewriting) 7 v/ few? hard?

*Will be covered here #+ Tuesday, Wednesday, Friday @)

Thomas Schneider, Dirk Walther Modularity: Introduction B 21

A case for modularity Modularisation approaches Course overview

@ A case for modularity of ontologies
9 Overview and comparison of modularisation approaches

© Overview of the remainder of this course

Yo

Course overview

Course overview

@ Module extraction and its formal foundations

e A case scenario: modular reuse
o Logical guarantees required
o Conservative extensions, inseparability, robustness

© Module extraction

o Efficient module notions (locality, MEX)
e Module extraction algorithms and tools

© Decomposing ontologies
e Atomic decomposition

© Recent advances/current work

Forgetting and interpolation
Reachability-based modules
Incremental reasoning

Modular reasoning @)

Thomas Schneider, Dirk Walther Modularity: Introduction B 23

